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Abstract

This paper examines the effect of providing adversarial la-
bels to several algorithms that use noisy labels from multiple
experts to estimate classifier accuracy, referred to hereafter
as “estimators.” We propose four adversary labeling strate-
gies and use experiments on synthetic data to gauge their im-
pact on the estimators. Our results show that even a single
adversary can considerably impact the effectiveness of an es-
timator. In addition, we find that estimators that weight the
input of all experts equally tend to be much more affected
by the inclusion of adversaries than those that can separately
model each expert and that the impact of adversaries is less-
ened when the experts have higher accuracy.

1 Introduction
In machine learning, classifier performance is typically as-
sessed by comparing the labels output by the classifier to
the known true labels. However, as machine learning algo-
rithms are increasingly deployed in real-world settings to
tackle difficult problems, it has become common for the true
labels to be unknown and difficult even for experts to de-
termine. Recently, several algorithms, referred to through-
out this work as “estimators,” have been proposed to es-
timate classifier accuracy using noisy labels from multi-
ple experts, see for example (Whitehill et al. 2009; Don-
mez, Lebanon, and Balasubramanian 2010; Li and Yu 2014;
Jaffe, Nadler, and Kluger 2015; Lehner 2015).

Given that crowdsourcing platforms are commonly used
to gather labels and that it is well known that crowdsourced
workers exhibit large variation in expertise and subsequently
in label accuracy (Whitehill et al. 2009) and furthermore
may lazily or intentionally mislabel data (Whitehill et al.
2009; Difallah, Demartini, and Cudré-Mauroux 2012), it
seems natural to consider what effect adversarial labels have
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on estimators. In addition, the problem is not necessarily
limited to just datasets labeled by crowdsourced workers.
Even when labels are collected in a less haphazard fashion,
such as by querying a variety of subject matter experts, there
is the potential for insider threats to maliciously mislabel
data, perhaps with knowledge of the labels provided by other
experts. As a consequence of these observations, there is a
need to understand how adversarial labels affect estimators.

In this work, we study whether the error of several es-
timators in predicting classifier accuracy is affected by the
presence of adversaries, if particular adversarial strategies
that we introduce have more impact than others, and if any
of the estimators appear robust to adversaries.

1.1 Related Work and Contributions
Recently, there has been considerable work in the area of
adversarial machine learning, particularly with regard to im-
age recognition problems and deep learning in general. For
an overview, see the reviews by Akhtar and Mian (2018) and
Yuan et al. (2017). Adversarial learning has also been stud-
ied for other problems including malware detection (Hu and
Tan 2018) and voice recognition (Carlini et al. 2016).

To the best of our knowledge, however, there is no pub-
lished work specifically analyzing the effectiveness of clas-
sifier accuracy estimation algorithms in the presence of an
adversary. The closest parallels appear in the works of Parisi
et al. (2014) and Whitehill et al. (2009). Parisi et al. (2014)
investigated the effect of adversaries (referred to as a cartel)
on their classifier ranking algorithm, but only through the
lens of how well that ranking could be leveraged to predict
the true label. Whitehill et al. (2009) devised a model for
inferring the true label using noisy labels from multiple ex-
perts, which can also be used to estimate classifier accuracy,
and investigated the effect of adversaries on the model’s abil-
ity to infer the true label (but not on its ability to estimate the
accuracy of the individual experts).

In addition to not directly addressing our question of in-
terest, the works mentioned above considered only one or
two models of adversary behavior. To be specific, Parisi et
al. (2014) considered an adversary model in which a cartel
of experts chooses labels with respect to a specific target,
which may not be the true label, and Whitehill et al. (2009)
considered adversaries that either randomly assign labels or
always submit the wrong label.
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In this paper, we propose four new adversary labeling
strategies and evaluate their impact on several representa-
tive estimators. To briefly state our major contributions, we
find that:

1. The addition of adversarial labels impacts all of the esti-
mators we considered;

2. Estimators that equally weight experts tend to be much
more affected by the inclusion of even a single adversary;

3. Increasing the accuracy of the experts (i.e. the non-
malicious label-providing entities) tends to mitigate the
impact of the adversaries.

1.2 Outline
We now provide an overview of the remainder of the paper.
In Section 2, we provide a brief summary of the estimators
considered in this paper. In Section 3, we define our notation
and describe how the labels of the classifier, experts, and
adversaries are generated. The results of our experiments are
shown and discussed in Section 4. Finally, we conclude and
offer recommendations for future work in Section 5.

2 Estimator Strategies
In this section, we describe the specific estimators consid-
ered in this paper and briefly mention several other estima-
tors that appear in the literature.

Each estimator takes as input a set of classifier labels, that
is the classifier’s predicted labels for a given dataset, and a
set of expert labels that are the experts’ labels for the same
dataset. The “classifier” is expected to be either an unsu-
pervised or previously trained algorithm and the “experts”
may be actual human experts, crowdsourced workers, or ad-
ditional unsupervised or previously trained algorithms. Note
that in our work, some of the experts may be adversaries. To
be clear, some of the estimators output an estimate to the ac-
curacy of each set of provided labels, but we consider only
the problem of estimating the accuracy of the classifier.

Majority Vote (MV) Majority Vote uses the expert labels
to determine a “best-guess” for each data instance (i.e., the
label chosen by the most experts). Classifier accuracy is es-
timated by comparing the classifier labels to the best-guess
labels.

Iterative Weighted Majority Vote (IWMV) Iterative
Weighted Majority Vote (Li and Yu 2014) uses the classi-
fier and expert labels to determine a best guess for each data
instance and then estimates accuracy by comparing the la-
bels of the classifier and experts to this best guess. In its first
iteration, the best guess is assigned via unweighted majority
voting. In each subsequent iteration, the classifier and expert
accuracy estimates are used to inform a weighted vote.

Agreement (AGR) The estimator proposed by Lehner
(2015) treats the classifier and experts separately. It first
derives an approximation to expert accuracy via pair-wise
agreement between experts on the dataset. It uses this es-
timate to in turn estimate the probability of each potential
label, for each instance in the dataset. Finally, the amount of

agreement between the most probable labels and the classi-
fier labels is used (indirectly) to estimate classifier accuracy.

Covariance (COV) The approach of Jaffe, Nadler, and
Kluger (2015) is an extension of the ranking algorithm by
Parisi et al. (2014), which exploits structure in the classi-
fier/expert covariance matrix to rank the classifier/experts
according to their balanced accuracies. Jaffe, Nadler, and
Kluger (2015) extended the method to estimate the true pos-
itive and true negative rates, and also the class prior.

Maximum Likelihood (MLE) Several authors have in-
vestigated approximating the maximum likelihood estimate
of classifier accuracy via the Expectation-Maximization al-
gorithm, see for example (Dawid and Skene 1979; Donmez,
Lebanon, and Balasubramanian 2010; Sinha, Rao, and Bal-
asubramanian 2018). Donmez, Lebanon, and Balasubrama-
nian (2010) and Sinha, Rao, and Balasubramanian (2018)
perform inference in a model with one parameter for each
classifier/expert, while Dawid and Skene (1979) model the
entire confusion matrix. In our implementation, we use the
one-parameter model.

Other Estimators A number of other estimators have
been proposed but are not examined in this paper. For ex-
ample, Whitehill et al. (2009) model both the accuracy of
experts and the difficulty of data instances. Platanios, Blum,
and Mitchell (2014) derive an optimization-based estimator
that makes extensive use of constraints based on relation-
ships between agreement and accuracy. This estimator is su-
perficially similar to AGR. Platanios, Dubey, and Mitchell
(2016) also propose several graphical models that encode
relationships between experts.

For brevity, we include only the estimators described in
detail above. We feel that they cover enough of the spectrum
of estimation approaches to show the importance of consid-
ering adversarial labels and understand their general effects.

3 Experimental Design
In this section, we describe the specifics of our problem set-
ting as well as how we generate the labels of the classifier,
experts, and adversaries.

3.1 Problem Setting
LetD ⊂ X be a dataset of N instances xi, 1 ≤ i ≤ N , with
unknown true labels yi ∈ Y, 1 ≤ i ≤ N . In this paper, we
assume for simplicity a binary classification problem and as
a result Y = {0, 1}.

Let E = {e1, . . . , eNE
} be the set of experts and let

A = {a1, . . . , aNA
} be the set of adversaries. We denote

the classifier and expert labels for instance xi as ŷCi and
ŷ
ej
i , 1 ≤ j ≤ NE , respectively. We denote the adversary

labels as ŷaj

i , 1 ≤ j ≤ NA. We assume for added simplicity
that each instance has been labeled by the classifier we wish
to evaluate, by each expert, and by each adversary.

In our simulations, the classifier and expert labels are
sampled from a simple Bayesian Network in which the
classifiers and experts are conditionally independent, given
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Figure 1: Generative model for the classifier and experts.

the true label. The Bayesian Network is depicted in Fig-
ure 1. Since we are considering the binary case, the clas-
sifier and the experts each have two associated parameters,
P (ŷ = 1 | y = 1) and P (ŷ = 0 | y = 0), which we refer to
as the class-conditional accuracies. After the classifier and
expert labels have been generated, we apply one of the ad-
versary strategies (described next) to generate the labels of
the adversaries.

The goal of the estimators is to estimate the accuracy αC

of the classifier on D. The accuracy estimators discussed in
Section 2 take as input the labels predicted by the classifier
and the experts, that is

{(ŷCi , ŷ
e1
i , ..., ŷ

eNE
i , ŷa1

i , ..., ŷ
aNA
i )}Ni=1,

and output an approximation α̂C to the classifier accuracy.

3.2 Adversary Strategies
We now define four adversary labeling strategies.

Noisily Wrong In the noisily wrong strategy, the adver-
sary attempts to pick the wrong label for each instance. We
model this as an expert with class-conditional accuracies
that are worse than random, that is, we set P (ŷaj = 1 | y =
1), 1 ≤ j ≤ NA and P (ŷaj = 0 | y = 0), 1 ≤ j ≤ NA,
so that they are less than 0.5. For each data instance, given
the true label, the adversary predictions are drawn from a
Bernoulli distribution parameterized by P (ŷaj = 1 | y = 1)
if y = 1 and P (ŷaj = 0 | y = 0) if y = 0. Note that the
noisily wrong adversaries are conditionally independent of
the classifier/experts. A version of this strategy is mentioned
by Parisi et al. (2014).

Random Target In this strategy, adversaries each ran-
domly choose a target expert with which to intentionally dis-
agree. The target expert is chosen uniformly at random from
the set of experts. Then, labels are provided to perfectly dis-
agree with those provided by the target expert. That is, for
adversary j, an expert e is randomly chosen, and then, for
each data instance, we set yaj

i := 1− yei .

Strategic Target Similar to the random target strategy, the
adversaries apply labels opposite to one of the experts’ la-
bels. However, instead of randomly choosing an expert with
which to disagree, the adversaries target the best expert.

Stealth The stealth strategy models an adversary seeking
to avoid detection. The adversary first attempts to generate
a correct label, and then, after observing the predicted la-
bels of the classifier, experts, and previous adversaries, will
change the label if they can cause or break a tie. As such,
they have class-conditional accuracy parameters P (ŷaj =
1 | y = 1), 1 ≤ j ≤ NA and P (ŷaj = 0 | y = 0), 1 ≤ j ≤
NA.

To describe the strategy specifically for the jth adversary,
let V e

i (z) be the number of experts such that ŷei = z and
let V C

i (z) be 1 if ŷCi = z, where z ∈ {0, 1}. In addi-
tion, let V a1:aj−1

i (z) be the number of adversaries (among
the first j − 1) such that ŷai = z. The adversary label for
each data instance is then chosen in two steps. First, the ad-
versary makes an initial prediction ŷ∗i by drawing from their
own class-conditional distribution, that is, a Bernoulli distri-
bution parameterized by P (ŷaj

i = 1 | yi = 1) if yi = 1 and
P (ŷ

aj

i = 0 | yi = 0) if yi = 0. The adversary then observes
the classifier, experts, and adversaries 1, . . . , j − 1 and ad-
justs its label if it can cause or break a tie. Specifically,

ŷ
aj

i =



1 if V C
i (1) + V E

i (1) + V
a1:aj−1

i (1)

= V C
i (0) + V E

i (0) + V
a1:aj−1

i (0)

1 if V C
i (1) + V E

i (1) + V
a1:aj−1

i (1)

= V C
i (0) + V E

i (0) + V
a1:aj−1

i (0)− 1

0 if V C
i (1) + V E

i (1) + V
a1:aj−1

i (1)− 1

= V C
i (0) + V E

i (0) + V
a1:aj−1

i (0)

y∗i otherwise.

3.3 Simulation Parameters
We now describe some of the specific parameters that we
use to generate our simulated datasets. Every time a new
dataset is generated, we first set the class prior distribution.
Specifically, P (y = 1) ∼ U(0, 1) and P (y = 0) = 1 −
P (y = 1). In all simulations, we set the number of data
instances at N = 500. The number of labelers is fixed at
seven. This number includes the classifier, the experts, and
the adversaries (if any are present).

Independently for each class and expert, we choose each
class-conditional accuracy, P (ŷ = 1 | y = 1) and P (ŷ =
0 | y = 0), uniformly at random from a small interval, [θ −
0.10, θ + 0.10]. We vary the value of θ, which we refer to
as the base accuracy, for the experts in the simulations. In
the noisily wrong adversary model, we use θ = 0.20 as the
base accuracy. In the stealth model, we use the same value
of θ as the experts. For the classifier, the class-conditional
accuracies are set to 0.90.

4 Results and Discussion
In this section we generate simulated datasets as described
in Section 3 and apply the estimators described in Section 2.

4.1 Effect of Adversary Strategies
In our first set of experiments, we compare the effect of
the different adversary strategies on the estimators. We use
θ = 0.80 to set the base accuracy of the experts. We vary
the number of adversaries from zero to five. To be clear,
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Figure 2: Noisily Wrong: Error |α̂C − αC | of the estima-
tors against the number of adversaries when the adversaries
apply the noisily wrong strategy. The plotted points repre-
sent the median absolute error over 100 trials while the error
bands represent the 25th and 75th percentiles.

Figure 3: Random Target: Error |α̂C −αC | of the estimators
against the number of adversaries when the adversaries ap-
ply the random target strategy. The plotted points and error
bands are as in Figure 2.

the number of experts decreases as adversaries are added
(i.e., when there are zero adversaries, there are six experts
and when there is one adversary, there are five experts). For
each number of adversaries, we perform 100 separate trials.
In many cases when adversaries were added, AGR failed to
output an estimate of classifier accuracy, due to violations of
its underlying assumptions. As a result, in the following fig-
ures, we show the results for AGR only when it succeeded
for at least 90 of the 100 trials.

In Figure 2, we show the results for the noisily wrong
adversary strategy. It is clear that MV and AGR are most af-
fected, as the error of MV jumps considerably when a single

Figure 4: Strategic Target: Error |α̂C−αC | of the estimators
against the number of adversaries when the adversaries ap-
ply the strategic target strategy. The plotted points and error
bands are as in Figure 2.

Figure 5: Stealth: Error |α̂C − αC | of the estimators against
the number of adversaries when the adversaries apply the
stealth strategy. The plotted points and error bands are as in
Figure 2.

adversary is added and AGR often fails to return an estimate.
On the other hand, the errors of IWMV, MLE, and COV re-
main small until there are either three or four adversaries.

In Figures 3 and 4, we show the results for the random tar-
get and strategic target adversary strategies. The results are
very similar, most likely because the difference between the
strategies is related to which expert the adversaries target,
and in this set of experiments, the difference between the
best and worst experts may be rather small. As in the results
for the noisily wrong strategy, we see AGR often failed to
return an estimate. The error of MV increases as the number
of adversaries increases. The error of MLE increases when
a single adversary is added, but then stays roughly the same

5



Figure 6: MV: Error |α̂C − αC | of MV for each of the four
adversary strategies and different combinations of number
of adversaries and expert accuracy. The value in each cell is
the median error (rounded to two decimal places) over 100
trials.

until a fourth adversary is added. Both COV and IWMV per-
form well until there are four adversaries.

Finally, in Figure 5, we show the results for the stealth ad-
versary strategy. For all estimators, the stealth strategy has
less of an effect than the other strategies. Across the number
of adversaries, MV is usually most affected by the stealth
strategy, perhaps because the stealth strategy was specifi-
cally designed to change the majority vote of the experts.
The errors of the other methods slowly grow as more ad-
versaries are added. The one exception is MLE, the error of
which decreases slightly from four to five adversaries.

Across the strategies, then, it is clear that MV and AGR
are more strongly affected by the presence of adversaries
than IWMV, MLE, or COV. The error of MV rises consid-
erably when there is even a single adversary and AGR of-
ten fails to return a value, due to some of its underlying as-
sumptions not being satisfied. On the other hand, IWMV and
COV are usually less affected until a third or even fourth
adversary is added. MLE is on par with IWMV and COV
for the noisily wrong and stealth adversary strategies, but
performs worse for the random and strategic target strategy.
Note that IWMV, MLE, and COV handle the noisily wrong
adversary strategy particularly well and have very small er-
rors until a third or fourth adversary is added. This is likely
because the noisily wrong adversaries better conform to the
statistical model assumed by the estimators in that they are
conditionally independent of the experts.

4.2 Effect of Expert Accuracy
Recall that in the previous set of experiments, we set the
base expert accuracy at θ = 0.80. Here, we vary it by setting
it to θ = 0.60, θ = 0.70, θ = 0.80, and θ = 0.90, to gauge
the effect of expert accuracy on estimator error.

Figures 6, 7, 8, and 9 show the results of this experiment
for MV, IWMV, COV, and MLE. AGR often failed to re-
turn an estimate, except when there was a single adversary
and the expert base accuracy was θ = 0.90, so we omit its
results here. For smaller numbers of adversaries, it is clear
that increasing the accuracy of the experts tends to decrease
the error of the estimators. This pattern is most noticeable

Figure 7: IWMV: Error |α̂C − αC | of IWMV for each of
the four adversary strategies and different combinations of
number of adversaries and expert accuracy. The cell values
are as in Figure 6.

Figure 8: COV: Error |α̂C−αC | of COV for each of the four
adversary strategies and different combinations of number
of adversaries and expert accuracy. The cell values are as in
Figure 6.

Figure 9: MLE: Error |α̂C−αC | of MLE for each of the four
adversary strategies and different combinations of number
of adversaries and expert accuracy. The cell values are as in
Figure 6.

for MV, which can clearly tolerate more adversaries when
the accuracy of the experts is high. Across expert accura-
cies and number of adversaries, COV and IWMV were less
impacted, in general, by adversaries. Both usually maintain
reasonably low error rates until a fourth adversary is added
and are more robust to low expert accuracy. MLE generally
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performed fairly well, but tended to have larger errors than
COV or IWMV, especially for the random and strategic tar-
get adversary strategies.

As a brief note, recall that we set the classifier accuracy at
0.90 in all experiments. We also performed the experiments
described in this section with different classifier accuracies,
but found that while the magnitude of errors changed some-
what, the overall trends were similar.

5 Conclusion
In this work, we proposed four adversary labeling strategies
and used them to assess the impact of adversarial labels on
several classifier accuracy estimation algorithms. We now
review our major findings.

First, our experiments clearly show that there is a rela-
tionship between the presence of adversarial labels and es-
timator performance. The presence of adversaries generally
causes an increase in estimator error. Depending on the ad-
versary strategy and the accuracy of the experts, our findings
show that even a single adversary can considerably increase
the error of each estimator.

Second, we find that the estimators were affected differ-
ently both by the presence of adversaries, and by the strategy
employed by those adversaries. In general, IWMV, MLE,
and COV are less affected by the presence of adversaries
than either AGR or MV. AGR in particular was severely im-
pacted by the presence of adversaries. In our simulations
(apart from the stealth strategy), AGR only successfully
completed in the presence of an adversary if there was only a
single adversary and expert accuracy was high. We hypoth-
esize that this sharp difference in the methods is caused by
the fact that AGR and MV weight all expert input equally.
On the other hand, IWMV, COV, and MLE all infer the accu-
racy of each expert and as such, are able to “down-weight”
the input of the adversaries, up until the point that there are
about as many adversaries as experts.

Finally, we find that, for all estimators, more accurate ex-
perts help to mitigate the effect of adversaries.

5.1 Future Work
There are several opportunities for future work in this area.
Since our results are only for simulated data, it would be
interesting to investigate the effects of adversarial labeling
on real datasets, perhaps by injecting simulated adversarial
labels into them.

Given the apparent impact of adversarial labels on the es-
timators, we might also consider whether it is possible to de-
sign estimator methods that are more robust to adversaries.
One potential idea is to combine algorithms for detecting ad-
versaries, such as those by Jagabathula, Subramanian, and
Venkataraman (2017), with the estimators.
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