
On the Tree Structure of Deep Convolutional Sum-Product Networks

Cory J. Butz
butz@cs.uregina.ca

University of Regina
Canada

André L. Teixeira
teixeira@cs.uregina.ca
University of Regina

Canada

Jhonatan S. Oliveira
oliveira@cs.uregina.ca
University of Regina

Canada

André E. dos Santos
dossantos@cs.uregina.ca

University of Regina
Canada

Abstract

Deep convolutional sum-product networks (DCSPNs) have
very recently been introduced and shown to yield state-of-
the-art results in image completion tasks. A DCSPN consists
of a tree structure (a directed acyclic graph) coupled with pa-
rameters of the structure. Given that DCSPNs are in their in-
fancy, many open questions remain regarding the properties
and topology of their tree structure.
In this paper, we undertake three investigations pertaining to
the DCSPN structure. The first two studies revolve around the
original structure put forth in the seminal paper. These studies
increase the number of pooling layers and vary the hyperpa-
rameters in attempts to improve accuracy. The third inquiry
suggests a new DCSPN tree structure that significantly low-
ers the training time at a modest expense of accuracy.

Introduction
Deep convolutional sum-product networks (DCSPNs) (Butz
et al. 2019) are a subclass of convolutional neural networks
(CNNs) (Goodfellow, Bengio, and Courville 2016) that de-
fine valid sum-product networks. This subclass is character-
ized by convolutional layer filters of certain sizes and non-
overlapping windows in sum-pooling layers. The payoff is
that DCSPNs are a rigorous probabilistic model allowing for
exploitation of various forms of probabilistic reasoning, in-
cluding marginal inference and most probable explanation
(MPE) inference.

The DCSPN structure reported in (Butz et al. 2019) per-
formed exceptionally well in image completion. Open ques-
tions then include whether variations of this structure are
more effective, what the optimal hyperparameter values are,
and whether a completely new structure can learn faster than
the structure in (Butz et al. 2019).

We undertake two investigations pertaining to variations
of the DCSPN structure in (Butz et al. 2019) and put forth a
new DCSPN structure aimed at dramatically reducing the
training time. One variation is to increase the number of
pooling layers and also their window size in order to bet-
ter capture local structure in image data. Whereas (Butz et
al. 2019) used 2 pooling window sizes exclusively, here we
study 3 up to 6 sizes. A second variation is conducting a

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

grid search on the hyperparameters, but keeping the inau-
gural DCSPN structure. In these two investigations, we can
achieve competitive results for left-completion in a bench-
mark dataset. Our third study proposes a new DCSPN struc-
ture. Our structure yields comparable mean squared error
(MSE) scores compared to all competing methods except
for (Butz et al. 2019). In addition, the training time for our
proposed structure is significantly reduced. Thus, this new
structure serves as a trade-off between accuracy and training
time.

Varying the DCSPN Structure
We refer the reader to (Butz et al. 2019) for an introduction
to DCSPNs. In the next two subsections, we respectively in-
crease the number of pooling layers and vary some hyperpa-
rameters in attempts to improve accuracy.

Varying the Number of Pooling Layers
The horizontal and vertical windows in the pooling layers
capture local structure in the image data. Here, we investi-
gate the effect of varying the pooling layers.

In (Butz et al. 2019), two pooling layers follow each con-
volutional layer: one with a window size of 1x2 and the other
2x1. Alternate the window sizes of 1x2 and 2x1 with 2x2
and 2x2 every n layers. We call the former fine pooling lay-
ers and the latter coarse pooling layers.

Consider the fine pooling layers. We increase the number
of fine pooling windows from 2 up to 3-6. In addition, the
size of the additional windows ranges from 4 up to 8. Since
increasing the number of fine pooling layers can give an un-
wieldy network, the overall size of the structure is compen-
sated by using even coarser pooling layers, which serve as a
regularization technique. We use either 2x2 and 4x4 or 4x4
and 4x4. Table 1 shows the exact combinations tried and the
corresponding mean squared error (MSE) score.

Given that the number and size of pooling layers were in-
creased, one may wonder whether the alternating hyperpa-
rameter should be adjusted accordingly. To this end, Table
1 reports the value of the alternating hyperparameter chosen
in order to avoid a large number of layers.

The MSE scores in Table 1 beat all competing methods
reported in (Butz et al. 2019), except for DCSPNs which
scored 455. These encouraging results, exemplified by the

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

500

Table 1: Increasing the amount of fine pooling layers and using a larger coarse pooling to avoid a massive network.

MSE Fine pooling Coarse pooling # Layers # Layers between alternating
514 1x2,2x1,1x4 2x2,4x4 2139 100
600 1x2,2x1,1x4 4x4,4x4 1383 100
646 1x2,2x1,1x4,4x1 4x4,4x4 2941 100
604 1x2,2x1,1x4,4x1,1x8 4x4,4x4 1741 89
536 1x2,2x1,1x4,4x1,1x8,8x1 4x4,4x4 2306 101

(a) 514 (b) 600 (c) 646

(d) 604 (e) 536

Figure 1: Left-completions with respect to Table 1.

left-completions illustrated in Figure 1, suggest further re-
search in this direction may be fruitful.

Varying Non-Structural Hyperparameters
Here, we conduct an in-depth investigation into the effect of
three non-structural hyperparameters on the MSE scores.

We investigate the roles played by three non-structural
hyperparameters. Initializer, Inference Type, and Filter are
the focus of this section. These hyperparameters are non-
structural in the sense that they are independent of the topo-
logical structure of the DCSPN. For instance, Initializer
and Filter hyperparameters are related to the SPN weights,
which are parameters of the SPN model and not the SPN
structure.

Initializer can assume either uniform or Glorot and rep-
resents how network weights are initialized. A uniform ini-
tializer generates values between a defined lower bound and
upper bound using a uniform distribution. The values chosen
were 0 and 1.

On the other hand, a Glorot initializer (Glorot and Bengio
2010) samples from a uniform distribution using the follow
bound:[
−
√

6

tin + tout
,+

√
6

tin + tout

]
, (1)

where tin and tout denote the number of tensor inputs and
output units, respectively.

Observe that the Glorot initializer may involve negative
weights, which are not allowed by the definition of SPN sum
node weights. Also, it is worth mentioning that during learn-
ing, weights can assume negative values. However, (Hsu,
Kalra, and Poupart 2017) project negative weights to zero
during inference in their implementation of sum nodes. We

(a) 1483 (b) 826 (c) 1438 (d) 694

(e) 1062 (f) 1329 (g) 1689

Figure 2: Left-completions using the grid search in Table 2.

adopted this approach in our implementation. The weights
projection approach works as a regularization technique.

Next, the hyperparameter Inference Type takes domain
values Hard or Soft and stipulates which function is ap-
plied during the forward phase of MPE inference (Poon and
Domingos 2011). Hard means a max function is utilized,
while Soft indicates that a typical sum function is invoked.

Finally, the hyperparameter Filter can assume domain
values 1-by-1 or height-by-width (H-by-W). The Filter hy-
perparameter indicates the size of the filter for each convo-
lutional layer.

Table 2 reports the MSE score of a grid search over these
three hyperparameters. Figure 2 illustrates left-completions
on an image taken from the Olivetti dataset.

Table 2: A grid search over 3 hyperparameters.

Initializer Filter Inference Type MSE
uniform H-by-W Hard 1483
uniform 1-by-1 Soft 826
uniform 1-by-1 Hard 1438
Glorot H-by-W Soft 694
Glorot H-by-W Hard 1062
Glorot 1-by-1 Soft 1329
Glorot 1-by-1 Hard 1689

Analysis of the results in Table 2 and Figure 2 reveals a
few trends. Clearly, Inference Type is an important hyperpa-
rameter. Instantiating to Hard yields very poor MSE scores.
In contrast, when set to Soft, the MSE scores are competi-
tive with other methods. Similarly, Filter tends to be another
polarizing hyperparameter. When set to 1-by-1, the majority
of MSE scores are poor. On the other hand, H-by-W can

501

(a) 694 (b) 570

Figure 3: Fine tuning hyperparameter values.

yield both poor scores as well as achieve state-of-the-art.
The same can be said of the Initializer hyperparameter.

Subsequent fine-tuning could lead to further improvement
of MSE scores. For instance, consider the score 694 in Table
2. Increasing the number of epochs from 300 to 500 during
learning and increasing the number of convolutional layer
channels from 12 to 16, reduced the MSE score from 694
down to 570 as shown in Figure 3.

The Filter hyperparameter significantly impacts the size
of the network. The number of weights increases consider-
ably when using filter size of H-by-W compared to 1-by-1.
It appears that a larger number of parameters yields better
MSE scores.

A New DCSPN Structure
In order to reduce the training time, we propose in this sec-
tion a new DCSPN structure.

While Theorem 2 in (Butz et al. 2019) imposes constraints
that must necessarily be satisfied by the DCSPN structure,
there are a wide variety of such structures in theory. Here, we
investigate 11 possible structures defined by the following
pooling layer windows:
2x1,1x2
2x1,1x2,4x1
2x1,1x2,4x1,1x4
2x1,1x2,4x1,1x4,8x1
2x1,1x2,4x1,1x4,8x1,1x8
2x1,1x2,4x1,1x4,8x1,1x8,16x1
2x1,1x2,4x1,1x4,8x1,1x8,16x1,1x16
2x1,1x2,4x1,1x4,8x1,1x8,16x1,1x16,32x1
2x1,1x2,4x1,1x4,8x1,1x8,16x1,1x16,32x1,1x32
2x1,1x2,4x1,1x4,8x1,1x8,16x1,1x16,32x1,1x32,64x1
2x1,1x2,4x1,1x4,8x1,1x8,16x1,1x16,32x1,1x32,64x1,1x64.

Let W denote one of the above 11 sets of pooling win-
dows choices. Let S be a set of convolutional layers to be
processed. That is, convolutional layers on which pooling
windows in W will be applied. Let G be a set of pooling
layers sets.

Initialization is first conducted. A convolutional layer fol-
lows the representational layer and is inserted in the set S.
Each time a convolutional layer is removed from S, all pos-
sible pooling windows in W are applied on it. Thus, every
convolutional layer will be followed by pooling layers using
W. Group together all pooling layers having the same height
and width. For each group, perform a channel (depth) aug-
mentation by applying a convolutional layer and then add
the convolutional layer to S.

Repeat the above process until a convolutional layer of
unitary height and width is reached. This convolutional layer
is the root of the DCSPN structure.

Algorithm 1 formalizes the structure construction pro-
cess.

Algorithm 1 Building the new DCSPN Structure

Input: a DCSPN representational layer R and a set of pool-
ing windows W

Output: a DCSPN structure D
Main:

1: . Initialization
2: S = ∅ . Set of convolutional layers to be processed
3: G = ∅ . Set of pooling layers groups
4: New convolutional layer S
5: . A convolutional layer follows the representation layer
6: Add edge (S,R) in D
7: S = S ∪ {S} . and is added to S
8: while |G| is not 1 do
9: P = ∅ . Set of pooling layers to be grouped

10: while S is not empty do
11: S = choose and remove S from S
12: . Applying pooling windows
13: for w in W do
14: New pooling layer P using w
15: . Convolutional layer is followed by gener-

ated pooling layers
16: Add edge (P, S) in D . add edge
17: P = P ∪ {P} . and insert into P

18: . Group same size pooling layers
19: G = groupSameSize(P)
20: for group in G do
21: New layer S
22: . Channel augmentation
23: for P in group do
24: Add edge (S, P) in D . add edge
25: . Add convolutional layer to be processed
26: S = S ∪ {S}

return D . DCSPN structure

Table 3 gives structural information of the DCSPN con-
structed by Algorithm 1 for the 11 choices of pooling win-
dows. Figure 4 gives sample left-completion in Olivetti
when using the structure built by Algorithm 1.

Figure 5 shows that the learning time ranged from 26-
34 minutes when using the new proposed structure built by
Algorithm 1, which is significantly lower than the roughly 2
hours required for the structure in (Butz et al. 2019). Figure
6 gives the TensorFlow model size of the structure built by
Algorithm 1 versus the structure in (Butz et al. 2019).

Conclusion
DCSPNs (Butz et al. 2019) formally establish when CNNs
define valid SPNs. A DCSPN consists of convolutional and
sum-pooling layers together with network parameters. Here,
we have conducted a comprehensive investigation into the
DCSPN structure. Our first main result is that increasing the

502

Table 3: Structural information with respect to the above 11
pooling windows.

MSE # Layers ModelSize(MB) Learning Time(min)
907 344 159 32
974 337 158 32
974 330 158 32
903 316 156 34
885 302 154 34
765 281 150 32
868 260 146 31
999 232 137 31
796 204 128 30
843 169 110 26
784 134 92 26

(a) 907 (b) 974 (c) 974 (d) 903

(e) 885 (f) 765 (g) 868 (h) 999

(i) 796 (j) 843 (k) 784

Figure 4: Completion examples from the 11 reported results
of the compact structure.

Figure 5: Algorithm 1 dramatically lowers DCSPN training
time.

number of pooling layers does not capture more local struc-
ture in the image data. This suggests that the small windows
used in (Butz et al. 2019) of 1-by-2 and 2-by-1 sufficiently

Figure 6: Algorithm 1 has a stable DCSPN size.

capture local structure, and that increasing the number of
pooling windows does not improve accuracy.

Our second main result is that comparable results can be
obtained using the DCSPN structure detailed in (Butz et al.
2019), but with different hyperparameter values. Our third
main contribution is a novel structure to replace the one sug-
gested in (Butz et al. 2019). Here, the focus in not on a lower
MSE score, but instead a structure that allows learning sig-
nificantly faster while maintaining competitive MSE scores.
The structure can indeed be trained significantly faster at a
small increase in MSE scores, as shown in Table 3.

References
Butz, C.; Oliveira, J.; dos Santos, A.; and Teixeira, A. L.
2019. Deep convolutional sum-product networks. In Thirty-
third Conference on Artificial Intelligence (AAAI 2019).
Glorot, X., and Bengio, Y. 2010. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the Thirteenth International Conference on Arti-
ficial Intelligence and Statistics (AISTATS 2010), 249–256.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press.
Hsu, W.; Kalra, A.; and Poupart, P. 2017. Online structure
learning for sum-product networks with gaussian leaves.
arXiv preprint arXiv:1701.05265.
Poon, H., and Domingos, P. 2011. Sum-product networks:
A new deep architecture. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence
(UAI 2011), 337–346.

503

