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Abstract
In this work is proposed a method for Hierarchical Classifi-
cation, which takes advantage of the hierarchical structure to
influence the prediction of local classifiers with their neigh-
bors. To achieve this two strategies are combined. The first is
to represent the hierarchical structure as a Bayesian network,
and the second is to build chained classifiers that feed the
Bayesian network as local classifiers. The proposed method
was tested in several datasets of functional genomics, which
consist of tree-structured hierarchies. The results of several
variants of the proposed method are compared to the stan-
dard methods, Flat and Top-Down, as well as with a state of
the art technique, showing superior performance under sev-
eral metrics.

Introduction
Hierarchical classification is a special type of Multi-Label
Classification, in which the classes are arranged in a Tree
structure or in its general form as a Direct Acyclic Graph
(DAG). Therefore, the subset of classes in which an instance
is associated must satisfy the Hierarchical Constraint.

Several methods (Silla and Freitas 2011) have been pro-
posed for the problem of hierarchical classification, never-
theless, those methods have some problems such as error
propagation, do not use the hierarchical structure, among
others. In this work is proposed a method for hierarchical
classification where the hierarchical structure is used and the
predictions of the different classes are influenced by their
neighbors.

The proposed method consists of two levels. In the first
level, the hierarchical structure is represented as a Bayesian
Network, which represents the data distribution in the nodes
while maintaining the hierarchical constraint. In the second
level, Chained Classifiers are learned for each class (node),
so their predictions are influenced by their neighbors in the
hierarchy, and feed the Bayesian Network.

To test the method, several datasets from the field of func-
tional genomic were used. Further, the method was com-
pared versus standard methods, Top-Down and Flat, and a
state of the art technique. The results show that the proposed
method outperforms the previous methods, and obtains sta-
tistical significance over some measures.
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Fundamentals
The Hierarchical Structure (HS) of a dataset is denoted with
the notation of a Graph:

HS = (C,E) (1)

where C is the set of classes/nodes and E is the set of edges
that related to the nodes. The Hierarchical Constraint say,
if an instance z is associated to the class Ci, the instance z
must be associated to the ancestors of Ci (Anc(Ci)):

∀zεCi : zεAnc(Ci) (2)

In this way, a valid path or consistent path is a subset of the
classes that complies the hierarchical constraint. There are
different problems of hierarchical classification, (Silla and
Freitas 2011) describe them as a 3-tuple (Υ,Ψ,Φ), where Υ
specifies the type of hierarchical structure, T if it is a tree or
DAG if it is a Direct Acyclic Graph, Ψ specifies whether an
instance can be associated to a single path (SPL) or multiple
paths (MPL), and Φ indicates the depth of the paths of the
instances, that is, FD if all the paths reach a leaf node or PD
if at least one path of an instance do not reach a leaf node.

On the other hand, methods can be described according to
the problem that they try to solve (Silla and Freitas 2011).
Single Path Prediction (SPP) or Multiple Path Prediction
(MPP), Mandatory Leaf Node Prediction (MLNP) or Non-
Mandatory Leaf Node Prediction (NMLNP), and whether
it work in Tree or DAG structures. Furthermore, the meth-
ods can make use of Local Classifier per Node (LCN), also
known as binary classifier, which consist in predict whether
an instance is associated to the node or not, Local Classifier
per Level (LCL) that trains a single classifier for each level
of the hierarchy, Local Classifier per Parent Node (LCPN)
that consist of predicting an instance on the children of the
node, and Global Classifiers (GC) that generally builds a
classifier that takes into account the entire hierarchy.
In this work is proposed a method described as (SPP, MLNP,
T, GC) for problems of type (T, SPL, FD), in addition, the
proposed method has been tested (without additional mod-
ifications) in problems of type (T, SPL, PD), where results
obtained are promising.

Related Work
There are two standard methods for hierarchical classifica-
tion. The first is known as Flat, which consist in building
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binary classifiers for each leaf node ignoring completely
the HS, so, a new instance is classified with the path that
reaches the leaf node with the highest probability. The sec-
ond method is known as Top-Down (TD), for each node a
LCN is built, so an instance is classified with the path that
start in the root node and finish in a leaf node, selecting at
each level the node with the highest probability. This last
approach has the problem of Error Propagation.

Some variants of the standard methods have been pro-
posed. For example, (Secker et al. 2007) propose to se-
lect the best classifier for each node, later, (Silla and Fre-
itas 2009) propose two approaches, in the first they make
attributes selection for each node, and in the second, they
make attributes selection and selection of the best classifier
for each node. Other methods such as (Hernandez, Sucar,
and Morales 2013) and (Kosmopoulos, Paliouras, and An-
droutsopoulos 2015) propose to build LCPN for each non-
leaf node, then the instances are evaluated in all classifiers,
and finally, scoring measures are used to select the best path
for each instance.

There is another group of methods, where the main idea
is to modify the HS. Some examples are the methods pro-
posed by (Wang and Lu 2010), (Babbar et al. 2013), Hi-
erFlat of (Naik and Rangwala 2017), which try to flatten
the HS, that is, this methods remove some internal nodes
based in some criterion. (Naik and Rangwala 2016) also pro-
pose their method rewHier in which different operations are
used to modify the HS such as node creation, Parent-Child
rewiring and node deletion. Once the HS has been modi-
fied, the process of classification is Top-Down. Nevertheless,
those methods imply loss of information from the HS.

(Barutcuoglu et al. 2007) propose the method Hierarchi-
cal Bayesian Aggregation (HBA), in which a Bayesian Net-
work (BN) is built from the HS and independent binary clas-
sifiers are built which feed the BN, however, given that the
nodes are arranged in the HS, to use independent classifiers
does not seem right. On the other hand, (Ramı́rez-Corona,
Sucar, and Morales 2016) proposed the method Chained
Path Evaluation (CPE), in which Chained Classifiers are
built, thus, the prediction of a node is influenced by the pre-
dictions of its parents; however, this method does not take
into account the information that is represented as a BN.

Bayesian Network with Chained Classifiers
Bayesian Network
For modelling the HS, we propose a variant of Hierarchi-
cal Bayesian Aggregation (Barutcuoglu et al. 2007) (HBA,
originally proposed for problems of type (DAG, MPL, PD)).
This method consists of a Bayesian Network (BN) from the
HS and adding to the BN an extra node for each node of
the HS, as shown in figure 1. Some modifications have been
made to the original method, which will be explained later.

From the BN (see Figure 1), the yi nodes will have the
probability that a new instance is associated to the class Ci,
while the qi nodes receive the prediction of the classifiers,
thus, there is a binary classifier for each node qi. Unlike the
original method, the root node (R) does not have assigned
a node q, since it is assumed that all the instances belong to

Figure 1: A hierarchical structure (on the left) is transformed
into a Bayesian network (on the right).

this node, thus, it is not necessary to create the node qR and
its corresponding classifier.

Parameter estimation Once the BN is built, its parame-
ters must be estimated, which correspond to the Conditional
Probability Tables (CPT) for each node.

First, pa(yi) represents the set of the parents of yi, thus,
for each node yi must be calculated P (yi|pa(yi)), which can
be estimate by frequency from the training set.

Now, the parameters P (qi|yi) have to be estimated. These
parameters represent the base classifier output distribution to
be expected on instances that were not used as training, that
is, P (qi|yi) can be estimated using the confusion matrices
over validation data.

Chained Classifiers
As part of the method of HBA, (Barutcuoglu et al. 2007)
proposed to use a binary classifier for each node qi, where
it is assumed conditional independence from a prediction qi
given any other prediction qj . However, the nodes are ar-
ranged in a structure, thus, that assumption does not seem
right. So in this work is proposed to use Chained Classifiers
(Sucar et al. 2014; Zaragoza et al. 2011), in this way, the
prediction of a node is influenced by the predictions of its
neighbors, that are given by the HS.

Thus, P (Cli|Nei(Cli),x) is obtained for each node i,
where Cli is the classification for the i-th node, Nei(Cli)
are the predictions of its neighbors that are added as at-
tributes and x is the set of attributes. In this way, the nodes
are influenced by their neighbors.

Three variants of chained classifiers are consider:

• Chained Classifiers of Parents (HCP): correspond to
the original chained classifiers shown by Sucar et al.;
Zaragoza et al., where each node receive as additional
attributes the predictions of its parents (Nei(Cli) ←
Pa(Cli)), for example, Cl7 receives as additional at-
tribute the prediction of Cl3,see figure 2 a).

• Chained Classifiers of Ancestors (HCA): each classi-
fier receives as additional attributes the predictions of its
ancestors (Nei(Cli) ← Anc(Cli)), for example, Cl8 re-
ceives as additional attributes the predictions of Cl1 and
Cl3, see figure 2 b).

• Chained Classifiers of Children (HCC): in this version,
each classifier receives as additional attributes the predic-
tions of its children (Nei(Cli)← Ch(Cli)), for example,
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Cl2 receives as additional attributes the predictions ofCl5
and Cl6, see figure 2 c).

Combination of the Bayesian Network with
Chained Classifiers
The BN requires a classifier for each node qi, and the
Chained Classifiers satisfy it directly, as for each node in
the HS a classifier Cli is built. Thus, each Cli classifier will
feed its correspond qi node, as it is shown in figure 3. The
fact that chained classifiers are used implies that the calcula-
tion of the CPT for each P (qi|yi) must be calculated using
these same and not to use independent classifiers. This re-
sults in a two-level method, as can be seen in figure 3, in the
first level is the Bayesian network, and in the second level
are the chained classifiers.

Inference
Once the estimations are received from each local classifier,
these are combined by probability propagation in the BN,
after which the posterior probabilities for each class (node)
are obtained. Then a path in the hierarchy is selected as ex-
plained below.

Mandatory Leaf Node Prediction This work is focused
in the Mandatory Leaf Node Prediction (MLNP), that is,
the prediction for an instance is the path of nodes/classes
that starts in the root node and finishes in one leaf node (of
course, this must comply the hierarchical constraint), and
that has the best score.

To score the different paths, Sum of Probabilities (SP) has
been used. Let be H the set of leaf nodes from the BN con-
sidering only the y nodes, let be Pathh the subset of y nodes
that form a path that finish in the node hεH , the score for
Pathh is defined in equation 3.

SPPathh
=

∑
yxεPathh

P (yx = 1)

|Pathh|
(3)

Where P (yx = 1) is obtained from the BN by marginaliza-
tion. Thus, the subset, Pathh that maximizes equation 3 is
returned as the prediction of the instance.

Summary of the proposed method
The proposed consists of two main phases:

Training

1. Given the HS, the method of Bayesian aggregation is ap-
plied.

• The CPT of the y nodes are calculated using only the
training set, that is, P (yi|Pa(yi)).
• The CPT of the q nodes are calculated, based on

the confusion matrix of the local classifiers, that is,
P (qi|yi).

2. The chained classifiers are built using the HS, and select-
ing one of the three variants of neighbors for building the
chain. Nei(Cli)← Pa(Cli)|Anc(Cli)|Ch(Cli).

Classifying a new instance
1. The new instance is evaluated in all the chained classifiers,

and the probabilities of the predictions are obtained.
2. The Bayesian Network receives all the probabilities ob-

tained from the classifiers, then, the Junction-Tree algo-
rithm is applied for inference.

3. The subset Pathh that maximizes the Sum of Probabili-
ties is returned as the prediction of the new instance.

Datasets and Preprocessing
The datasets used are a subset of FunCat, from the field of
Functional genomics (Vens et al. 2008)1.

The preprocessing applied to the datasets are those used
by (Ramı́rez-Corona, Sucar, and Morales 2016), with the in-
tention of making a direct comparison with their results. The
type of problem that the FunCat datasets initially have is (T,
MPL, PD), so when applying the first preprocessing it re-
sults in a problem of type (T, SPL, PD) and applying the
second preprocessing results in a problem of type (T, SPL,
FD), in both cases the HS could be modified.

Let be HS = (C,E) the original hierarchical structure,
the two first steps are the same for both:

1. Given that the instances are associated to multiple paths,
it is only considered the first path, and the rest are deleted.

2. Let be nmin the minimum number of instances that the
nodes of the HS must have. Nodes that have less than
nmin instances are pruned from theHS, which produces
a reduced hierarchical structure HSp∗, and the following
is true:

HSp∗ = (Cp∗, Ep∗)

Cp∗ ⊆ C
Ep∗ ⊆ E

(4)

Preprocessing 1 (T, SPL, PD)
3. Instances selection:
• If the instance is not associated to any node of HSp∗,

that instance is deleted.
• All the instances that are associated to at least one node

of HSp∗ are saved. This implies that the path of an in-
stance does not need to reach a leaf node of HSp∗.
• If an instance is associated to some node that is not

in HSp∗, that means that the instance is associated to
nodes that were pruned from the original HS, then the
nodes of the path that are not inHSp∗ are deleted, thus,
the instance is saved with its path trimmed.

The datasets after applying this preprocessing are described
in the table 1.

Preprocessing 2 (T, SPL, FD)
3. Instances selection:
• The instances that are associated with a leaf node of
HSp∗ are saved. Thus, the instances that are no associ-
ated with a leaf node of HSp∗ are deleted.

1download link: https://dtai.cs.kuleuven.be/clus/hmcdatasets/
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Figure 2: Chained Classifiers of a) Parents, b) Ancestors, c) Children

Figure 3: This image represents the method proposed in this
work, which has two levels. A Bayesian Network (BN) fed
by Chained Classifiers (CC).

• If an instance is associated to a leaf node of HSp∗
and the instance is associated to some node that is not
in HSp∗, that means that the instance is associated to
nodes that were pruned from the original HS, then the
nodes of the path that are not inHSp∗ are deleted, thus,
the instance is saved with its path trimmed.

The datasets after applying this preprocessing are described
in the table 2.

Evaluation Measures
Let be N the number of instances in the test set, let Y be the
real subset of classes to which an instance is associated and
let be Ŷ the subset of predicted classes. The four evaluation
measures that have been used are described below:

• Exact Match: Percentage of instances classified cor-
rectly.

Exact Match =
1

N

N∑
i=1

1Y=Ŷ (5)

• Accuracy: Ratio of classes predicted correctly to the

Table 1: Description of the dataset after applying the prepro-
cessing 1 (T, SPL, PD), where the minimum number of in-
stances per node is 50 (nmin = 50). MD: Maximum Depth

Dataset Instances Attr. Classes MD
cellcycle FUN 3602 77 49 4
derisi FUN 3575 63 49 4
eisen FUN 2335 79 35 4
gasch1 FUN 3611 173 49 4
gasch2 FUN 3624 52 49 4

Table 2: Description of the dataset after applying the prepro-
cessing 2 (T, SPL, FD), where the minimum number of in-
stances per node is 70 (nmin = 70). MD: Maximum Depth

Dataset Instances Attr. Classes MD
cellcycle FUN 2339 77 36 4
derisi FUN 2381 63 37 4
eisen FUN 1681 79 25 3
gasch1 FUN 2346 173 36 4
gasch2 FUN 2356 52 36 4

union of the real and predicted classes for each instance.

Accuracy =
1

N

N∑
i=1

∣∣∣Yi ∩ Ŷi∣∣∣∣∣∣Yi ∪ Ŷi∣∣∣ (6)

• Hamming-Accuracy (H Accuracy): Frequency of in-
correct predictions.

H Accuracy = 1−Hammming Loss (7)

Hammming Loss =
1

N |C|

N∑
i=1

∣∣∣Yi ⊕ Ŷi∣∣∣ (8)

Where ⊕ is the exclusiveOR operator.
• Hierarchical F-measure (hF): F-measure for hierarchi-

cal classification.

hF =
2 ∗ hP ∗ hR
hP + hR

(9)

hP =

∑N
i=1

∣∣∣Yi ∩ Ŷi∣∣∣∑N
i=1

∣∣∣Ŷi∣∣∣ (10)
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Table 3: Results obtained in datasets with preprocessing 1. The symbols 4, ? and • indicate superior results with statistical
significance against TD, FLAT and CPE, respectively. Best results for each dataset/metric are shown in bold.

Dataset Evaluation M. TD FLAT CPE HBA tp HCP HCA HCC

cellcycle

Exact Match 8.86 8 10.68 11.664? 12.14?• 12.134?• 12.134?•
Accuracy 13.21 14.26 16.55 20.364?• 20.734?• 20.784?• 20.434?•

Hamming Acc. 91.48 91.01 92.69 93.074?• 93.094?• 93.084?• 92.974?•

hF 16.49 17.89 24.384? 24.774? 24.834? 24.254?

derisi

Exact Match 6.41 6.07 8.66 11.274?• 11.194?• 11.334?• 11.134?•

Accuracy 9.56 12.17 13.92 204?• 19.644?• 19.874?• 19.284?•

Hamming Acc. 91 90.8 92.49 93.044?• 92.944?• 92.984?• 92.824?•

hF 11.93 15.76 23.934? 23.384? 23.754? 22.814?

eisen

Exact Match 11.13 9.51 12.42 14.69? 14.73? 14.52? 13.45
Accuracy 14.59 15.12 18.86 23.394?• 23.274?• 23.154?• 21.314?

Hamming Acc. 88.69 88.05 90.59 90.84? 90.84? 90.824? 90.264?

hF 17.35 18.61 27.434? 27.234? 27.214? 24.784?

gasch1

Exact Match 11.55 10.25 13.85 12.684? 12.744? 12.854? 12.884?

Accuracy 16.86 16.97 21.62 21.554? 21.54? 21.634? 21.554?

Hamming Acc. 91.85 91.36 92.79 93.214?• 93.24?• 93.214?• 93.194?•

hF 20.66 20.61 25.954? 25.894? 26.044? 25.894?

gasch2

Exact Match 9.11 8.03 7.86 11.954?• 12.174?• 12.144?• 12.144?•

Accuracy 12.75 14.17 14.26 20.84?• 20.874?• 20.894?• 20.684?•

Hamming Acc. 91.93 90.81 92.6 93.134?• 93.114?• 93.114?• 93.034?•

hF 15.73 17.39 254? 25.024? 25.064? 24.644?

Table 4: Results obtained in datasets with preprocessing 2. The symbols 4, ? and • indicate superior results with statistical
significance against TD, FLAT and CPE, respectively. Best results for each dataset/metric are shown in bold.

Dataset Evaluation M. TD FLAT CPE HBA tp HCP HCA HCC

cellcycle

Exact Match 14.19 13.98 17.74 18.984? 19.024? 19.24? 19.154?•

Accuracy 17.41 18.08 22.93 27.334?• 26.894?• 26.814?• 26.934?•

Hamming Acc. 89.12 88.88 90.98 91.154? 90.984? 90.894? 90.964?

hF 20.08 20.23 30.464? 29.754? 29.524? 29.784?

derisi

Exact Match 11.59 12.73 13 16.84?• 16.424?• 16.384?• 16.424?•

Accuracy 14.53 17.37 18.19 24.674?• 23.294?• 23.574?• 23.564?•

Hamming Acc. 88.66 89.11 90.71 90.924? 90.514? 90.564? 90.574?

hF 16.18 19.47 27.284? 25.374? 25.814? 25.814?

eisen

Exact Match 15.83 14.1 18.69 19.45? 19.21? 19.75? 19.51?

Accuracy 17.91 19.49 27.08 28.554? 27.784? 28.244? 28.024?

Hamming Acc. 85.9 86.25 88.4 87.994? 87.74? 87.774? 87.764?

hF 20.03 21.75 33.44? 32.34? 32.674? 32.454?

gasch1

Exact Match 20.38 20.08 21.74 23.194?• 23.794?• 23.234? 22.984?•

Accuracy 23.63 24.5 28.12 30.624?• 30.794?• 30.374?• 30.364?•

Hamming Acc. 89.91 89.56 91.45 91.514? 91.464? 91.374? 91.444?

hF 25.64 25.97 33.474? 33.344? 32.94? 33.194?

gasch2

Exact Match 14.52 15.03 13.35 19.614• 20.21• 20.384• 19.83•

Accuracy 17.19 18.91 18.32 27.824?• 28.024?• 28.074?• 27.514?•

Hamming Acc. 89.49 88.62 90.81 91.184? 91.114? 91.084? 914?

hF 18.36 20.34 30.734? 30.764? 30.674? 30.164?

hR =

∑N
i=1

∣∣∣Yi ∩ Ŷi∣∣∣∑N
i=1 |Yi|

(11)

Where hP is the hierarchical Precision and hR is the hi-
erarchical Recall.

Experiments and Results
The first experiment was to select the base classifier, we
evaluated Naı̈ve Bayes, SVM and Random Forest, and the

best results were obtained with Random Forest, thus, the re-
sults shown in this work are obtained with this classifier.

The results obtained in this work are compared against
the standard methods, Top-Down (TD) and Flat, and against
a state of the art method, Chained Path Evaluation (CPE);
the four variants of the proposed method are: (i) HBA tp
which includes only the BN, (ii) HCP , (iii) HCA, and (iv)
HCC.

The results were obtained applying five-fold cross-
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validation. For calculation of the statistical significance, a
t-Student test with a significance of 0.05 was used.

Table 3 shows the results obtained in the datasets with
preprocessing (1), in which the path of an instance could
not reach a leaf node. Although the proposed method was
not designed for problems of this type, the HCA variant ob-
tains the best scores most of the times; furthermore, all the
proposed variants obtain results with statistical significance
compared to TD, FLAT and CPE, the later is able to predict
trajectories of type NMLNP.

Table 4 shows the results obtained in the datasets with
preprocessing (2), in which the path of the instances reaches
a leaf node. The four proposed variants obtain good results
compared to the standard methods and CPE, even with sta-
tistical significance; in this case HBA tp obtains in most
cases the best scores followed by the HCA variant.

Conclusions and Future Work
A novel scheme for hierarchical classification is proposed
that combines a BN for providing global consistency, and
chain classifiers to include the predictions of the neighbors
in the hierarchy.

The experimental results show that the use of a BN to
guarantee the hierarchical constraint improves previous re-
sults in all metrics, and in some cases including the chained
local classifiers implies further gains.

As future work we plan to extend the method for DAG
structures which is the natural next step, due that a BN can
be built from a DAG, also chained classifiers work for DAG
structures (Sucar et al. 2014). Furthermore, Multiple Path
Prediction is considered as future work.
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