
Spatially Biased Random Forests

Benjamin R. Mitchell
Department of Computing Sciences

Villanova University
Villanova, PA 19085

benjamin.r.mitchell@villanova.edu

John W. Sheppard
Gianforte School of Computing

Montana State University
Bozeman, MT 59714

john.sheppard@montana.edu

Abstract
Recent successes in deep learning have led to explorations
of what makes these techniques so powerful. One goal of
such studies is to determine whether such properties can be
transferred to alternative learning methods and yield similar
benefits. Since the generalization power of any learning algo-
rithm depends upon the inductive bias(es) of that algorithm,
we hypothesize that utilizing a bias incorporated by CNNs
and other deep methods—spatial locality—can benefit other
learning methods as well. We test this hypothesis by incor-
porating spatial structure when constructing random forests.
Our experiments demonstrate that incorporating a spatial lo-
cality bias improves the performance of random forests on
several image classification tasks.

Introduction
Historically, most machine learning algorithms have made
no assumptions about the organization of features within a
feature vector, other than assuming the ordering is consistent
across all samples. This weak assumption makes algorithms
more flexible, allowing them to be applied to many kinds of
data in a uniform way, regardless of the source or meaning of
the data. It has generally been believed that useful statistical
relationships implicit in feature ordering will be discovered
automatically by the learning algorithm.

In recent years, this belief has been challenged by several
results, including the impressive performance of deep learn-
ing. Currently, the dominant deep learning systems are de-
rived from convolutional neural networks (CNNs) (LeCun et
al. 1990) and long-short term memories (LSTMs) (Hochre-
iter and Schmidhuber 1997). One of the distinguishing char-
acteristics of these methods is the structured operation of the
networks. The basic architecture of CNNs assumes the data
come from sampling a lattice with a particular spatial or-
ganization (i.e. images or image-like data). LSTMs make a
similar assumption, only using temporal rather than spatial
structure.

The success of these deep learning methods is reliant on
the data obeying these assumptions; if the data lack spatial
structure these methods lose their power, as we will demon-
strate. It is also easy to demonstrate that most classic ma-
chine learning algorithms are not impacted by the ordering

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of features, a property sometimes referred to as permutation
invariance. This means that while the more traditional al-
gorithms perform well on a wider range of problems, they
are at a disadvantage compared to deep learning methods on
problems with structurally organized features.

Permutation invariance can be seen as a result of strong
assumptions made about the sampling process, including the
assumption that the samples are drawn independently and
identically distributed (IID). In order to take advantage of
spatial structure we must relax these assumptions, as is done
in the field of Spatial Statistics (Cressie 1993) by treating
samples differently based on their respective ‘sampling lo-
cations.’ The result is that data drawn from a spatially vary-
ing distribution, such as geological or epidemiological data,
can be modeled more accurately using spatial statistics.

Given the clear utility that this type of structural informa-
tion exploited by techniques like CNNs have, it is important
to find ways of enabling all types of machine learning al-
gorithms to make use of structure that may be latent in the
organization of the feature space. In the past, work has been
done to make use of the spatial nature of images to improve
the performance of PCA (Mitchell and Sheppard 2012), Re-
stricted Boltzmann Machines (Mitchell, Tosun, and Shep-
pard 2015), and Deep Belief Networks (Tosun, Mitchell, and
Sheppard 2016). All of these techniques are useful in their
own right, but because they are not classifiers it is difficult to
compare their performance directly to that of techniques like
CNNs, which perform both feature extraction and classifica-
tion. In this paper we demonstrate how spatial structure can
be used to improve the performance of classifiers directly,
without doing any type of intermediary spatially-aware fea-
ture engineering.

We use Random Forests as our base classifier, and show
how we can take advantage of spatial structure with rela-
tively minor modifications to the algorithm. Our goal is to
improve our ability to take advantage of spatial information
if it is present without harming performance if it is not. We
test this ability using image data, which we will show con-
tains useful spatial structure by means of statistical analysis
and empirical testing. The results show that the introduc-
tion of a spatial locality bias results in a significant increase
in the performance of Random Forests for image classifica-
tion, that is not vulnerable to the performance penalty seen
in CNNs in the permutation invariant setting.

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

20

Background and Related Work
The topic of deep learning has seen an explosion of interest
in the past few years, both in the machine learning commu-
nity and in the media at large. Historically, deep learning
has mostly been applied to computer vision problems (i.e.,
learning from digital images), but these days deep learn-
ing is being applied to problems in a wide range of other
fields, including speech recognition (Dahl et al. 2012), lin-
guistics (Collobert et al. 2011), bioinformatics (Baldi 2014),
and game AI (Silver et al. 2016).

Deep learning developed as part of the field of connec-
tionist models as a way of harnessing the increased represen-
tational power that arises from the composition of nonlinear
functions, and also as an attempt to model the neural archi-
tecture of the primary visual cortex. By adding extra layers
to a multilayer perceptron, for instance, a greater range of
functions can be encoded efficiently, and more abstraction is
possible. Unfortunately, this theoretical advantage has his-
torically proven difficult to realize in practice.

The techniques that have come to be labeled deep learn-
ing are methods of getting around this problem, enabling
networks with many layers to be trained efficiently. There
are now a variety of different deep learning algorithms that
have been proposed, but the vast majority still fit this simple
description (LeCun, Bengio, and Hinton 2015).

Random Forests are an ensemble method using decision
trees trained with some sort of constraint that makes them
function as “weak” classifiers (Ho 1995; 1998; Kleinberg
1996). There are a number of ways to build a random forest;
the only fundamental requirement is that the decision trees
be built in a stochastic way to ensure sufficient diversity to
gain the benefits of an ensemble. In Breiman’s classic for-
mulation (Breiman 2001), a random forest is an ensemble of
decision trees, each of which is trained using some random
“parameter” vector Θ. In his basic formulation, Breiman
used a bagging scheme such that each tree was trained on
a subset of examples, and each node was trained using a
subset of the features. Breiman described several variants,
including Random Index Forests (Forest-RI) in which each
split uses a single feature, and Random Combination Forests
(Forest-RC) in which each split used a random combination
of features

Tomita et al. (Tomita, Maggioni, and Vogelstein 2015)
presented a generalized algorithm for Projective Random
Forests (Forest-RP) that both encompasses most previously
described random forest variants and allows for new vari-
ants. The basic idea is that, rather than selecting a single
feature (as in Forest-RI) or a fixed number of features (as
in Forest-RC) to use as a splitting criterion, we can use any
projection down to a scalar value. Algorithm 1 shows pseu-
docode for this algorithm.

Spatially Biased Random Forests
To test our hypothesis that a spatial bias can help classi-
fiers, we chose Random Forests (RFs) as the base learning
algorithm. In particular, we modified the type of random-
projection random forest described by Tomita (Tomita, Mag-
gioni, and Vogelstein 2015) as Randomer Forests. For the

Algorithm 1 Forest-RP (Tomita, Maggioni, and Vogelstein
2015)
Input: data: D = (xi, yi) ∈ (Rp × Y) for i ∈ [n], tree

rules, distributions on projection matrices: A ∼ fA(D),
Output: decision trees, predictions

1: for each tree do
2: Sample training data to obtain a bag (X̄, ȳ)
3: Create a root node with this bag as its sample set
4: for each leaf node do
5: Let X̃ = A>X̄, where A ∼ fA(D)

6: Find the “best” split coordinate k∗ in X̃
7: Find the “best” split value t∗(k∗) for k∗

8: Split X according to whether X̃i > t∗(k∗)
9: Assign child nodes as leaf or terminal

10: end for
11: end for

sake of clarity and consistency, we use Breiman’s terminol-
ogy (Breiman 2001) and call the basic, single-index ran-
dom forest algorithm Forest-RI (i.e., Forest using Random
Indexes). We refer to the Randomer Forest algorithm as
Forest-RP (Forest using Random Projections), and our novel
spatially-biased algorithm as Forest-RS (Forest using Ran-
dom Structured projections).

Forest-RP (Algorithm 1) works by using random pro-
jections of the data to generate node-splitting candidates.
Specifically, candidate projections are created by choosing
features at random from an n dimensional feature vector,
with each feature having a likelihood of 1/k of being chosen
for some k � n. Each feature is then assigned a random
weight in the range [−1, 1]. The scalar projection value is
then considered as a candidate for splitting the tree node.

Forest-RS is similar to Forest-RP but modifies the way
in which the random projections are generated. Specifically,
where in Forest-RP, features are chosen according to a uni-
form distribution, in a Forest-RS, features are chosen ac-
cording to a spatially-biased distribution.

For spatial data (such as images), each candidate projec-
tion has a “center” location sampled from a uniform distri-
bution across each spatial dimension of the input. This loca-
tion is then used as the mean of a Gaussian distribution from
which features are sampled. The variance of the Gaussian is
a function of the tree-depth of the node: as depth increases,
so does variance (the variance is also scaled based on the size
of each dimension, in the case of not all spatial dimensions
being equal in size). Note that samples drawn from the Gaus-
sian are also subject to the bounds of the edges of the image.
The effect is that decision nodes near the root of a tree will
tend to have projections based on features tightly clustered
in a small spatial region. As tree depth increases, the features
will tend to become more widely spread out until eventually
there is little spatial bias remaining, and the sampling dis-
tribution begins to resemble a uniform one again. Since the
center locations are still sampled uniformly, on average the
overall forest will spread its feature-samples across the data
space uniformly, but the sampling becomes heteroscedastic
due to the per-node spatial bias.

21

Algorithm 2 Forest-RS.
Input: Spatial stride vector v ∈ Nn, tree depth of the cur-

rent node d, scaling parameters α and β
Output: Output projection f

1: f ← 0
2: for each non-zero component do
3: for i = 1 to n do
4: µ ∼ Uniform(1, vi)
5: σ2 ← (αi + (βi · d)) · vi
6: repeat
7: idxi ∼ Gaussian(µ, σ2)
8: until 1 ≤ idxi ≤ vi
9: end for

10: o← idx1
11: for i = 2 to n do
12: o← o · vi−1
13: o← o+ idxi
14: end for
15: fo ∼ Uniform(−1.0, 1.0)
16: end for
17: return f

Algorithm 2 shows how to create a candidate projection f
(used in line 5 of Algorithm 1), which can be applied to the
data vectors to produce a candidate split. As with all random
forests, many candidates will be generated for each node,
with the best candidate chosen according to a subset purity
measure. Note the stride vector v is determined by the data;
for example, the SVHN dataset contains 32 × 32 pixel im-
ages with 3 color values per pixel, so v = {32, 32, 3} and
n = 3. At the root of the tree, the sampling process in this
algorithm tends to focus “attention” on a particular spatial
region. This encourages discovery of spatially local statis-
tical relationships in the data. By gradually increasing vari-
ance, the spatial region size sampled increases. This allows
the trees to capture non-local and conditionally local statis-
tical relationships at deeper nodes.

Experiments
We used the standard image classification benchmarking
datasets, MNIST (LeCun, Cortes, and Burges 2019) and
SVHN (Netzer et al. 2019) for our experiments, since CNNs
are known to perform well on these problems. This allows
us to examine the impact of spatial structure on CNNs in a
setting favorable to them and to examine the impact of spa-
tial biasing on our Random Forest. Our analysis consisted of
three steps. First, we used mean correlation plots to examine
the spatial structure in the datasets. Second, we compared
the performance of CNNs on original data and permuted
data. Third, we compared the performance of different types
of Random Forests on original and permuted data.

Randomly Permuted Datasets
Since we wanted to evaluate the ways different learning al-
gorithms interacted with spatial structure, we created “de-
structured” versions of each dataset. To create these de-
structured data sets, we generated random permutations and

Figure 1: Original and randomly permuted image examples.
Rows 1 and 2 show MNIST. Rows 3 and 4 show SVHN.

applied them to the feature order of the data vectors. Note
that the same permutation is applied to all the vectors in a
given dataset, including both training and testing samples
(Figure 1).

The purpose of the permutation is to disrupt any spatial
structure that might exist while leaving non-spatial structure
intact. An algorithm that does not consider spatial structure
should perform the same on both the original and the per-
muted dataset. An algorithm that does rely on spatial struc-
ture, however, should show lower performance when applied
to the permuted data instead of the original data.

Locality Analysis
For each dataset, we generated spatial information plots as
described in (Mitchell, Tosun, and Sheppard 2015). Here, we
show the mean-correlation plots for both the original and the
permuted versions of each of the three datasets. To generate
mean-correlation plots, we calculated corr(Xi, Xj) for all
pairs (i, j), whereXi is a vector containing the value of fea-
ture i for each training vector. For each distance, we then
plotted the mean correlation of feature pairs that distance
apart.

Figure 2 shows the mean-correlation plots for both the
original data and for the randomly permuted versions of the
MNIST and SVHN datasets. Notice in Figure 2 at distance 0,
there is perfect correlation since any feature always has the
same value as itself. Beyond that, however, the correlation
plot for the permuted dataset is basically flat, indicating that
after permutation there remains no significant relationship
between statistical information and spatial distribution for
feature pairs. The deviations from this trend in the last few
points in each plot are caused by the reduced sample size
available for the extreme distances.

The plots for the original data, on the other hand, ex-
hibit some interesting structure. The first thing to note is that
for all datasets, adjacent features have high correlation. As
the feature-pairs get farther apart, the degree of correlation
drops off, but the rate differs between the datasets.

The MNIST data show the most rapid falloff; by a dis-
tance of 5 pixels, there remains on average little correlation
between feature pairs. This is likely related to the line-width
of the hand-written digits, which is generally 2-3 pixels. The
fact that correlation improves again as distances increase is

22

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
or

re
la

ti
on

Distance

Correlations for MNIST

Original data
Permuted data

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40 45

C
or

re
la

ti
on

Distance

Correlations for SVHN

Original data
Permuted data

Figure 2: Correlation vs. pixel coordinate distance, before
and after random permutation.

an artifact of the MNIST images all having a centered digit
surrounded by a white border. Since background pixels have
the same value in all images, correlation scales with the like-
lihood that both members of a pair are background.

The SVHN data show a falloff that is slower than for
MNIST but still has a relatively steep slope for the first 5-10
pixel-units of distance. The backgrounds tend to be some-
what regular within any given image, since they tend to be
mostly paint, shingle, brick, or whatever surface the house
numbers are attached to, but they lack the universal back-
ground color seen in MNIST. As a result, the mean correla-
tion does not go back up for pairs of background pixels.

Taken together, these results demonstrate that image data
exhibits spatially localized structure, that this structure can
be measured, and that it can be eliminated by randomly per-
muting the ordering of the features in a dataset.

Convolutional Neural Networks
We assess the impact of spatially local structure on CNNs
by comparing their behavior in the presence and absence
of that structure. As a baseline, we used a multi-layer per-
ceptron (MLP), which should be permutation invariant. We
compared the behavior of CNNs with that of densely con-
nected networks on both original and permuted versions of
the MNIST and SVHN datasets.

A method that makes no use of spatially local information
should perform identically on both original and permuted
versions of the data. For techniques that rely on spatial in-
formation, permuting the data should result in lower perfor-

Table 1: Classification accuracy of neural network variants;
“-p” indicates permuted data.

MLP MLP-p CNN CNN-p
MNIST 98.46% 98.11% 99.41% 97.13%
SVHN 79.20% 78.37% 89.47% 72.70%

mance than on the original data. It should be noted that bet-
ter performance for these techniques is reported elsewhere
in the literature; our goal was not to achieve state-of-the-art
performance, but rather to observe how performance is im-
pacted by removing spatial information.

The CNN we trained for the MNIST dataset used 4 con-
volutional layers, each followed by a pooling layer. The net-
work was topped with two fully-connected layers, with 512
and 128 units respectively. The MLP trained for MNIST
was architecturally identical to the two-layer output network
used for the CNN: 512 units in the first hidden layer, 128 in
the second.

For SVHN, we used a VGG-like CNN (Simonyan and
Zisserman 2015), with a total of 11 convolutional layers and
5 pooling layers, topped by a fully-connected layer with 512
nodes. The MLP architecture for SVHN used two hidden
layers, containing 4092 and 2048 units.

All models were trained using dropout (Hinton et al.
2012) and batch normalization (Ioffe and Szegedy 2015).
We trained each model on both the original and permuted
version of each data set. In each case, the provided training
and testing sets were used for training and evaluation. Each
experiment was replicated 10 times, and the reported results
represent means over these 10 samples. In Table 1, we see
that CNNs are able to outperform MLPs on original image
data by wide margins, as expected. To test for statistical sig-
nificance, we applied a Wilcoxon rank sum test to each pair
of experimental conditions, with the null hypothesis in each
case being that the two conditions were equivalent.

With all data sets, we find that the MLPs behave the same
whether the data have been permuted or not (p � 0.05).
This is a strong indication that the MLPs are not making use
of any spatial structure. The CNNs, on the other hand, show
significantly worse performance on the permuted data than
on the original data (p < 0.002 in all cases). Indeed, the
CNN on permuted data performs significantly worse than
the MLP (p < 0.003 in all cases). In the case of the MNIST
data, where the same architecture as the MLP was used as
the output network for the CNN, this indicates that not only
is the CNN making use of spatial information when it is
present, it is reliant on the spatial information to such an ex-
tent that removing the spatial data makes the convolutional
layers of the CNN perform worse than the identity function.

Spatially Biased Random Forests
Experiments were performed using basic, single-index ran-
dom forests (Forest-RI), projective random forests (Forest-
RP), and spatially biased random forests (Forest-RS); sev-
eral meta-parameters were examined, and values were cho-
sen empirically. Experimental results are reported for the
MNIST and SVHN datasets, and original and permuted ver-

23

Table 2: Classification accuracy for random forest variants.
MNIST SVHN

Forest-RI 0.967 0.701
Forest-RP 0.971 0.706
Forest-RS 0.974 0.722

sions of the MNIST dataset. For each dataset, we used the
provided test-train split, to allow easy comparison of our
results to those obtained by others. In all cases our perfor-
mance measure was classification accuracy on the test set.

All versions of the forest learning algorithm used a
set of c candidate splitting projections, using either single
randomly-selected features (Forest-RI), unbiased random
projections (Forest-RP), or spatially biased random projec-
tions (Forest-RS). For the latter two, each projection had k
non-zero components on average. For each candidate, the
data were sorted according to the projected value, and mid-
points between each pair of adjacent values were considered
as possible split points. The optimal split point was deter-
mined by computing information gain.

We used a grid search to find hyperparameter values for
our algorithms. For the parameters shared by multiple algo-
rithms, all algorithms showed the same trends. This allowed
us to use the same values for all versions, resulting in a fair
comparison without disadvantaging any algorithm.

For all types of forests, each tree was trained using
70% of the training examples selected at random. This is
a similar number to what others have suggested is reason-
able (Breiman 2001). For all types of forests, increasing the
number of candidates splits c at each node tended to im-
prove performance up to some point of diminishing returns;
we used a value of c = 200.

For the MNIST dataset, the minimum number of exam-
ples needed before a node was split (nmin) was set to 1,
meaning the algorithm ran until nodes were pure or no can-
didate split was able to reduce entropy. Higher values were
not found to help generalization. For the SVHN dataset we
used a value of 3 for reasons of computational efficiency.

For both Forest-RP and Forest-RS, the average number
of non-zero projection components k was set to 3 as this
seemed optimal for both techniques on our data. Higher val-
ues were computationally more expensive, and significantly
higher values were found to negatively impact the general-
ization of both techniques.

For Forest-RS, the variance was set as:

σ2 = (0.05 + (0.015 · d)) · w

where d is the tree depth of the current node, and w is the
width of the current image dimension (images are square,
so width = height). Coordinates sampled outside the image
boundaries were re-sampled until valid coordinates were ob-
tained.

Table 2 shows the classification accuracy for each ensem-
ble. The ensemble sizes used were 1008 for MNIST and
384 for SVHN, enough for performance to saturate (see Fig-
ure 3). In all cases, Forest-RS outperforms Forest-RP, which
in turn outperforms Forest-RI. For the null hypothesis that

Table 3: Classification accuracy for random forest variants
on original and permuted data.

MNIST-orig MNIST-perm
Forest-RI 0.9687 0.9684
Forest-RP 0.9698 0.9688
Forest-RS 0.9711 0.9687

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 10 20 30 40 50 60 70 80 90 100

C
la

ss
if
ic

at
io

n
 A

cc
u
ra

cy

Ensemble Size

Random Forest Size vs Accuracy

Forest-RI
Forest-RP
Forest-RS

Figure 3: Classification accuracy vs number of trees in the
forest for the MNIST dataset.

two techniques were equivalent, a Wilcoxon test yielded
p ≤ 2× 10−5 for all pairs.

Table 3 shows the classification accuracy for each RF
variant when trained on original and permuted versions of
MNIST; ensembles of 64 trees were used since only relative
performance is of interest. In contrast to the results using
CNNs (Table 1), it can be seen that in the absence of spatial
structure, Forest-RS does no worse than Forest-RP; in fact,
the two become equivalent (p > 0.8 over 10 replications).
This makes sense mathematically, since with randomized
feature locations both methods are effectively picking fea-
tures from a uniform distribution with respect to the original
feature locations.

Figure 3 shows the performance of ensembles of varying
sizes on MNIST. For each ensemble size, 20 sample forests
were tested, and their performance was averaged. This plot
demonstrates that the ranking of the three methods is consis-
tent. It can also be seen that mean accuracy is an increasing
function of ensemble size, but the benefit tails off after a cer-
tain point. This is in line with other work on random forests,
which often suggests that there is no upper bound to how
many trees can productively be combined. In particular, the
claim is sometimes made that random forests are “immune
to overfitting,” though this refers to the number of members
in the ensemble, not the strength of each base classifier.

It is worth noting that for very small ensembles (less than
5 trees), Forest-RS does not outperform the other methods.
This suggests that part of the performance advantage of the
Forest-RS technique may be that it helps act as a regularizer;
individual trees are slightly weaker but have greater indepen-

24

dence, resulting in more power from combining them.

Conclusions
Overall, our results demonstrate that it is possible to in-
troduce a spatial bias into random forests, and that incor-
porating such a bias improves the performance of random
forests on spatial data. Additionally, the weaker bias rela-
tive to CNNs means that applying this method to randomly
permuted data is essentially equivalent to the Forest-RP al-
gorithm; regardless of what structure is present, its perfor-
mance will never fall below that of the baseline method. This
suggests that this type of bias is more robust to the possible
absence of spatial structure, which is a potential advantage
over CNNs and other fixed-partition methods.

Even with random projections, we acknowledge that RFs,
with or without spatial bias, are not currently good candi-
dates for tasks requiring certain types of invariance such as
some types of vision tasks. For example, CNNs display a
degree of spatial shift invariance that RFs cannot currently
provide. Our goal here was to show that RFs can be made
to take advantage of spatially local information, thus poten-
tially broadening their applicability to other types of prob-
lems. We view the introduction of additional types of in-
variance and regularization to be an important direction for
future work.

Acknowledgments
This work was made possible by the resources of the Mary-
land Advanced Research Computing Center (MARCC), and
a donation from NVidia. We are grateful to conversations
with Joshua Vogelstein and Tyler Tomita for helping to mo-
tivate this work. Parts of this work first appeared in the first
author’s dissertation (Mitchell 2017).

References
Baldi, D. C. P. S. P. 2014. Deep autoencoder neural net-
works for gene ontology annotation predictions. In Proceed-
ings of ACM Conference on Bioinformatics, Computational
Biology, and Health Informatics (ACM BCB), 533–540.
Breiman, L. 2001. Random forests. Machine Learning
45(1):5–32.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language pro-
cessing (almost) from scratch. Journal of Machine Learning
Research 2493–2537.
Cressie, N. 1993. Statistics for Spatial Data. Wiley-
Interscience.
Dahl, G.; Yu, D.; Deng, L.; and Acero, A. 2012. Context-
dependent pre-trained deep neural networks for large vocab-
ulary speech recognition. In IEEE Transactions on Audio,
Speech, and Language Processing, 30–42.
Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. 2012. Improving neural networks by
preventing co-adaptation of feature detectors. Computing
Research Repository (CoRR).

Ho, T. 1995. Random decision forests. In Proceedings of
International Conference on Document Analysis and Recog-
nition (ICDAR), 278–282.
Ho, T. 1998. The random subspace method for constructing
decision forests. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI) 20(8):832–844.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9(8):1735–1780.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift. In Proceedings of the International Conference on
Machine Learning (ICML), 448–456.
Kleinberg, E. 1996. An overtraining-resistant stochastic
modeling method for pattern recognition. The Annals of
Statistics 24(6):2319–2349.
LeCun, Y.; Bengio, Y.; and Hinton, G. E. 2015. Deep learn-
ing. Nature 521:436–444.
LeCun, Y.; Matan, O.; Boser, B.; Denker, J.; Henderson, D.;
Howard, R.; Hubbard, W.; Jackel, L.; and Baird, H. 1990.
Handwritten zip code recognition with multilayer networks.
Advances in Neural Information Processing Systems.
LeCun, Y.; Cortes, C.; and Burges, C. 2019.
The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.
Mitchell, B. R., and Sheppard, J. W. 2012. Deep structure
learning: Beyond connectionist approaches. In Proceedings
of International Conference on Machine Learning and Au-
tomation (ICMLA), 162–167.
Mitchell, B. R.; Tosun, H.; and Sheppard, J. W. 2015. Deep
learning using partitioned data vectors. In Proceedings of the
IEEE International Joint Conference on Neural Networks
(IJCNN).
Mitchell, B. R. 2017. The Spatial Inductive Bias of Deep
Learning. Ph.D. Dissertation, The Johns Hopkins Univer-
sity.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. 2019. The street view house numbers (svhn) dataset.
http://ufldl.stanford.edu/housenumbers.
Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.;
van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.;
Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of go with deep neural networks
and tree search. Nature 529:484–489.
Simonyan, K., and Zisserman, A. 2015. Very deep con-
volutional networks for large-scale image recognition. In
Proceedings of Interantional Conference on Learning Rep-
resentations (ICLR).
Tomita, T. M.; Maggioni, M.; and Vogelstein, J. T. 2015.
Randomer forests. Computing Research Repository (CoRR).
Tosun, H.; Mitchell, B. R.; and Sheppard, J. W. 2016. As-
sessing diffusion of spatial features in deep belief networks.
In Proceedings of the IEEE International Joint Conference
on Neural Networks (IJCNN), 1625–1632.

25

