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Abstract

The principle of maximum entropy (MaxEnt) provides
a well-founded methodology for commonsense reasoning
based on probabilistic conditional knowledge. We show how
to calculate MaxEnt distributions in a first-order setting by
using typed model counting and condensed iterative scaling.
Further, we discuss the connection to Markov Logic Net-
works for drawing inferences.

Introduction
The principle of maximum entropy (MaxEnt) provides
a well-founded methodology for commonsense reasoning
based on probabilistic knowledge (Paris 2006). Primarily
covered in a propositional setting (Kern-Isberner 2001),
the MaxEnt principle was successfully adapted to deal
with first-order probabilistic conditionals (Thimm and Kern-
Isberner 2012). Although it shows expressive power when
modeling uncertain knowledge about properties of and in-
teractions among individual objects, the MaxEnt approach
has not yet attracted as much interest as competing ap-
proaches in the field of relational probabilistic program-
ming (Getoor and Taskar 2007; Raedt et al. 2008), mainly
due to its computational intransparency. A systematic inves-
tigation of probabilistic first-order reasoning gave birth to
(symmetric) weighted first-order model counting (WFOMC,
(Van den Broeck et al. 2011)) as a central methodology.

In this paper, we develop efficient methods for Max-
Ent reasoning in a first-order setting by lifting the ideas of
WFOMC to conditional reasoning at maximum entropy. We
discuss typed model counting (TMC, (Wilhelm et al. 2017))
as a variant of WFOMC which serves as a convenient frame-
work for extracting the relevant information from a knowl-
edge base that is necessary to determine the MaxEnt distri-
bution. We present condensed interative scaling (CIS) as an
optimization algorithm for calculating the MaxEnt distribu-
tion which builds upon the results of typed model counting.
And we prove that knowledge bases can be compiled into
Markov Logic Networks (MLNs, (Richardson and Domin-
gos 2006)) with weights depending on the solution of the
dual MaxEnt optimization problem. Hence, the MaxEnt ap-
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proach can benefit from the sophisticated inference tech-
niques that exist for MLNs (cf. Figure 1).

The rest of the paper is organized as follows: After a brief
presentation of the relevant preliminaries on first-order prob-
abilistic logic, the aggregating semantics, and on first-order
maximum entropy reasoning, we discuss the connections of
maximum entropy to Markov Logic Networks, condensed
iterative scaling, and typed model counting, respectively.
Eventually, we conclude and address future work.

Preliminaries
We consider a function-free first order language FOL over
the signature Σ = (Pred,Const) consisting of finite sets of
predicates Pred and constants Const. Formulas in FOL are
built by using the common connectives (∧,∨,¬) and quanti-
fiers (∃, ∀). We abbreviate A ∧B with AB, ¬A with A, and
A ∨ A with >. Variables are denoted by uppercase letters.
If p/n is a predicate and c1, . . . , cn are constants, the for-
mula p(c1, . . . , cn) is called a ground atom. A ground literal
is a ground atom or its negation. Formulas can be ground
instantiated by substituting each free variable by a constant
(e.g., if a ∈ Const, then ∀X r(X, a) is a ground instance of
∀X r(X,Y )). The set of all ground instances of A ∈ FOL
is denoted by Gr(A) and the set of the free variables in A by
Var(A). Formulas without free variables are closed.

A conditional c=(B|A)[ξ] withA,B∈FOL and ξ∈ [0, 1]
is a formalization of the statement “If A holds, then B
follows with probability ξ”. It is called non-deterministic
iff ξ /∈ {0, 1}. A ground instance of (B|A)[ξ] is ob-
tained by ground instantiating A and B such that free vari-
ables mentioned in both A and B are substituted with the
same constant (e.g., (r(a, b)|p(a))[ξ] and (r(a, a)|p(a))[ξ]
are ground instances of (r(X,Y )|p(X))[ξ] if a, b ∈ Const
but (r(a, b)|p(b))[ξ] is not). The set of all ground instances
of c is denoted by Gr(c) and the set of the free variables in c,
i.e. in A or B, by Var(c). One has |Gr(c)| = |Const||Var(c)|.

A knowledge base K = (F , C) consists of a finite set of
closed formulas F (representing the factual knowledge of
an agent) and a finite set of non-deterministic conditionals
C (representing her conditional beliefs). For the rest of the
paper, let C = {c1, . . . , cn} with ci = (Bi|Ai)[ξi].
Example 1. Let Pred = {bird/1, fly/1} and coco ∈ Const.

Kbrd = ({bird(coco)},
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Figure 1: Drawing inferences from first-order probabilistic conditional knowledge at maximum entropy via MLNs.

{(fly(X)|bird(X))[0.8], (fly(coco)|>)[0.1]})
states that birds typically can fly, here with probability 0.8,
while Coco is assumed to be an abnormal bird which is able
to fly with probability 0.1 only. Note that probabilities are
understood as a reasoner’s degree of belief.

The semantics of knowledge bases is given by proba-
bility distributions over possible worlds. A possible world
ω is a complete conjunction of ground literals, i.e., every
ground atom occurs in ω exactly once, either negated or pos-
itive. The set of all possible worlds is denoted by Ω, and
ΩF = {ω ∈ Ω | ∀F ∈ F : ω |= F} denotes the set of possi-
ble worlds in which all formulas in F are true. As condition-
als may mention free variables, they cannot be interpreted as
simple conditional probabilities. Instead, we make use of the
aggregating semantics (Thimm and Kern-Isberner 2012).
Definition 1. A (probability) distribution P : Ω → [0, 1] is
a model of a closed formula F iff ω 6|= F implies P(ω) = 0,
and of a conditional (B|A)[ξ] iff∑

(B′|A′)[ξ]∈Gr(c) P(A′B′)∑
(B′|A′)[ξ]∈Gr(c) P(A′)

= ξ, (1)

where P(A) =
∑
ω|=A P(ω). P is a model of a knowledge

base K = (F , C) iff it models every F ∈ F and every c ∈ C.
The aggregating semantics captures the definition of con-

ditional probabilities by summing up the probabilities of
the ground instances of the conditional, thereby providing
a declarative semantics for first-order knowledge bases.
Example 2. Recall c = (fly(X)|bird(X))[0.8] from Exam-
ple 1. A distribution P : Ω→ [0, 1] models c iff∑

c∈Const P(bird(c)fly(c))∑
c∈Const P(bird(c))

= 0.8.

Example 2 suggests to understand the aggregating seman-
tics in the following way: The relative frequency of the fly-
ing birds measured against all birds, in which the single
events (an individual c is a bird or a flying bird) are weighted
by the degree of belief with which the agent assumes that
the certain events happen, has to equal 0.8. If P is the Dirac
distribution assigning the probability 1 to a single possible
world ω, i.e., the agent is certain that ω represents the real
world, then (1) means counting relative frequencies in ω. In
the contrary, if P is the uniform distribution on ΩF which
means that the agent is maximally unconfident with her be-
liefs, then (1) means counting relative frequencies spread
over all possible worlds. If |Gr(c)| = 1, then (1) equals con-
ditional probabilities.

Consistent knowledge bases, i.e. knowledge bases with at
least one model, typically have infinitely many models, and

reasoning based on the whole set of models leads to mono-
tonic and often uninformative inferences. Hence, for reason-
ing tasks, it is expedient to select a certain model among
them. The choice that fits best to common sense is the unique
model which maximizes entropy, according to (Paris 2006).
Definition 2. Let K be a consistent knowledge base. Then,

PME
K = arg max

P|=K
−
∑
ω∈Ω

P(ω) · logP(ω) (2)

is called the maximum entropy distribution for K. In (2) the
convention 0 · log 0 = 0 applies.

Under the aggregating semantics, (2) is a convex opti-
mization problem. Thus, PME

K for a consistent K is guar-
anteed to exist and is unique. As the dimension of problem
(2) is exponential in |Const|, (2) is usually reduced to its
n + 1-dimensional dual optimization problem by applying
the method of Lagrange multipliers (Kern-Isberner 2001) in
order to determine PME

K . One obtains

PME
K (ω) =

{
α0 ·

∏n
i=1 α

fi(ω)
i , ω ∈ ΩF

0, ω ∈ Ω \ ΩF
, (3)

where fi(ω) = verci(ω)−ξi·appci(ω) is the feature function
of the i-th conditional in C and

appc(ω) = |{(B′|A′)[ξ] ∈ Gr(c) | ω |= A′}|,
verc(ω) = |{(B′|A′)[ξ] ∈ Gr(c) | ω |= A′B′}|,

are the numbers of ground instances of the conditional c
that are applicable (appc) resp. verified (verc) in the possi-
ble world ω. Further, ~αME

K = (α0, α1, . . . , αn) ∈ Rn+1
>0 are

exponentials of the Lagrange multipliers and have to satisfy∑
ω∈ΩF

fi(ω) ·
n∏
j=1

α
fj(ω)
j = 0, i = 1, . . . , n, (4)

∑
ω∈ΩF

n∏
j=1

α
fj(ω)
j = α0. (5)

Equations (4) are the aggregating semantics for ci ∈ C with
P = PME

K and (5) assures
∑
ω∈Ω PME

K (ω) = 1.
Eventually, the maximum entropy distribution yields the

nonmonotonic inference relation K |∼ME c iff PME
K |= c

between the knowledge base K and a query conditional c
(Kern-Isberner 2001). Using the conditional c = (F |>)[1]
where F is a closed formula, the relation |∼ME also affords
one to infer the factual knowledge F .

MaxEnt and Markov Logic Networks
Markov Logic Networks (MLNs, (Richardson and Domin-
gos 2006)) constitute a popular approach in the field of sta-
tistical relational learning (cf. (Getoor and Taskar 2007)) by
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combining probabilistic graphical models, namely Markov
Random Fields, and first-order logic. For MLNs there exist
well-investigated techniques for both exact and approxima-
tive inference. We show that the MaxEnt distribution PME

K
can be compiled into an MLN and therefore benefits from
the inference techniques for MLNs.

A Markov Logic Network N is a set of pairs (Fi, νi) con-
sisting of formulas Fi ∈ FOL and weights νi ∈ R which, in
the context of a finite set of constants, define a probability
distribution PL : Ω→ [0, 1] by

PL(ω) =
1

ζ
· exp

(∑
i

νi · cnt(Fi, ω)

)
,

where ζ is a normalization constant and

cnt(Fi, ω) = |{F ′i ∈ Gr(Fi) | ω |= F ′i}|.
In order to represent hard constraints, i.e. factual knowledge,
it is convenient to admit infinite weights.
Theorem 1. Let K = (F , C) be a consistent knowledge
base, let ~αME

K = (α0, α1, . . . , αn), and let L be the MLN
defined by (AiBi, (1−ξi) · logαi), (AiBi,−ξi · logαi) ∈ L
for ci ∈ C and (F ,−∞) ∈ L for F ∈ F . Then, PL = PME

K .

Proof. Let ω ∈ Ω \ ΩF . There is at least one F ′ ∈ F with
ω 6|= F ′ but ω |= F ′, hence cnt(F ′, ω) = 1, and

PL(ω) = limν→−∞
1
ζ · exp

(∑
F∈F ν · cnt(F , ω)

+
∑

ci∈C(1− ξi) · log(αi) · cnt(AiBi, ω)

+
∑

ci∈C −ξi · log(αi) · cnt(AiBi, ω)
)

= limν→−∞
1
ζ · exp(ν · cnt(F , ω)) = 0 = PME

K (ω).

Now, let ω ∈ ΩF . Then, cnt(F , ω) = 0 for all F ∈ F , and

PL(ω) = 1
ζ · exp

(∑
ci∈C(1− ξi) · log(αi) · cnt(AiBi, ω)

+
∑

ci∈C −ξi · log(αi) · cnt(AiBi, ω)
)

= 1
ζ ·
∏n
i=1 α

(1−ξi)·cnt(AiBi,ω)
i ·

∏n
i=1 α

−ξi·cnt(AiBi,ω)
i

= 1
ζ ·
∏n
i=1 α

cnt(AiBi,ω)−ξi·(cnt(AiBi,ω)+cnt(AiBi,ω))
i

= 1
ζ ·
∏n
i=1 α

verri (ω)−ξi·appri (ω)

i = PME
K (ω)

with the normalizing constant ζ = α0.

Usually, the weights of MLNs are learned from relational
databases by maximum likelihood estimation without being
declarative. Theorem 1 provides a semantically meaningful
choice of the weights. In particular, the probabilities of the
given conditionals are established. Note that the weights in
Theorem 1 are not simply these probabilities but require to
solve the dual MaxEnt optimization problem in order to get
~αME
K . We focus on computing ~αME

K in the rest of the paper.

MaxEnt and Condensed Iterative Scaling
In principal, the dual MaxEnt optimization problem (3)-(5)
can be solved by any method of non-linear convex optimiza-
tion. In our situation, establishing the input of these meth-
ods in the naı̈ve way depends exponentially on |Const|. To

Input: Consistent knowledge base K, precision ε
Output: Approximation −→α ?K of ~αME

K

1. G =
∑n
i=1 |Gr(ci)|

2. k = 0

3. FOR i = 1..n : αki = 1

4. REPEAT
(a) k = k + 1

(b) FOR i=1..n : αki =αk−1
i ·

(
1+

Φ
ci,k−1

K
pi·|Gr(ci)|·Φk−1

K

)−1/G

UNTIL |αki − α
k−1
i | < ε for i = 1..n HOLDS

5. αk0 = (ΦkK)−1

6. RETURN −→α ?K = (αk0 , α
k
1 , . . . , α

k
n)

Here, ΦkK = φK(αk1 , . . . , α
k
n, (α

k
1)−ξ1 , . . . , (αkn)−ξn) and

Φci,k
K = φciK(αk1 , . . . , α

k
n, (α

k
1)−ξ1 , . . . , (αkn)−ξn ,−ξi).

Figure 2: Algorithm CIS.

avoid this, it is necessary to evaluate the sums in (4) and
(5) without iterating over the whole set Ω but in a more
condensed way, and to have an optimization algorithm for
the dual MaxEnt optimization problem that utilizes this con-
densed form of (4) and (5). We counter the task of determin-
ing (4) and (5) efficiently by a variant of first-order weighted
model counting (Van den Broeck et al. 2011) in the next sec-
tion and focus on the optimization algorithm now.

Let K be a knowledge base, and let c be a conditional. We
define the polynomials ΦK and Φc

K in the polynomial ring
Z[x1, . . . , xn, y1, . . . , yn, z] by

φcK =
∑
ω∈ΩF

(verc(ω)+ z ·appc(ω)) ·
n∏
j=1

x
vercj (ω)

j · y
appcj (ω)

j ,

φK =
∑
ω∈ΩF

n∏
j=1

x
vercj (ω)

j · y
appcj (ω)

j . (6)

From these polynomials (4) and (5) can be obtained by sub-
stituting c with ci and plugging in αj for xj , α

−ξj
j for yj ,

both for j = 1, . . . , n, and −ξi for z. Based on this connec-
tion, our algorithm CIS (cf. Figure 2) solves the dual MaxEnt
optimization problem given (6). CIS is a variation of gener-
alized iterative scaling (GIS, (Darroch and Ratcliff 1972))
but, as CIS solves the dual optimization problem, it does not
suffer from the expensive iterations over possible worlds like
common GIS algorithms. Actually, |Const| has an influence
on CIS only as a parameter if the same holds for φK and φciK .
The correctness of CIS is stated in the following theorem.

Theorem 2. The sequence (αk0 , α
k
1 , . . . , α

k
n)k∈N0 as defined

in CIS converges to ~αME
K in any suitable vector norm ‖·‖.

Proof. If one applies standard generalized iterative scaling
to the primal MaxEnt problem (2), one iteratively scales the
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probabilities of the possible worlds ω ∈ ΩF via

Pk(ω) = 1
η · P

k−1(ω) ·
∏n+1
j=1 (βkj )f̂j(ω), (7)

where k is the iteration index, η a normalizing constant, and

βki =
ε̂i∑

ω∈ΩF
Pk−1(ω) · f̂i(ω)

, i = 1, . . . , n+ 1, (8)

are scaling factors (cf. (Finthammer and Beierle 2014), also
for the definitions of ε̂i and f̂i(ω)). From this one can de-
rive α̂ki = α̂k−1

i · βki with α̂k0 = 1. Further, αki = (α̂ki ·
(α̂kn+1)−1)1/G since α̂ki is αki up to normalization, such that

αki = αk−1
i ·

(
βki
βkn+1

)1/G

, i = 1, . . . , n. (9)

As a direct consequence of both the convergence of GIS and
the strong duality between the primal and the dual MaxEnt
problem, it follows that (αk0 , α

k
1 , . . . , α

k
n)k∈N0

converges to
~αME
K . It remains to show that the iteration specification (9)

can be reformulated to Step 4b of CIS (the converges of
(αk0)k∈N0

to α0 is trivial then). For this, recursively plug the
predecessor Pj−1(ω) of Pj(ω) into (7) and use that α̂0

i = 1
for i = 1, . . . , n and P0(ω) = |ΩF |−1 for ω ∈ ΩF (GIS
starts iterating from the uniform distribution) which leads to

Pk(ω) = 1
η ·
∏n+1
j=1 (α̂kj )f̂j(ω). (10)

Now, insert (10) into (8) which removes the probabilities
Pk(ω) from the iteration specification for α̂ki and get

αki =αk−1
i ·

(
ε̂n+1 ·

∑
ω∈ΩF

f̂i(ω)·
∏n+1
j=1 (α̂kj )f̂j(ω)

ε̂i ·
∑
ω∈ΩF

f̂n+1(ω)·
∏n+1
j=1 (α̂kj )f̂j(ω)

)−1/G

.

Finally, one gets the equality in Step 4b of CIS by plugging
ε̂i and f̂i(ω) into the last equation.

If the polynomials (6) are set up appropriately, CIS is able
to outperform current algorithms for calculating PME

K sig-
nificantly (cf. Table 1). In the next section, we discuss typed
model counting as a formal framework for determining (6) in
a very condensed way by exploiting the conditional logical
structure of K. With typed model counting it is possible to
overcome the exponential dependence on |Const| for many
classes of knowledge bases entirely.

MaxEnt and Typed Model Counting
First-order typed model counting (TMC, (Wilhelm et al.
2017)) is a variant of weighted first-order model counting
(Van den Broeck et al. 2011) that aims to extend model
counting by the ability to classify models into different
types. These types are represented by elements of an alge-
braic structure that are directly incorporated into the formu-
las. In particular, TMC allows for representing condition-
als as structured formulas, and for an efficient evaluation of
their conditional logical structure. We recall the basic nota-
tions and definitions from TMC while adjusting them for the
specific purpose of calculating the polynomials (6). This en-
ables one to rewrite the side conditions (4) and (5) of the dual
MaxEnt optimization problem in a more condensed way and
to solve the optimization problem efficiently via CIS. We
start with a simple example that illustrates our objective.

Set-up Runtimes in sec.
R |Const| |ΩF | GISα iGISα CIS

Kbrd 200 2399 6.37 < 0.01 < 0.01
Kbrd 300 2599 19.91 < 0.01 < 0.01
Kbrd 400 2799 33.03 < 0.01 < 0.01

Kmky 30 21830 > 600 0.37 < 0.01
Kmky 60 27260 > 600 5.74 < 0.01
Kmky 90 216290 > 600 28.72 < 0.01

Ksmk 30 2930 > 600 > 600 0.29
Ksmk 60 23660 > 600 > 600 3.27
Ksmk 90 28190 > 600 > 600 6.89

Table 1: Runtime comparison of CIS with the algorithms
GISα (Finthammer and Beierle 2014) and iGISα (Wilhelm
et al. 2018) with respect to Kbrd from Example 1, Kmky =
(∅, {(f(X,Y )|h(Y ))[0.2], (f(X,Y )|h(Y )r(X,Y ))[0.9]}),
and Ksmk = (∅, {(s(Y )|s(X)f(X,Y ))[0.7]}). The termi-
nation condition was uniformly chosen as k = 100 such that
all algorithms computed an output of the same precision.
Runs were executed on an Intel Core i5-6200U processor
with two cores and were canceled after 600 seconds.

Example 3. Consider Kex = (∅, {(fly(X)|bird(X))[0.8]}).
The naı̈ve way of determining φKex (cf. (6)) requires to count
the number of birds (appc1(ω)) as well as the number of fly-
ing birds (verr1(ω)) in every single possible world ω ∈ Ω in-
dependently which ends up in a sum with 4|Const| summands
(the number of possible worlds).

When applying some combinatorial arguments, φKex can
be represented much more compactly: If exactly k individ-
uals are birds, there are

(|Const|
k

)
many possible sets of in-

dividuals that could cover these birds. And if exactly m of
the birds are able to fly, there are

(
k
m

)
many possible combi-

nations of them. The flying behavior of all other individuals
(2|Const|−k many) is irrelevant for the evaluation of c1. Each
combination of the mentioned characteristics corresponds to
a possible world, and hence

φKex =

|Const|∑
k=0

k∑
m=0

(
|Const|
k

)(
k

m

)
· 2|Const|−k · xm1 · yk1 .

This way, the number of summands in φKex and evaluating
φKex at a given point depend polynomially on |Const|.

An even more efficient way of setting up φKex is to realize
that the ground instances of c1 can be evaluated indepen-
dently, as the ground instances of c1 correspond to different
individuals. Every individual is possibly a flying bird (repre-
sented by the product x1 · y1), a non-flying bird (y1) or not
a bird at all. In the last case it is irrelevant for the evalua-
tion of c1 whether the individual is able to fly or not (which
results in a factor 2). As there are |Const| many individuals,

φKex = (x1 · y1 + y1 + 2)|Const|.

Here, |Const| has an influence on φKex only as a parameter.
Let Z[X ] be the polynomial ring over the set of variables
X = {x1, . . . , xn, y1, . . . , yn, z}. To anticipate the meaning
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of the variables, note that xi resp. yi indicate the verification
resp. the applicability of the i-th conditional of a knowledge
base, and z serves as a placeholder for probabilities. Further,
let [X ] denote the set of monomials in Z[X ] (products of
powers of the variables with nonnegative integer exponents).
Definition 3. The structured language FOLs is defined by

Φ ::= A | Φ ∧ Φ | Φ ∨ Φ | ∃X Φ | ∀X Φ | x ◦ Φ,

where A ∈ FOL, X ∈ Var(B), x ∈ [X ] and ◦ is an outer
operation between [X ] and FOLs. ◦ shall bind strongest.1

The language FOLs consists of all formulas in FOL and
additionally allows one to concatenate monomials from [X ]
to any part of a formula as long as they are not in the scope
of negations. For example, if p/1 ∈ Pred, ∀X z ◦ ¬p(X) is
in FOLs but ∀X ¬z ◦ p(X) is not.
Definition 4. For every ω ∈ Ω, the structured interpretation
Isω is a mapping from the set of closed structured formulas
in FOLs to [X ] ∪ {0} and is recursively defined by

1. Isω(A) =

{
1 if ω |= A

0 otherwise
,

2. Isω(B ∧C) = Isω(B) · Isω(C),

3. Isω(B ∨C) =


Isω(B) if Isω(C) = 0

Isω(C) if Isω(B) = 0

Isω(B) · Isω(C) otherwise
,

4. Isω(∃X B) = Isω(
∨
c∈ConstB[X/c]),

5. Isω(∀X B) = Isω(
∧
c∈ConstB[X/c]),

6. Isω(x ◦B) = x · Isω(B),
where A ∈ FOL, B,C ∈ FOLs, x ∈ [X ], X ∈ Var(B), and
B[X/c] is B after substituting every occurrence of X by c.
Isω interprets closed formulas A ∈ FOL in the same way

as classical interpretations do, whereby ω determines the
truth assignment (i.e., Isω(A) = 1 iff ω |= A). Only for
formulas that mention elements from [X ] the interpretation
is multi-valued, registered in its type. The following exam-
ple illustrates this by highlighting how both the presence and
the position of elements from [X ] affect the interpretation.
Example 4. Let ω ∈ Ω be a possible world which satisfies
ω |= p(c) for all c ∈ Const. Then, Isω(∀X p(X)) = 1,
Isω(z ◦ ∀X p(X)) = z, and Isω(∀X z ◦ p(X)) = z|Const|.
Definition 5. A structured interpretation Isω is a model of
a closed structured formula A ∈ FOLs iff Isω(A) 6= 0. It is
a model of type x ∈ [X ] iff Isω(A) = x. The typed model
counting task is calculating TMC(A) =

∑
ω∈Ω Isω(A).

Theorem 3 below links the typed model counting task to
determining the polynomials (6). For this, a compilation of
knowledge bases K into structured formulas is needed and
given by

ΨK = ΨF ∧ΨC , (11)
where ΨF =

∧
F∈F F and

ΨC =
n∧
j=1

∀Xj,1 . . . ∀Xj,mj
(yj◦Aj ∧ (xj◦Bj ∨Bj) ∨Aj),

1We sometimes omit the symbol ◦ in structured formulas.

where again Var(cj) = {Xj,1, . . . , Xj,mj} for j = 1, . . . , n.
The idea behind the formula ΨC is to build a conjunc-

tion over the conditionals in the knowledge base. In every
conjunct, all ground instances of the respective conditional
cj are considered by universal quantification over Var(cj).
For every ground instance, the possible ways of evaluating
its logical part ((non-)applicability and verification) are rep-
resented, basically, by disjunction. The applicability is in-
dicated by the variable yj and the verification by xj . By
calculating the structured interpretation Isω of the formula
ΨK, it is possible to read out from the exponents of xj and
yj how often the conditional cj is applicable resp. verified
in ω. Therewith, calculating TMC(ΨK) constitutes a formal
method for calculating the counting functions appci(ω) and
verci(ω) for i = 1, . . . , n and all ω ∈ ΩF simultaneously.
Thereby, ΨF ensures that only those structured interpreta-
tions are considered that satisfy the facts in F .
Example 5. Recall the knowledge base Kbrd from Exam-
ple 1. With b = bird, f = fly, c = coco, one has

ΨKbrd
≡ b(c) ∧ ∀X[y1b(X) ∧ (x1f(X) ∨ f(X)) ∨ b(X)]

∧ y2 (x2f(c) ∨ f(c)).

Applying the definitions of ΨK and TMC according to
(11) and Definition 5 yields the following theorem.
Theorem 3. LetK = (F , C) be a consistent knowledge base
and let c be a conditional. The following equations hold.2

φK = TMC(ΨK),

φcK =
∑

(B|A)[ξ]∈Gr(c)

(TMC(ΨK ∧A ∧B)+z ·TMC(ΨK ∧A)).

To sum up so far, Theorem 3 enables one to compile
knowledge bases into structured formulas while preserving
the information about the conditional logical structure of the
knowledge base. TMC on the structured formula in turn un-
veils this information. In order to perform TMC efficiently,
it is necessary to compile the formula into an equivalent for-
mula in normal form first. Closed formulasA,B ∈ FOLs are
equivalent iff Isω(A) = Isω(B) for all ω ∈ Ω. A normal form
which is suitable for the typed model counting task is called
sd-DNNFs (Wilhelm et al. 2017) which is the structured
counterpart to sd-DNNFs for classical first order formulas
(Van den Broeck et al. 2011). As formulas in sd-DNNF, a
structured formula F in sd-DNNFs allows one to count mod-
els recursively due to the following properties:
• Every conjunction A ∧ B in F is decomposable, i.e.,
A and B do not share3 any ground atom, and therefore
TMC(A ∧B) = TMC(A) · TMC(B) holds.

• Every disjunction A∨B in F is deterministic, i.e., A and
B are mutually exclusive (Isω(A) ·Isω(B) = 0 for ω ∈ Ω),
and therefore TMC(A∨B) = TMC(A)+TMC(B) holds.
• Every universal/existential quantification in F is decom-

posable/deterministic over isomorphic instances, i.e., ev-
ery two instances are equivalent up to a permutation of
2For the first equation, see also (Wilhelm et al. 2017).
3We say that the formulasA andB share the ground atomG iff

there are A′ ∈ Gr(A) and B′ ∈ Gr(B) that both mention G.

498



constants. Hence, TMC(∀X A) = TMC(A[X/c])|Const|

and TMC(∃X A) = |Const| · TMC(A[X/c]), c ∈ Const.

• F is smooth, i.e., every ground atom is mentioned in F ,
and every two disjuncts of a disjunction/instances of an
existential quantification mention the same ground atoms.
This guarantees that all models are count.

Example 6. ΨKbrd
from Example 5 can be compiled into4

F = ∀X6=c [y1b(X) ∧ (x1f(X) ∨ f(X)) ∨ b(X)

∧ (f(X) ∨ f(X))] ∧ y1y2b(c) ∧ (x1x2f(c) ∨ f(c)).

F satisfies all the requirements of sd-DNNFss, e.g., it splits
into two syntactically independent parts of which the first
(universal quantification) deals with the constants other
than coco while the second mentions coco only. Therefore,
the conjunction of both parts is decomposable. The univer-
sal quantification itself is decomposable, too, since each in-
stance refers to a different (unnamed) constant. Therewith,5

φKbrd
= TMC(ΨKbrd

) = ρm−1 · γ2 · χ2,1.

Analogously, it follows that (we assume m > 1)

φr1Kbrd
= ρm−2 · γ2 · [ρ · (χ2,0 + z · χ2,1)

+ (m− 1) · γ1 · χ2,1 · (χ1,0 + z · χ1,1)],

φr2Kbrd
= ρm−1 · γ2 · (χ2,0 + z · χ2,1).

In (Van den Broeck et al. 2011) one can find a detailed list
of strategies for compiling formulas into sd-DNNF that pre-
serve tractability with respect to the dependence on |Const|
(e.g., skolemization is used to handle existential quantifica-
tion). All these strategies can be adapted for TMC. Not cov-
ered by these strategies is the outer sum in Ψc

K (cf. Theo-
rem 3) which ranges over the ground instances of the condi-
tional c, as it is beyond the model counting task. This implic-
itly involves a dependence on |Const|. However, following
the principle of preemptive shattering (Poole, Bacchus, and
Kisynski 2011), one can avoid this dependence. The basic
idea of this technique is that all unnamed individuals, i.e. in-
dividuals that are not mentioned in the knowledge base K,
have the same influence on Ψc

K, and hence are interchange-
able and can be merged to a single prototypical individual.

Conclusion
Drawing inferences from first-order probabilistic condi-
tional knowledge at maximum entropy (MaxEnt) involves
three aspects: (1) Extracting the relevant information from
the knowledge base, (2) calculating the MaxEnt distribution,
and (3) drawing the inferences. For lifted inference, all three
tasks may depend at most polynomially on the domain size.
In this paper, we faced this challenge of first-order reason-
ing by pursuing the following strategy: (1) Perform typed
model counting on formulas that reflect the given knowledge
to unveil its conditional structure. (2) Calculate the MaxEnt

4Here, ∀X 6=c means “for all constants, except for constant c”.
5We abbreviate m = |Const| and χi,k =

∏i
j=1 xj + k as well

as γi =
∏i

j=1 yj and ρ = γ1 · χ1,1 + 2 to shorten formulas.

distribution by condensed iterative scaling. (3) Compile the
MaxEnt distribution into a Markov Logic Network for which
sophisticated inference techniques exist.

In future work, we want to further investigate and auto-
mate typed model counting. Also, we want to discern for
which knowledge bases and for which queries lifted infer-
ence at maximum entropy is possible.
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