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Abstract

Recent progress in Al and Reinforcement learning has shown
great success in solving complex problems with high dimen-
sional state spaces. However, most of these successes have
been primarily in simulated environments where failure is of
little or no consequence. Most real-world applications, how-
ever, require training solutions that are safe to operate as
catastrophic failures are inadmissible especially when there
is human interaction involved. Currently, Safe RL systems
use human oversight during training and exploration in order
to make sure the RL agent does not go into a catastrophic
state. These methods require a large amount of human la-
bor and it is very difficult to scale up. We present a hybrid
method for reducing the human intervention time by combin-
ing model-based approaches and training a supervised learner
to improve sample efficiency while also ensuring safety. We
evaluate these methods on various grid-world environments
using both standard and visual representations and show that
our approach achieves better performance in terms of sample
efficiency, number of catastrophic states reached as well as
overall task performance compared to traditional model-free
approaches

Introduction

Recent progress in Al and Reinforcement Learning (RL)
has shown success in learning policies to solve complex
tasks such as playing video games from images (Mnih et
al. 2015), or robotic maneuvering and manipulation (Schul-
man et al. 2015). However, most of these successes were
achieved in simulated environments where unsupervised ex-
ploration during training is amenable as failure states are of
little consequence to the learning agent and it’s surround-
ings. Most real-world applications, which require training to
be done in-situ, will require the agent or robot to act safely
while learning. In this case, completely unsupervised explo-
ration during training, which lead to catastrophic failures are
inadmissible and an approach for safe learning is required,
especially during the initial exploration phases.

This has encouraged a new sub branch of reinforcement
learning called Safe RL. Although there are different ways
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of achieving safety during RL, most of the successful Safe
RL systems use human oversight during training and explo-
ration in order to make sure the Al agent does not go into a
catastrophic state (Saunders et al. 2017), and avoid potential
damage to property or any humans involved. Some notable
examples are self driving cars and drones which almost al-
ways use a human who oversees the actions of the agent and
can intervene if necessary.

A downside to these human-in-the-loop, safe RL tech-
niques is that they often require a lot of human time and
do not scale up very well due to the relatively poor sample-
efficiency inherit to RL. For many complicated tasks with
high-dimensional state-spaces, it can easily become infeasi-
ble (in terms of human labor required) to train these models
safely. Some previous research (Saunders et al. 2017) show
ways of reduce human time by training a supervised learner
to imitate human intervention and avoid catastrophes. Such
methods do help, but they are not very data efficient and can
still require a lot of human time before the supervised learn-
ers can take over.

In this paper, we present a method for improving these
schemes using model-based RL and show how they can im-
prove sample efficiency compared to existing safe RL meth-
ods. We present a hybrid scheme to train RL agents in a safe
manner with minimum human intervention time. We use a
model based approach where we learn the dynamics of the
environment and a Model Predictive Controller (MPC) to
initialize the policy of the model free agent (Richards 2005).
We also train a blocker agent which is a supervised learner
that is trained to imitate a human overseer and block un-
safe actions. We show that this hybrid approach requires less
human intervention time while achieving the same or bet-
ter performance in terms of rewards and safety compared
pure model free systems. Using two safe-RL environments
(GridWorld and Island Navigation) we show that compared
to traditional policy gradient approaches, our hybrid model
achieves 5x reduction in number of catastrophic states en-
countered. Furthermore, we show that our approach is more
sample efficient than traditional model-free approaches for
safe-RL, obtaining higher task performance in significantly
less training time.



Related Work

There are various ways in which human input can be used
to augment or improve the training of a learning agent.
The most common approach involves using human pro-
vided demonstrations of a given task and using imitation
learning to directly clone or imitate the demonstrated be-
haviour (Hussein et al. 2017). However, imitation learning
cannot be applied in cases where it is difficult for the hu-
man to perform the task well (or even at all). Christiano
et al. shows another method where human feedback (in the
form of preferences) can be used to learn a reward func-
tion for an RL agent (Christiano et al. 2017). In work from
Warnell et al., the reward function is learned directly from
scalar valued human feedback during the learning process
(Warnell et al. 2018). Recently, an approach from Way-
towich, Goecks, and Lawhern combined multiple forms of
human interaction to train Al agents safely by combining
learning from human demonstrations and learning from hu-
man interventions (Waytowich, Goecks, and Lawhern 2018;
Goecks et al. 2018). All of these methods, however, are
model-free and thus can still suffer from poor sample effi-
ciency.

Recently, Nagabandi et al. show how model-based algo-
rithms can be used for efficient learning due to their low
sample requirements (Nagabandi et al. 2018). In this work,
they initialize a policy gradient method using good trajecto-
ries observed in the model based training of the agent which
improves the sample efficiency of the learned policy.

Additionally, Saunders et al. show a way to formalize this
human intervention and help the Al agents to learn safely
during training (Saunders et al. 2017). In this approach, they
train an agent to act as a blocker in a supervised approach to
imitate the human (who initially acts as the blocker) and in-
tervene when the RL agent is about to take an action which
can lead to a catastrophic state. Data is collected to train
this blocker during the human oversight phase. Despite this,
Saunders et al. assert that since the training of this blocker
needs large amounts of high quality data, the amount of hu-
man oversight time required can get unfeasible with more
complex problems. Our approach seeks to directly overcome
this challenge by introducing model-based learning into this
model-free safe-RL approach to improve sample efficiently
and reduce the amount of human oversight required.

Methods

We now present our architecture for safe reinforcement
learning using hybrid model-based and model-free tech-
niques. Our architecture, which is outlined in Figure 1, in-
cludes three main modules, a model based module, a boot-
strapping module and a model free module. First, the model-
based system consists of a dynamics model that drives an
MPC controller which is supervised by either the human or
a learned blocker agent to prevent catastrophic actions. Sec-
ond, the bootstrapping module takes high-quality examples
generated from the MPC to initialize a model-free RL al-
gorithm. Finally the model-free module uses a bootstrapped
policy-gradient based RL agent to continue learning the task
under the supervision of the blocker agent.
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Figure 1: Architecture which mainly consists of three blocks
model based, bootstrap and model free. Blue colored block
is the dynamics model which tries to imitate the real envi-
ronment. Red block denoted the human or blocker (human
imitator)

Blocker Agent

There are various ways in which safety can be ensured dur-
ing training. One such way involves using a human in the
training phase to intervene (or block actions) so that agent
doesn’t take actions which lead to catastrophic states. (Saun-
ders et al. 2017) introduce a way to train a supervised learner
which can be trained to imitate a human and block actions
that are unsafe.

We follow a similar method where we built a web inter-
face which allows users to monitor agents and block unsafe
actions. If an action is blocked, the agent is forced to se-
lect another action. The data is collected and and eventually
a model is trained to perform this task of blocking unsafe
actions.

This reduces the human labor time considerably and
makes this process somewhat feasible. However, the amount
of data required to train a good blocker agent can still be
large. Our method seeks to improve the blocker performance
and reduce the amount of training data required by using a
model-based policy for generating the training dataset for
the blocker. This dataset is collected during the initial explo-
ration phase of the whole system (described in more detail
below).

Hybrid Model-based Reinforcement Learning

Typically, model-based systems attempt to learn a dynam-
ics model of the environment so that this learned model can
then be used in various ways to improve the learning of a
policy. In our approach, we learn a dynamics model that
will then be used to select actions to be taken in an environ-
ment using a model-predictive controller (MPC). We start
by training our dynamics model with random exploration



of the environment for 50 episodes. After this pre-training
stage, our dynamics model is used to drive an MPC con-
troller and ran for 150 episodes, during which, the data is
used to further improve the dynamics model. The MPC con-
troller we used in our experiments is a simple random shoot-
ing method (Richards 2005) where K random action tra-
jectories are generated each with horizon H. These random
action trajectories are then evaluated, the trajectory having
maximum overall reward is chosen and the first action from
that trajectory is executed.

During the 150 episodes with the MPC controller, we
select successful trajectories (where the agent successfully
reached the goal state) and store them into database buffer
in the bootstrapping module, which are used to boot-strap
a policy gradient model. After 150 episodes of the MPC
controller are completed, we switch to the model-free mod-
ule which takes the boot-strapped RL agent and continues
to learn the task with the trained blocker agent for 1000
episodes. We use the REINFORCE policy gradient algo-
rithm for our model-free RL agent (Sutton et al. 2000).

During this entire training cycle, we also have the hu-
man/blocker agent which intervenes and blocks unsafe ac-
tions. The human is used to block actions for the first 25
episodes (up to 1000 steps) during which the data generated
is used to train the blocker. After 1000 steps, the human is
replaced by the blocker agent for the remainder of the train-
ing cycle.

Model Architectures

The dynamics model, which is shown in the blue box in Fig-
ure 2, is a deep neural network which takes the current state
and action as input and predicts the next state and immediate
reward.

In the 4x4 grid-world environment, shown in Figure 3 (a),
we use a standard representation and a simple feed forward
neural network. Here we concatenate the state and action
which acts as the input and we predict the next state and re-
ward. Our dynamics model for 4x4 grid-world with standard
representation consists of two fully connected layers with 32
and 16 neurons respectively. It uses a ReLU activation func-
tion after each dense layer. We optimize using a categorical
cross-entropy loss function and Adam optimizer with learn-
ing rate of 0.001

For Island Navigation, shown in Figure 3(b), we use vi-
sual representations (i.e. learn from images). Since the in-
put is a 32x32 sized image, we use a CNN auto-encoder to
predict the next state. In this case, we append the action to
the encoded state representation and the output from the de-
coder side is the next state which is again a 32x32 image
and a scalar reward (shown in Figure 2). Details of the con-
volutional neural network architecture are listed in Table 1.
This auto-encoder was trained using categorical cross en-
tropy loss and RMSProp opmtimizer with learning rate as
0.001.

Experiments and Results

We evaluate our hybrid model on two safe-RL environments
with different complexities (in terms of state-space size).
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Figure 2: Auto-encoder architecture for the Island Naviga-
tion task. The input state is passed through several convo-
lutional layers. The input action is appended to the encoded
state representation, and then the decoder is used to output
the predicted reward as well as the predicted next state

input output Kkernel
Layer channel/ | channel/ size activation

features features
convl 3 3 (3.,3) ReLU
conv2 3 32 2,2) ReLU
conv3 32 32 3.,3) ReLU
conv4 32 32 3.,3) ReLU
fcl 8192 128 ReLU
fc2 128 24

24 +
fc3 4 (action) 128 ReLU
fcd 128 8192 ReLU
fcd
(reward | 128 3 Softmax
output)
deconvl | 32 32 (3.3) ReLU
deconv2 | 32 32 3.,3) ReLU
deconv3d | 32 32 2,2) ReLLU
convs . .
(output) 32 3 3.,3) Sigmoid

Table 1: Auto-encoder CNN architecture details. fc is for
fully connected layers.

The first is an OpenAl Gym implementation of text based
Grid-world (Brockman et al. 2016) and the second is Deep-
mind’s Al safety Grid-world (Leike et al. 2017). Using these
two environments, we are able to perform our experiments
on both the low-dimensional standard representation (Figure
3 (a)) as well as the higher-dimensional visual representa-
tion (Figure 3 (b)). Using these two different environmental
representations will allow us to test our method in not only
simple tasks but also in harder, more complex tasks involv-
ing higher-dimensional state-spaces.

We evaluate and compare our models using two metrics:
Cumulative Catastrophes (i.e. the number of times agent
goes to an unwanted state during the training phase) and
Rewards (the total amount of reward gathered by the agent
during each episode). We compare our model to a traditional
RL agent using the REINFORCE policy gradient algorithm
(Sutton et al. 2000) which is one example of a model free al-



(a) 4x4 GridWorld

(b) Island Navigation

Figure 3: Environments for experiments. (a) is in standard
representation from OpenAl Gym implementation of text
based grid-world. (b) has states in visual representation from
Deepmind’s Al safety grid-worlds

# of steps Model based Model free

Acc. Prec. | Rec. Acc. | Prec. | Rec.
500 78% 69.4% | 100% | 57% | 53% | 98%
750 85% 80% 92% 55% | 52% | 100%
1000 89% 81% 100% | 78% | 70% | 96%
2000 100% | 100% | 100% | 86% | 78% | 100%

Table 2: Blocker performance for different human interven-
tion steps in Island Navigation. Accuracy (Acc.), Precision
(Prec.), and Recall (Rec.)

gorithm. Additionally, for both our hybrid approach, as well
as the policy gradient approach, we evaluate their effective-
ness with and without learning in the presence of a trained
blocker agent. This allows us to get a sense of the sample
efficiency gains from combining model-based learning with
model-free learning as well as the performance gains from
training a blocker agent using model-based policies.

4x4 GridWorld

In this case study we used a text based toy environment
from OpenAl gym environments (Brockman et al. 2016).
This environment consists of a standard representation with
S € RS states, A € {up, down, left,right} actions cor-
responding to moving up, down, left and right. As shown in
Figure 3 (a) a blue square denotes the position of agent, the
goal state is denoted by the green and the red square signifies
a fire (catastrophic) state. The goal of the agent is simply to
navigate from the start state to the goal state as quickly as
possible while avoiding the fire states.

Island Navigation

Figure 3 (b) shows our second environment called Island
Navigation, which is from Deepmind’s Al safety Grid-world
environment. This environment uses a visual representation
with § € R4 states, A € {up,down,left,right} ac-
tions. In this environment, the light blue square represents
the agent, while the blue blocks, which represent water
(catastrophic), should be avoided by agent. The Goal of this
agent is similar to previous environment which is to reach
the green square as quickly as possible. This environment
gives its observation in visual representation in the form or
images with a resolution of 32 X 32 pixels.
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Blocker Performance

We tested the performance of two different blocker agents
trained on the island navigation: one with data collected
from a model-free policy (similar to Saunders et al.) and
one with data collected from a model-based policy (our ap-
proach). Additionally, we tested both blocker agents with
different amount of training data (500, 750, 1000, and 2000)
from the human. In both approaches, the blocker agents are
trained using a certain number of steps during which the hu-
man is used to oversee the actions of the agent (from either a
model-based policy or a model-free policy). In this way, we
can get a sense of the sample efficiency of each approach by
looking at blocker prediction performance (i.e. the accuracy
of the blocker making the same intervention as the human)
using different amounts of training data.

Table 2 shows the performance of the blocker with the
various human intervention steps. For each training set size,
the blocker was evaluated on a held out test set to mea-
sure the performance in terms of accuracy, precision and re-
call. As can be seen from Table 2, the model-based blocker
agent achieves on average 20% higher accuracy perfor-
mance than the model-free blocker. More importantly, is the
recall, which represents the ratio of true-positives to true-
positive + false negatives. A recall of 100% is very impor-
tant since it indicates O false negatives which would mean
that a blocker never missed the blocking of a bad action.
Here, we see that the model-based approach achieves 100%
in 3 of the four tested training sizes and on average achieves
a higher recall than the model-free blocker. This increased
performance is likely due to the model-based blocker seeing
a much better distribution of data when we train it during
the model based system since the model-free approach ex-
plores less randomly than the model-based approach. Hence
the model based agent is able to train a much more robust
blocker which is important for safe exploration.

Safe-RL performance

In this section we show the performance of our hybrid
model-based and model-free approach to safe RL using a
blocker agent trained from human intervention examples.
We demonstrate the performance of our approach in terms
of the cumulative catastrophes (i.e. the total number of time
the agent went into a catastrophic or failure state), as well as
the total amount of environment reward received. We com-
pare our method against a traditional model-free approach
using a policy gradient algorithm. Additionally, we test the
improvement in safety and performance gained from the
blocker agent by tested our method and the model-free ap-
proach both with and without a blocker agent. It’s important
to note that for these experiments, we used blocker agents
trained only to 1000 steps, in which the blocker agents are
not yet at 100% accuracy. We do this so that we get a bet-
ter comparison of the gains in terms of safety that would be
harder to access than if we used a perfect blocker agent.

Cumulative Catastrophes Figures 4a and 4b show the cu-
mulative catastrophes encountered during training of four
comparison methods: the policy gradient method (PG), the
policy gradient method trained with a blocker (PG with
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blocker), our hybrid approach without a blocker (Hybrid)
and our hybrid approach trained with a blocker (Hybrid with
blocker (ours)). In both tasks (4x4 GridWorld and Island
Navigation) we see that even without a blocker, our model-
based, hybrid approach encounters less catastrophic states
than the model-free, policy gradient approach (49 catas-
trophic states compared to 162 for 4x4 GridWorld and 100
compared to 188 for Island Navigation). Additionally, we
see that when trained with a blocker agent, our hybrid ap-
proach with a blocker encounters only 7 catastrophes in
the 4x4 GridWorld environment and only 22 catastrophes
in Island navigation environment, which is significantly less
than the policy gradient with a blocker which encounters 54
catastrophic states in 4x4 Gridworld and 157 in Island Nav-
igation.

Rewards Figures 5a and 5b show the performance com-
parison of the four methods in terms of total reward ob-
tained during training, which give a sense of the quality of
the learned policy as well as the number of samples required
to reach that policy. For the PG and PG with blocker condi-
tions, the model-free agent was trained for 1200 episodes
in total. For our hybrid approach (both with and without
a blocker agent), the dynamics model is trained and used

54

with the MPC controller during the first 200 episodes. Af-
terwards, our system switches to model-free learning (boot-
strapped using data from MPC (Figure 1)) and trains for
1000 episodes (1200 episodes total).

As can be seen in Figure 5, The hybrid approach is able to
achieve the maximum task reward (i.e. perfect task comple-
tion) for both the 4x4 GridWorld and Island Navigation en-
vironments when both learning with and without the blocker
(achieving a reward of 45 and 47 for both environments re-
spectively). The policy gradient approach, however, was not
able to achieve the maximum reward for either environment.
The influence of the blocker agent can be seen in terms of
the speed of convergence for each model (i.e. models trained
with the blocker agents trained faster than when training
without the blocker). This coupled with the results from Fig-
ure 4 show that the blocker allows policies to not only train
faster but train safer.

Discussion and Conclusion

We presented a hybrid architecture to improve sample ef-
ficiency and reduce the amount of human time required to
ensure safe training of RL agents. We show that the blocker
trained during the model based system works better than the



model-free approach. We also show that our hybrid architec-
ture, a combination of model-based, MPC and model-free
methods, is more data efficient than standard model-free ap-
proaches, allowing the agent to reach a stable policy in a fast
and efficient manner.

Similar to some previous work, our blocker agent is
trained to imitate the task of human intervention and ensure
safe exploration. This is necessary because as humans can-
not be present during the entire training phase of the RL
agent (which is often very long), the idea is to handover this
task to a trained blocker that will intervene on the human’s
behalf and thus will continue to allow for safe training of the
RL agent. The blocker agent, however, may not be always
perfect since it is very difficult to train it to block every un-
safe action from all possible states (especially in states that
the RL agent has never encountered before). This problem
is also discussed in (Saunders et al. 2017) where they fol-
low a similar process. In this paper, we tried to mitigate this
problem in two ways. First, the dataset for the blocker was
collected during the model based training phase. We showed
that this is better than collecting the dataset during a typi-
cal model-free training cycle. This ensured that the quality
of the blocker agent was better. Second, and more impor-
tant, we used a combination of model-based and model free
system which results in faster training and increased sample
efficiency (Nagabandi et al. 2018). In this way, the agents
reach a stable state with less data and will likely learn to
avoid bad states much faster. This in turn means that the
agent will act safely, even when the blocker fails to inter-
vene.

Another benefit from our method is that we can poten-
tially use the trained model based system to quickly train RL
agents to perform completely new tasks since our learned
dynamics model and blocker agent are task independent.

We can formulate a new reward function in the MPC and
initialize a model-free system to learn this new task. For ex-
ample, suppose a robotic agent is being trained to navigate
a room and perform a task and the blocker is trained so that
the robot never knocks over and breaks any objects (unsafe)
even while learning and exploring. The same blocker and en-
vironment model can now be used to train a completely dif-
ferent task which still requires the robot to interact with ob-
jects in a safe manner as long as the environment and agent
dynamics remain the same. This will be explored further in
future work.

Even though we performed experiments on standard as
well as visual representations, the environments tested in
this paper are still relatively small environments with sim-
ple state and action spaces. The next step would be to ex-
plore how these methods perform on more complex higher
dimensional state and action spaces. Overall, we believe
our method demonstrates the importance of incorporat-
ing model-based and model-free approaches with human-
interaction for training safe RL agents.
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