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Abstract 
Classification problem in authorship attribution consists of 
choosing the correct author of a document from an exhaustive 
list of candidates presented by the samples of their writing. A 
typical approach is to assign a vector representing measure-
ments of a stylometric feature to each sample document and 
apply a supervised machine learning method to build a clas-
sifier. Different classifiers vary in the accuracy and attribu-
tions of the disputed documents. In our previous research, we 
have shown that a large number of classifiers can be com-
bined into an effective jury via weighted voting. Such a jury 
is almost always more accurate than individual classifiers.  
  In this paper, we investigate whether it is possible to im-
prove a jury’s accuracy by eliminating some of its members. 
We test and compare two methods of reduction. Dynamic re-
duction selects a subset of original jury members by eliminat-
ing sycophants. Static reduction tests the behavior of prese-
lected juries. Our testbed is a collection of 18th-century polit-
ical writings, a fertile research ground rich with disputed 
works. 

Authorship Attribution   
Authorship attribution is the task of identifying the author 
of an anonymous text or a text whose authorship is in doubt 
(Love 2002). In this research, we consider a classification 
problem within authorship attribution: given an exhaustive 
list of possible authors and the samples of their work, how 
do we identify the author of a disputed text? Many modern 
authorship attribution methods have roots in the seminal 
work conducted by Mosteller and Wallace on the Federalist 
Papers (Mosteller and Wallace 1964). These methods rely 
on the premise that stylistic features, used unconsciously 
and consistently, can be measured to identify the author. 
 We combine a stylistic feature with a supervised machine 
learning method to create a base-classifier. The fifty most 
frequent values of a feature are identified and each sample 
document is assigned a normalized 50-dimensional vector 
of frequencies. Supervised learning is conducted, resulting 
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in a classifier that can be applied to the attribution of un-
known documents (Berton et al. 2016; Petrovic et al. 2015).  

Stylistic Features 
In our work, we consider seventeen different stylistic fea-
tures outlined in Table 1. Among the most common “off-
the-shelf” lexical features are function words, n-grams of 
characters and words, and Part of Speech (Stamatatos 2009). 

Table 1. Features used in our analysis and their descriptions  

Style 
Marker 

Abbre-
viation  

Description  

MW Func-
tion Words  

MWFW  Function words as defined by 
Mosteller-Wallace in their Feder-
alist Papers study (Mosteller and 
Wallace 1964) 

Word 
n-grams  

WG2  The sequence of n items from a 
given sequence of words (in our 
case, n = 2) 

Character  
n-grams  

CG2, 
CG3  

The sequence of n characters from 
a given sequence of characters (in 
our case, n is 2 or 3) 

Part of 
Speech  

POS  Uses the Maxent Tagger devel-
oped by the Stanford NLP Group 
(Toutanova et al. 2003) 

POS  
n-grams  

POSG2, 
POSG3  

The sequence of n parts-of-speech 
tags (n is 2 or 3) 

First Word 
in Sentence  

FWIS  The first word in each sentence  

Prepositions  PREP  The most common prepositions  
Vowel  
initial Words  

VIW  Words beginning with vowels  

Suffices  SUF  The last three letters of every 
word  

Coarse POS  
Tagger  

CPOST  A simplification of the normal 
part-of-speech tagger, neutralizing 
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minor variations such as plural in-
flection (singular/plural words are 
grouped)  

Lexical  
Frequencies  

LFREQ  Log-scaled frequencies of words 
from the general purpose HAL 
corpus as recorded in the English 
Lexicon Project (ELP) database 
(Balota et al. 2007) 

Naming  
Reaction 
Times  

NRT  Naming times from the ELP data-
base; Each word is converted to 
the time it takes to name that 
word in the database (Balota et al. 
2007) 

Sorted  
Character  
n-grams  

SCG2, 
SCG3  

Alphabetically sorted characters 
in each n-gram (in our case, n is 2 
or 3) 

Word Stems WS  Stems of the words obtained from 
Porter's stemming algorithm 
(Porter 1980) 

 

Learning Methods 
In our work, each feature is paired with one of the three fol-
lowing machine learning methods.  

The Centroid Nearest-Neighbor (NNCos) approach rep-
resents authors by their centroid vectors (average of vectors 
assigned to their sample documents). An unknown docu-
ment is associated with the author whose centroid is the 
nearest according to the cosine distance, i.e. the normalized 
scalar product. 

The Support Vector Machines (SVM) method is a linear 
separation algorithm that seeks a hyperplane in the n-dimen-
sional input space which best separates points correspond-
ing to different candidate authors. We use here the imple-
mentation of John Platt's Sequential Minimal Optimization 
Algorithm (SMO) (Platt 1999). 

The Multilayer Perceptron (MLP) is another linear sepa-
ration algorithm that implements a Backpropagation Neural 
Network with the sigmoid activation function and the num-
ber of hidden nodes set to the average of the number of at-
tributes and the number of candidate authors. 

Leave-one-out for Assessing the Accuracy  
To evaluate the selected base-classifier (feature-learning 
method pair), we adopted “leave-one-out” testing: n-1 of the 
available n documents are used for training, and testing is 
carried out on the single remaining document. This proce-
dure is repeated n times, in such a way that every document 
is used for testing exactly once. As a result, for each docu-
ment, each base-classifier selects an author based on its 
learning from the remaining (n-1) documents. We record the 
accuracy (percentage of correctly classified documents) of 
each base-classifier.  

Choosing and Combining Classifiers  

Accuracy-weighted Method  
Given k candidate authors, we assume that observed accu-
racy p of a base-classifier m signifies that when m votes for 
candidate A, the probability that A is the correct author is p, 
and the probability for each other candidate is an equal share 
of the complement. We assign the base-classifier’s supports 
for candidates accordingly (eq. 1).  
 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡'(𝐴) = ,
𝑝 𝑖𝑓	𝑚	𝑠𝑒𝑙𝑒𝑐𝑡𝑠	𝐴
456
754

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         (1) 

 
This approach allows more accurate methods to have a 
greater contribution in voting for their choice of author. We 
define overall support for a candidate A as the product of 
supports for A by individual classifiers (eq.2). If base-clas-
sifiers were independent, the supports for candidates would 
be proportional to the probabilities of each of them being the 
correct author.   

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴) = ∏𝑠𝑢𝑝𝑝𝑜𝑟𝑡'(𝐴)          (2)  

The accuracy-weighted method selects the author with the 
highest overall support. To prevent any single method from 
taking over the voting (0 appearing in the products elimi-
nates all other choices), we took the position that observed 
accuracy of 1 corresponds to probability p = 0.999. 

Condorcet’s Jury Theorem and Independence of 
Voters 
In 1785, the Marquis de Condorcet established in his Jury 
Theorem that, for n independent and equally competent vot-
ers (with fixed accuracy p > 0.5), the accuracy of the major-
ity vote is an increasing function of n and approaches 1 (cer-
tainty) as n approaches infinity. The same holds for accu-
racy-weighted voting of independent voters (the jury’s ac-
curacy increases with n, and tends to 1 when n tends to in-
finity), even for voters of unequal accuracies (accuracy ≥ c 
> 0.5). In particular, an independent jury is at least as accu-
rate as the most accurate member (Boland 1989; Grofman, 
Owen, and Feld 1983).  If the voters are not required to be 
independent, it is possible to construct both examples: a) 
where the accuracy of a dependent jury is worse than the 
accuracy of any single member and b) where the accuracy 
of a dependent jury is significantly better than the accuracy 
of an independent jury with the same voter accuracies. 
 
Example. Let A, B and C represent the events that the first, 
second and third voters vote correctly. Let each voter have 
60% accuracy, i.e. 𝑃(𝐴) = 𝑃(𝐵) = 𝑃(𝐶) = 0.6. Since all 
voters have the same accuracy, accuracy-weighted voting is 
the same as majority voting.  
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Case 1. If voters are independent, the probability of an in-
tersection is a product of probabilities, so: 
𝑃(𝐴𝐵𝐶) = (0.6)A = 0.216,					𝑃(𝐴̅𝐵F𝐶̅) = (0.4)A = 0.064 
𝑃(𝐴𝐵𝐶̅) = 𝑃(𝐴𝐵F𝐶) = 𝑃(𝐴̅𝐵𝐶) = (0.6)H(0.4) = 0.144 
𝑃(𝐴𝐵F𝐶̅) = 𝑃(𝐴̅𝐵𝐶̅) = 𝑃(𝐴̅𝐵F𝐶) = (0.4)H(0.6) = 0.096 
The majority chooses correctly in the first four cases, pro-
ducing a jury with 0.216 + 3(0.144) = 0.643 = 64.3% 
accuracy. 
Case 2.  If the voters are not independent, a jury of three 
voters with 60% accuracies can have an accuracy as low as 
40% (the worst case). 
𝑃(𝐴𝐵𝐶) = 0.4,   					𝑃(𝐴𝐵𝐶̅) = 𝑃(𝐴𝐵F𝐶) = 𝑃(𝐴̅𝐵𝐶) = 0  
𝑃(𝐴𝐵F𝐶̅) = 𝑃(𝐴̅𝐵𝐶̅) = 𝑃(𝐴̅𝐵F𝐶) = 0.2,       𝑃(𝐴̅𝐵F𝐶̅) = 0  
The majority chooses correctly in the first four cases, so 
the jury’s accuracy is 40%. 
Case 3. If the voters are not independent, a jury of three 
voters with 60% accuracies can have an accuracy as high 
as 90% (the best case). 
𝑃(𝐴𝐵𝐶) = 0,      𝑃(𝐴𝐵𝐶̅) = 𝑃(𝐴𝐵F𝐶) = 𝑃(𝐴̅𝐵𝐶) = 0.3  
𝑃(𝐴𝐵F𝐶̅) = 𝑃(𝐴̅𝐵𝐶̅) = 𝑃(𝐴̅𝐵F𝐶) = 0, 						𝑃(𝐴̅𝐵F𝐶̅) = 0.1  
The majority chooses correctly in the first four cases pro-
ducing a jury with an accuracy of 90%. 
 

 

Figure 1: In each of the three cases, all voters have the same ac-
curacy (60%), but the jury's accuracies differ greatly. 

The example above indicates that low accuracies arise when 
correct choices win by unnecessarily large majorities (or in 
this case, the unanimous vote), while incorrect choices win 
with a minimal majority. This way, there are wasted votes 
for the correct choice, while every vote for an incorrect 
choice influences the decision. Conversely, in highly accu-
rate juries, the pattern is reversed. 

The Criterion for Eliminating Base-classifiers 
The base-classifier voters we use in our experiments are not 
independent. A natural task is an investigation whether re-
ducing the number of base-classifiers can improve accuracy. 
The task is more complicated than our example for two rea-
sons. A large number of voters (up to 51) makes the brute 
force evaluation of all combinations impossible (251). The 
situation is made more complex by the presence of multiple 
incorrect alternatives; typically, we are dealing with more 
than ten possible authors (up to 42), with only one being the 
correct author. Thus, a pairwise diversity measure and a heu-
ristic approach to reduction is indicated.  

We define a sycophant as a voter for which there exists a 
more accurate voter such that they agree on a wrong choice 
more frequently than the specified threshold. Our strategy 
for reducing a jury set is to eliminate sycophants  While va-
riety of pairwise diversity measures (e.g. Yule’s Q) are ex-
plored in literature (Butler et al. 2018; Kaniovski and 
Zaigraev 2011; Kuncheva and Whitaker 2003), we chose the 
frequency of “agreement-on-wrong” as a criterion for reduc-
tion for two reasons: 

 First, it is highly unlikely that two independent voters 
would agree on the wrong choice. For example, for two in-
dependent voters with an accuracy of 80% and 11 candidate 
values (one of which is correct), it is expected that they 
agree on the correct choice with a probability of 
0.82=0.64=64% and agree on each of the incorrect values 
with a probability of 0.04%, hence the probability of agree-
ing-on-wrong is 0.4% (see Figure 2). Since independent vot-
ers are expected to have a fairly high frequency of agreeing 
on the right choice and a very low frequency of agreeing-
on-wrong, using agreement-on-wrong as a heuristic cut-off 
criterion is a better choice than using total agreement. 

Second, as we saw from the example in Figure 1, the in-
dependence of voters is not necessarily the goal when reduc-
ing a jury. An author receiving two votes starts with a sig-
nificant advantage over the other candidates. Situations 
when two voters agree on a correct choice more often than 
the independent jurors would agree, may be beneficial or 
detrimental to overall accuracy (see cases 2 and 3 in the pre-
vious example). On the other hand, when two voters agree 
on an incorrect choice, that greatly increases the chances of 
their choice being selected, and this is never desirable. 

 

 

Figure 2: Example with two independent methods that are correct 
80% of the time and select from eleven candidate authors 

Dynamic Reduction of Jury Algorithm 
In order to eliminate sycophants, we used a greedy (in clas-
sifier accuracy) algorithm that considers unassigned base-
classifiers and eliminates from further consideration all that 
agree-on-the-wrong with the newest juror more frequently 
than a given benchmark. The most accurate of the remaining 
base-classifiers is chosen for the jury and the process is re-
peated until the jury-candidate pool is empty. 
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Pool = set of all base-methods 
Selected = ∅ 
While Pool is not empty: 
 Move the most accurate method c from Pool to Selected 
 For all methods m remaining in Pool: 
  If m and c agree on wrong more often than the threshold: 
    Remove m from Pool 

Figure 3: Pseudo code for our sycophant eliminating algorithm 

Observed Correlation and Static Reduction 
While running our dynamic reduction experiments, we no-
ticed that some base-methods are consistently in high agree-
ment over a wide range of experiments. For all three learn-
ing methods (NNCos, MLP, and SVM), there was a group 
of similarly-voting base-methods (MWFW, NRT, WS, and 
LFREQ) and several pairs: CG2 and SCG2, CG3 and SCG3, 
POSG2 and POSG3, and POS and CPOST. In order to re-
duce the size of juries formed from 17 features combined 
with the same learning method, we experimented with static 
selections, ensuring that only one feature from each of these 
groups was selected.  

In the juries comprised of 51 base-classifiers (17 features 
combined with 3 learning methods), there were additional 
strong similarities between base-classifiers using the same 
features and different learning methods. SVM and MLP 
with the same feature were almost always highly correlated. 
Correlation between NNCos and these two was somewhat 
weaker (NNCos-SVM slightly stronger than NNCos-MLP), 
but still often present. Statically chosen sets were based on 
these observations with bigger set also including all ob-
served exceptions to general rules. 

Experimental Design and Results  

Experimental Design 
For different experiments, we used 12 groupings of authors 
selected among the pool of the following 42 authors: J.Ad-
ams, AmMerc, Barlow, Benezet, Brackenridge, Burgh, 
Burke, Cartwright, Cassandra, Chatham, Dickinson, Fran-
cis, Franklin, Freneau, G.Morris, Grenville, Hamilton, Hop-
kins, Hopkinson, Jay, Jefferson, Lafayette, Macauley, Mad-
ison, Matlack, Monroe, Moore, Paine, Peale, Price, Priest-
ley, Rittenhouse, Rush, Sackville, S.Adams, Shelburne, 
Stanhope, Temple, Tooke, Wilkes, Witherspoon, Young. 
Some groups are based on the authors’ origin (American or 
European), some on the period in which the authors were 
writing (1790s-1800s American or 1770s-1780s American), 
and others by political beliefs (Whigs-American). Writings 
were obtained from the Institute of Thomas Paine Studies, 
Iona College. 

Instead of using the original papers, we represented each 
author with five documents, created by combining all the 

available work of a given author and separating it into five 
documents of approximately equal size. We found that this 
approach was more robust, particularly in cases when au-
thors were originally represented by only a few writings 
(data not provided).  

Results are obtained using the JGAAP (Java Graphical 
Authorship Attribution Program) open source software 
(Juola 2008), implemented WEKA libraries (Hall et al. 
2009), and programs written by members of our research 
team.  

As a baseline, we ran weighted sums of 17 base-classifi-
ers using each of the three machine-learning methods 
(NNcos, SVM and MLP) and the weighted sum of all 51 
base-classifiers. We then ran the dynamic reduction algo-
rithm and let the reduced jury vote. We use 10% agreement-
on-wrong as a threshold for eliminating sycophants in the 
experiments with 17 base-classifiers and both 4% and 10% 
in the 51 base-classifiers experiments.   

We report here results of two statically chosen sets of 
eight features in combination with each of the three learning 
methods:   
Static-1={Scg2, Viw, Lfreq, Cg3, Prep, Posg2, Pos, Suf} 
Static-2={Cg2, Viw, Nrt, Cg3, Prep, Posg2, Cpost, Suf} 

 
We also included two statically chosen sets out of the 51 

base-classifiers: 
Static-11 = {SVM+Cg2, SVM+Cg3, MLP+Posg2, 
MLP+Pos, SVM+Lfreq, MLP+Mwfw, NNCos+Lfreq, 
SVM+Prop, MLP+Suff, SVM+Viw, NNCos+Viw} 
 
Static-15 = {SVM+Cg2, MLP+Cg2, SVM+Cg3, 
MLP+Scg3, NNCos+Scg3, MLP+Posg2, MLP+Pos, 
SVM+Lfreq, MLP+Lfreq, NNCos+Lfreq, SVM+Prop, 
SVM+Suff, MLP+Viw, NNCos+Viw, SVM+Wg2} 

Experimental Results and Analysis 
Several observations can be made from the results in Table 
2. SVM and MLP have a very similar performance while 
NNCos is a uniformly weaker method. Accuracy typically 
decreases with the number of authors. Note, however, that 
random selection from 42 authors would result in the ex-
pected accuracy of 1/42=2.38%, while we achieve over 80% 
accuracy on datasets of this size. Weighted voting usually 
outperforms all individual base-methods, and there is no in-
dividual method that performs consistently well in all cases 
(data not shown). 

All four of our static selections (two each for our 17 and 
51 base-classifiers) behaved very similarly to original juries 
in all experiments. The only benefit of reduction is an im-
proved speed of classification. While speed can be essential 
in some applications, it is of secondary importance in the 
automated authorship attribution of historical documents. 
An unexpected attribution may lead to months of historical 
research, making accuracy much more important than exe-
cution speed. 
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Table 2: Accuracy of original jury, dynamic reduction with 0.1 
threshold and two static reductions in experiments where the 

base-classifiers are obtained by combining 17 features with each 
of three machine-learning methods independently 
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NNCos 
A (7) 68.6% 74.3% 5 74.3% 74.3% 
D (8) 77.5% 80.0% 6 75.0% 80.0% 
B (10) 62.5% 75.0% 4 68.0% 64.0% 
G (10) 74.0% 74.0% 7 72.0% 74.0% 
H (11) 76.4% 87.3% 8 80.0% 78.2% 
C (16) 75.0% 77.5% 8 70.0% 73.8% 

Whigs(16) 67.5% 71.3% 7 66.3% 70.0% 
90-00 (16) 66.3% 70.0% 6 63.8% 68.8% 
Euro (17) 83.5% 84.7% 10 84.7% 82.4% 
70-80 (22) 71.8% 72.7% 7 69.1% 70.0% 
Amer. (25) 66.4% 67.2% 7 64.0% 64.0% 

All (42) 68.6% 73.3% 7 70.0% 69.5% 

Averages 71.51% 75.61% 6.8 71.43% 72.42% 

SVM 
A (7) 88.6% 91.4% 7 85.7% 85.7% 
D (8) 87.5% 92.5% 12 87.5% 92.5% 
B (10) 90.0% 90.0% 13 90.0% 88.0% 
G (10) 94.0% 94.0% 14 92.0% 92.0% 
H (11) 92.7% 96.4% 14 90.9% 90.9% 
C (16) 93.8% 93.8% 11 95.0% 91.3% 

Whigs(16) 88.8% 91.3% 11 88.8% 86.3% 
90-00 (16) 87.5% 90.0% 12 87.5% 88.8% 
Euro (17) 89.4% 90.6.% 12 91.8% 90.6% 
70-80 (22) 90.0% 87.3% 11 90.0% 87.3% 
Amer. (25) 87.2% 88.0% 12 87.2% 87.2% 

All (42) 83.8% 83.8% 10 84.3% 82.4% 

Averages 89.44% 90.77% 11.6 89.23% 88.58% 

MLP 
A (7) 88.6% 97.1% 9 94.3% 88.6% 
D (8) 90.0% 92.5% 13 85.0% 87.5% 
B (10) 90.0% 94.0% 9 88.0% 90.0% 
G (10) 90.0% 90.0% 12 90.0% 94.0% 
H (11) 90.9% 92.7% 13 90.9% 90.9% 
C (16) 90.0% 91.3% 14 91.3% 91.3% 

Whigs(16) 88.8% 91.3% 14 91.3% 90.0% 
90-00 (16) 91.3% 92.5% 14 93.8% 95.0% 
Euro (17) 89.4% 90.6% 14 91.8% 90.6% 
70-80 (22) 90.0% 90.0% 12 87.3% 86.4% 
Amer. (25) 88.8% 87.2% 13 84.8% 87.2% 

All (42) 87.6% 88.1% 14 86.2% 83.8% 

Averages 89.62% 91.44% 12.6 89.56% 89.61% 

 

Table 3: Three learning methods, NNCos+SVM+MLP, combined 
with 17 features, resulting in 51 base-classifiers 

NNCos+SVM+MLP 
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A 85.7% 97.1% 6 94.3% 18 82.9% 85.7% 
D  85.0% 97.5% 6 92.5% 22 85.0% 88.0% 
B  86.0% 96.0% 7 96.0% 11 88.0% 88.0% 
G  90.0% 92.0% 11 94.0% 26 88.0% 92.0% 
H  90.9% 94.5% 12 94.6% 32 90.9% 94.6% 
C 90.0% 95.0% 10 92.5% 27 90.0% 88.8% 

Whigs  86.3% 90.0% 9 90.0% 23 83.8% 85.0% 
90-00  86.3% 93.8% 9 90.0% 22 86.3% 86.3% 
Euro 91.8% 90.6% 12 89.4% 29 87.1% 90.6% 
70-80  88.2% 90.9% 10 87.3% 23 88.2% 88.2% 
Amer. 86.4% 89.6% 10 88.8% 21 82.4% 85.6% 

All  84.8% 88.6% 11 87.1% 23 83.3% 86.2% 
Avgs:  87.6% 93.0% 9 91.4% 23 86.7% 88.2% 

 
Dynamically reduced sets outperformed original juries in 

average accuracy over all learning methods (NNCos, SVM, 
MLP, and the combination of the three). Furthermore, the 
improvement of averages is the result of a consistently better 
performance on almost every experiment.  
 

 
Figure 4: Comparison of average accuracies of original juries 
and dynamic reduction (threshold 0.1 for 17 base-classifiers 

pools and 0.04 for 51 base-classifiers pool) 

 The effect of sycophant elimination on the jury of 51 
base-classifiers was especially encouraging. While adding 
(independent) classifiers should improve accuracy, our (de-
pendent) jury did not behave that way. Combinations of 17 
base-classifiers based on both SVM and MLP outperformed 
the combination of all 51 base-classifiers. The dynamic re-
duction of 51 base-classifiers significantly outperformed not 
only the original jury, but also SVM and MLP juries and 
their reductions.  
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 Our experiments with different thresholds indicate that 
dynamic reduction is a robust method. Thresholds of 0.04 
and 0.1 resulted in very different juries, averaging 9 and 23 
base-classifiers selected. Both methods outperformed origi-
nal jury of 51 classifiers as well as statically chosen juries 
of 11 and 15 classifiers. This seems to indicate that, while it 
could be difficult to find the optimal threshold for each prob-
lem, there is a fairly wide range of well-performing thresh-
olds. 

Conclusion 
While statically chosen reduced sets of base-classifiers per-
formed about the same as the original jury, the dynamic re-
duction by eliminating sycophants proved very promising. 
Our results indicate that dynamic reduction is a good way to 
add potentially dependent classifiers to the jury, reaping the 
benefits and avoiding performance drop: make the biggest 
jury available and then eliminate sycophants. This is a ro-
bust method which does not require the optimal threshold to 
be viable. 

Future Work  
We plan on further investigating dynamic reduction, by 
branching in several directions. In addition to accuracy, the 
confidence of choice can be measured. We wish to investi-
gate differences between correct and incorrect choices in 
voting support and how dynamic reduction affects this dif-
ference. Also, some base-classifiers can be set to rank their 
choices instead of simply reporting their top choice. We 
wish to explore the ranked voting of original and reduced 
mixtures. Automatic searching for the optimal threshold is 
another worthwhile project. Finally, meta-learning can be 
used as an alternative to weighted voting (Petrovic et al. 
2018). The effect of dynamic reduction on meta-learning is 
another subject which we are interested in exploring further. 
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