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Abstract

This paper proposes a highly efficient exact dynamic pro-
gramming algorithm for computing all the conditionals gen-
erated from consonant belief functions. The time and space
complexities of this novel algorithm are linear for comput-
ing all the conditional beliefs, and hence it significantly out-
performs the exponential time and space complexity require-
ments of the brute force approach and the currently available
conditional computation strategies. We provide a thorough
analysis and experimental validation of the utility, efficiency,
and implementation of the proposed algorithm for carrying
out the Fagin-Halpern conditional. A new computational li-
brary is developed and harnessed in the simulations.

Introduction
The flexibility and expressiveness of Dempster-Shafer (DS)
theoretic models make DS evidence theory (Dempster 1967;
1968; Shafer 1976) an ideal framework for reasoning and
decision making under uncertainty in Artificial Intelligence
(AI) applications (Barnett 1981; Yager and Liu 2008). How-
ever, a major criticism cast towards DS theoretic (DST) ev-
idential reasoning is the heavy computational burden it en-
tails. Computing the DST belief functions and the DST con-
ditionals, a critical operation in evidence updating and fu-
sion, are non-deterministic polynomial-time hard (NP-hard)
problems (Orponen 1990; Kreinovich et al. 1991). This
problem has in fact been identified as an issue that requires
increased attention (Shafer 2016). If the advantages offered
by DS theory are to be fully realized, it is essential that data
structures and algorithms which facilitate the efficient com-
putation of DST operations are developed.

To address the computational limitations of DST meth-
ods, different approximation methods have been proposed to
restrict the number of focal elements (Bauer 1997; Denœux
2016). Consonant approximation, which maps belief func-
tions to possibility measures, is one such method that has
been widely examined in the literature (Dubois and Prade
1990; Cuzzolin 2014). The number of focal elements gen-
erated from this method is linear with the size of the frame
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of discernment (FoD), or sample space, Θ. The focal ele-
ments of the consonant belief function (CBF) that it pro-
duces are nested and form a totally ordered collection of
subsets (Shafer 1976). CBFs can be used to model partial
ignorance and they are computationally less expensive than
general belief functions (Cuzzolin 2014).

How can we efficiently compute conditionals associated
with CBFs? The conditional operation plays a fundamen-
tal role in evidence updating and fusion and, in general,
in reasoning under uncertainty. Of the numerous strategies
of DST conditioning that have appeared in the literature
(Shafer 1976; 1981; Ichihashi and Tanaka 1989; Fagin and
Halpern 1990; Smets 1991; Yu and Arasta 1994), Demp-
ster’s conditional and Fagin-Halpern (FH) conditional can
be considered the most widely used two DST conditional
notions.

A widely used approach for carrying out precise com-
putation of the Dempster’s conditional is a matrix calcu-
lus based algorithm which generates the Dempster’s con-
ditional masses (Klawonn and Smets 1992; Smets 2002).
However, the associated time and space complexity are both
O(2|Θ| × 2|Θ|) (|Θ| refers to the cardinality of the FoD Θ).
Therefore, this specialization matrix-based method imposes
a prohibitive burden when dealing with larger FoDs. In ad-
dition, it cannot be used to compute the FH conditional.

For FH conditional computation, the Conditional Core
Theorem (CCT) in (Wickramarathne, Premaratne, and
Murthi 2013) can be used to identify propositions that re-
tain non-zero support after FH conditioning. However, it
does not address how one may compute the FH condition-
als of these propositions. The work in (Polpitiya et al. 2016;
2017) provides efficient data structures and algorithms for
computing belief functions and their conditionals. These are
exponential algorithms which work efficiently on general
belief functions (when no additional structure is imposed on
them) and they can be used to compute both the Dempster’s
conditional and Fagin-Halpern conditional. However, these
algorithms do not exploit the CBF structure which possesses
only a small number of focal elements. The brute force ap-
proach of computing all the conditionals of CBFs takes ex-
ponential time, and exponential space to store the result.

In this paper, we propose a highly efficient exact dynamic
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programming algorithm for computing all the FH condition-
als generated from CBFs. A similar algorithm to compute
Dempster’s conditionals can also be developed. However,
due to page limitations, our discussion is restricted to the
FH conditionals case only. The FH conditional can in fact
be considered the most natural generalization of the prob-
abilistic conditional notion because of its close connection
with the inner/outer conditional probability measures (Fa-
gin and Halpern 1990; Wickramarathne, Premaratne, and
Murthi 2013).

Computation of all the conditional beliefs are achieved
in linear time and space complexity. It significantly outper-
forms the exponential time and space complexity require-
ments of the brute force approach and the currently available
conditional computation strategies. We provide a thorough
analysis and experimental validation of the utility, efficiency,
and implementation of the proposed algorithm when com-
puting the Fagin-Halpern conditional. A new computational
library, which we refer to as FH-CBF (Fagin-Halpern con-
ditional beliefs generated from Consonant Belief Functions)
is developed and harnessed in the simulations (ProFuSELab
2019).

This paper is organized as follows: First, we provide a re-
view of essential DST notions. This is followed by the pro-
posed efficient exact dynamic programming algorithm. The
experimental results are provided next, followed by conclud-
ing remarks.

Preliminaries
DST Basic Notions
In DS theory, the frame of discernment (FoD) refers to the
set of all possible mutually exclusive and exhaustive propo-
sitions (Shafer 1976). We consider the case where the FoD
is finite and we denote it as Θ = {θ0, θ1, . . . , θn−1}. Propo-
sition {θi}, which is referred to as a singleton, represents
the lowest level of discernible information. The power set
of Θ, denoted by 2Θ, form all the propositions of inter-
est in DS theory. A proposition that is not a singleton is
referred to as a composite. The set A\B denotes all sin-
gletons in A ⊆ Θ that are not included in B ⊆ Θ, i.e.,
A\B = {θi ∈ Θ | θi ∈ A, θi /∈ B}. We use A to denote
Θ\A and |A| to denote the cardinality of A.

Definition 1 (Basic Belief Assignment (BBA) or Masses).
The mapping m : 2Θ 7→ [0, 1] is said to be a basic belief
assignment (BBA) or a mass assignment if m(∅) = 0 and∑
A⊆Θ

m(A) = 1.

So, the mass captures the ‘support’ that is strictly allo-
cated to a given proposition. The mass of a composite propo-
sition (a general focal element) is free to move into its sub-
sets (e.g., into individual singletons), which allows one to
model the notion of ignorance. Complete ignorance is cap-
tured via the vacuous BBA 1Θ: m(A) = 1 for A = Θ,
and m(A) = 0 for A ⊂ Θ. Propositions that possess non-
zero mass are referred to as focal elements; the set of all
focal elements in an FoD is referred to as its core F, i.e.,
F = {A ⊆ Θ | m(A) > 0}. Note that |F| is the number of

focal elements. E = {Θ,F,m(·)} is referred to as the body
of evidence (BoE).

The belief assigned to a proposition takes into account the
support for all of its subsets.
Definition 2 (Belief). Given a BoE E = {Θ,F,m(·)}, the
belief assigned to A ⊆ Θ is Bl : 2Θ 7→ [0, 1] where
Bl(A) =

∑
B⊆A

m(B).

Propositions that possess non-zero belief are denoted by
F̂, i.e., F̂ = {A ⊆ Θ | Bl(A) > 0}.

The plausibility measures the extent to which a proposi-
tion is plausible, i.e., the amount of belief not strictly sup-
porting the complement of the proposition.
Definition 3 (Plausibility). Given a BoE E = {Θ,F,m(·)},
the plausibility assigned to A ⊆ Θ is Pl : 2Θ 7→ [0, 1]
where

Pl(A) = 1−Bl(A).

It is easy to see that, for all A ⊆ Θ,

Pl(A) =
∑
B⊆Θ

B∩A6=∅

m(B) = 1−Bl(A) ≥ Bl(A), ∀A ⊆ Θ.

(1)
Also, given a valid belief function Bl : 2Θ 7→ [0, 1], one
may generate the corresponding BBA m : 2Θ 7→ [0, 1] via
the Möbius transform (Shafer 1976):

m(A) =
∑
B⊆A

(−1)|A\B|Bl(B), ∀A ⊆ Θ. (2)

For convenience, we will employ the following notation:

S(A;B) =
∑

∅6=C⊆A;
∅6=D⊆B

m(C ∪D). (3)

Note that S(A;B) denotes the sum of all mass values of
propositions that ‘straddle’ both A ⊆ Θ and B ⊆ Θ.

Fagin-Halpern (FH) DST Conditional
Definition 4 (Fagin-Halpern (FH) Conditional (Fagin and
Halpern 1990)). Consider the BoE E = {Θ,F,m(·)}. The
conditional belief Bl(B|A) : 2Θ 7→ [0, 1] of B given the
conditioning event A ⊆ Θ s.t. A ∈ F̂ is

Bl(B|A) =
Bl(A ∩B)

Bl(A ∩B) + Pl(A ∩B)
.

Suppose the BoE {Θ,F,m(·)} is being conditioned w.r.t.
the proposition A ∈ F̂. The propositions that retain a non-
zero mass after conditioning are referred to as the condi-
tional focal elements; the set of all such conditional fo-
cal elements is referred to as the conditional core FA, i.e.,
FA = {B ⊆ A ∈ F̂ | m(B|A) > 0} (Wickrama-
rathne, Premaratne, and Murthi 2013). Propositions that pos-
sess non-zero conditional belief are denoted by F̂A, i.e.,
F̂A = {B ⊆ A ∈ F̂ | Bl(B|A) > 0}.

In our work, we will exploit several results in the literature
related to the Fagin-Halpern conditional (Kulasekere et al.
2004; Polpitiya et al. 2017). Of particular importance are
the following results:
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Figure 1: Consonant BoE as a dynamic array. Repre-
sentation of three focal elements {a, b}, {a, b, c, d}, and
{a, b, c, d, e} of a CBF when Θ = {a, b, c, d, e, . . .}.

Lemma 1 ((Kulasekere et al. 2004)). Consider the BoE E =
{Θ,F,m(·)} and A ∈ F̂. Then, the following are true:

(i) m(B|A) = 0 whenever A ∩B 6= ∅, and
(ii) Bl(B|A) can be expressed as

Bl(B|A) =
Bl(A ∩B)

Pl(A)− S(A;A ∩B)
, B ⊆ A.

Note that, (i) states that FH conditioning annuls those
propositions that ‘straddle’ the conditioning proposition A
and its complementA. So, w.l.o.g., for FH conditioning, one
may consider only those propositions B ⊆ A.

For our work, we will need the following alternate expres-
sion for the FH conditional which we will later exploit for
computing all the conditional beliefs generated from CBFs.

Proposition 1 ((Polpitiya et al. 2017)). Consider the BoE
E = {Θ,F,m(·)} and A ∈ F̂. Then,

Bl(B|A) =
Bl(A ∩B)

1−Bl(A)− S(A;A ∩B)
, B ⊆ Θ.

Consonant Belief Functions: Computing All
FH Conditional Beliefs

Definition 5 (Consonant BoE). (Shafer 1976) The BoE E =
{Θ,F,m(·)} is said to be a consonant BoE if its core is F =
{A0, A1, . . . , An−1}, where A0 ⊂ A1 ⊂ . . . ⊂ An−1 ⊆ Θ.
The corresponding belief function is said to be a consonant
belief function (CBF).

Representing a Consonant BoE
The focal elements of a consonant BoE can be represented
in a dynamic array. The indexes of the array can be mapped
to the cardinality of the relevant proposition and masses can
be represented as respective array elements. See Fig. 1.

Linear Time and Space Algorithm for Computing
All the FH Conditional Beliefs

Algorithm. The highly efficient exact dynamic program-
ming algorithm for computing all the FH conditional beliefs
generated from a CBF that we propose appears in Algo-
rithm 1. It employs four dynamic arrays (see Fig. 2):

(a)BBA[]: This array, which contains masses of the CBF,
is used in Step 1. Its size is the cardinality |Θ| of the FoD.

Computing all conditional beliefs by applying Proposition 1 to the 
results of Step

Figure 2: Computation of all FH conditional beliefs. Steps 1-
4 of computing all conditional beliefs generated from CBFs
when Θ = {a, b, c, d, e, f, g, h} and A = {a, b, e, f, g}.

(b) first[]: This array, which keeps theBl(A∩B) values
at the end of Step 3, is used in Steps 2, 3, and 4. Its size is
the cardinality |A| of the conditioning event.

(c) second[]: This array, which keeps the computed
S(A;A ∩ B) values at the end of Step 3, is used in Steps
2, 3, and 4. Its size is |A|+ 1.

(d) FHcondbel[]: This array keeps all the computed FH
conditional beliefs. Its size is |A|.

Time Complexity. Algorithm 1 computes all the FH con-
ditional beliefs inO(n) complexity. Fig. 2 provides an illus-
tration of this algorithm when Θ = {a, b, c, d, e, f, g, h} and
A = {a, b, e, f, g}.

Line #1: The algorithm inputs are the conditioning event
A, the FoD Θ, and the consonant BoE BBA[].

Lines #4-15: BBA[] contains the CBF as in Step 1. In
Step 2,BBA[] is transformed to first[] and second[] arrays.
After Step 2, first[] contains masses relevant to possible B
propositions. The element second[0] contains masses which
do not straddle B propositions; the remaining elements of
second[] contain masses which straddle the B propositions.
The required number of iterations and the computational
complexity of this segment are |Θ| and O(n), respectively.

Lines #16-19: This segment corresponds to Step 3. Af-
ter Step 3, first[] contains Bl(A ∩ B) values, second[0]
keeps Bl(A) and the remaining elements of second[] con-
tain S(A;A ∩ B) values. The required number of iterations

484



Algorithm 1 Compute All FH Conditional Beliefs
1: procedure ALLFHCONDBEL(Singletons A[], Single-

tons Θ[], ConsonantBoE BBA[])
2: ptr ← 0
3: ck ← true
4: for each θi in Θ do
5: if ck and ptr < |A| and A[ptr] = Θ[i] then
6: ptr ← ptr + 1
7: first[ptr]← BBA[i+ 1]
8: else
9: ck ← false

10: if ptr < |A| and A[ptr] = Θ[i] then
11: ptr ← ptr + 1
12: end if
13: second[ptr]← second[ptr] +BBA[i+ 1]
14: end if
15: end for
16: for i← 2, |A| do
17: first[i]← first[i] + first[i− 1]
18: second[i]← second[i] + second[i− 1]
19: end for
20: for i← 1, |A| do
21: FHcondbel[i] ← first[i]/(1 − second[0] −

second[i])
22: end for
23: return FHcondbel[]
24: end procedure

and the computational complexity of this segment are |A|−1
and O(|A|) (≤ O(|n|), respectively.

Lines #20-22: In Step 4, the algorithm computes all con-
ditional beliefs by applying Proposition 1 to the results of
Step 3. The required number of iterations and the computa-
tional complexity of Step 4 are |A| and O(|A|) (≤ O(|n|),
respectively.

Line #23: The algorithm output, FHcondbel[], contains
all the computed conditional belief values. Bl(B|A) can be
obtained by accessing the index of |A∩B| in FHcondbel[].

Space Complexity of Algorithm 1. All the arrays used
in the proposed algorithm are linear with the cardinality of
FoD. Hence, the space complexity associated with Algo-
rithm 1 is O(n).

Note that each conditioning event A may generate 2|A|

number of possible conditioned propositions. Any of these
conditional beliefs can be accessed by selecting the largest
cardinality of the possible B proposition (according to
Fig. 2) which is a subset of the considering proposition.
For example, in Fig. 2, the possible B propositions are
{a}, {a, b}, {a, b, e}, {a, b, e, f}, and {a, b, e, f, g}. Con-
sider computing the conditional belief Bl(B|A), when B =
{a, b, c}. Here, {a, b} possesses the largest cardinality sat-
isfying the above condition. So accessing the index |{a, b}|
of FHcondbel[] yields the required result. Conditional be-
liefs Bl(B|A), are equal for all of the following B propo-
sitions: {a, b}, {a, b, c}, {a, b, d}, {a, b, h}, {a, b, c, d},
{a, b, c, h}, {a, b, d, h}, and {a, b, c, d, h}. The value of
FHcondbel[|{a, b}|] represents all of them. Therefore, only

linear space complexity is required to store all possible con-
ditional values; these are stored in FHcondbel[], an |A|-
sized array.

Comparison With Other Methods
We emphasize that the proposed algorithm computes all the
FH conditional beliefs, not one FH conditional belief.

Focal Elements-Based Brute Force Algorithms. One
conditional can of course be computed in linear timeO(|F|)
and constant space O(1) using the brute force approach.
However, the brute force approach cannot be used to com-
pute/store all the conditionals in linear time/space.

To compute all the conditionals associated with a condi-
tioning event A, we must consider 2|A| number of possi-
ble conditioned propositions. The complexity then becomes
O(|F|2|A|) in time and O(2|A|) in space for the brute force
approach. In other words, the brute force algorithms based
on focal elements require exponential time/space.

DS-Conditional-One Model. The DS-Conditional-One
approach proposed in (Polpitiya et al. 2017) provides an ef-
ficient approach to compute the conditionals associated with
general BoEs. In this approach the computational complex-
ity associated with conditional belief computation of an ar-
bitrary proposition isO(2|A|+|A∩B|), and of all propositions
isO(2|A|+|A|+|A∩B|). It requiresO(2|Θ|) space complexity.
This method is faster for working with general belief func-
tions, but it does not exploit the consonant structure of CBFs.

Experiments
We have developed a new computation library in C++ which
we refer to as FH-CBF (Fagin-Halpern conditional beliefs
generated from Consonant Belief Functions) (ProFuSELab
2019). This library includes the proposed algorithm along
with simulation tools. All conditional computations were
carried out on a Macintosh desktop computer (iMac) run-
ning Mac OS X 10.13.6 (with 2.9GHz Intel Core i5 proces-
sor and 8GB of 1600MHz DDR3 RAM) for smaller FoDs
and on a supercomputer (http://ccs.miami.edu/pegasus) for
larger FoDs (underlined in Table 1).

Results were obtained by executing the algorithms for
10,000 randomly chosen conditioning (A) and conditioned
(B ⊆ A) propositions from the FoD and noting the average
CPU time. A random set of focal elements were generated
in the core for each FoD size. Table 1 compares the aver-
age computational times taken by three algorithms that can
be used for exact conditional computation: the proposed al-
gorithm, focal elements-based brute force approach, and the
DS-Conditional-One model (Polpitiya et al. 2017). Fig. 3 is
a plot of these average computational times.

With the proposed algorithm, we computed all the FH
conditional beliefs generated from CBFs. Similarly, we
computed all the FH conditional beliefs with a focal
elements-based brute force approach as well. With the DS-
Conditional-One model, which is an algorithm to compute
an arbitrary FH conditional, we again employed a brute force
approach to get all the conditional beliefs. As evident from
Table 1 and Fig. 3, the speed advantage provided by the pro-
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Proposed Focal Elements-Based DS-Conditional-One Based
|Θ| Max. |F̂A| Algorithm Brute Force Algorithm Brute Force Algorithm

2 3 0.0012 0.0013 0.0016
4 15 0.0011 0.0015 0.0057
6 63 0.0012 0.0027 0.0189
8 255 0.0012 0.0076 0.0707

10 1,023 0.0012 0.0247 0.3038
12 4,095 0.0013 0.0836 1.5535
14 16,383 0.0013 0.3825 15.0000
16 65,535 0.0014 1.3027 131.8750
18 262,143 0.0014 5.1290 1,072.2200
20 1,048,575 0.0015 19.2470 8,670.0000
22 4,194,303 0.0016 75.0794 71,115.9000
24 16,777,215 0.0016 298.5110 653,268.0000
26 67,108,863 0.0016 1,193.4700 1.6334 cpu hours
28 268,435,455 0.0017 4,809.4100 ***
30 1,073,741,823 0.0017 18,987.5000 ***

Table 1: Average computational times (ms) of the three exact conditional computation methods: proposed algorithm (Algo-
rithm 1), the focal elements-based brute force approach, and the DS-Conditional-One based brute force approach. (*** denotes
computations not completed within a feasible time or space requirement).

Figure 3: Average computational times (ms) of exact con-
ditional computation methods for computing all FH condi-
tional beliefs.

posed algorithm is significantly higher than the other strate-
gies.

Table 2 lists the average computational times taken by
the proposed algorithm for larger FoDs. Results were ob-
tained by executing the algorithms for 10,000 randomly cho-
sen conditioning (A) and conditioned (B ⊆ A) propositions
from the FoD and noting the average CPU times. A random
set of focal elements were generated in the core for each FoD

size. Algorithm 1 computes all FH conditional beliefs of an
FoD of size 10,000 within 0.2 ms. The significant speed ad-
vantage is clear from the values in Table 2.

|Θ| 10 100 1,000 10,000
Avg. Time (ms) 0.0012 0.0038 0.0230 0.1996

Table 2: Average computational times of the proposed algo-
rithm.

Concluding Remarks
This paper provides a highly efficient exact dynamic pro-
gramming algorithm for computing all the FH conditional
beliefs generated from CBFs. As an outcome of this research
work, FH-CBF library (in C++) is made available to effi-
ciently work with CBFs and for computing the FH condi-
tional beliefs. We strongly believe that this algorithm con-
stitutes a significant step toward the practical utility of the
strengths offered by DST methods.

The time and space complexities of the proposed algo-
rithm are linear for computing all conditional beliefs, thus

Conditional Complexity
Computation Method Time Space
Proposed Algorithm O(n) O(n)
Brute Force on F O(|F|2|A|) O(2|A|)

DS-Conditional-One O(2|A|+|A|+|A∩B|) O(2|Θ|)

Table 3: Time and space complexity requirements of exact
conditional computation methods for computing all FH con-
ditional beliefs.
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serving to reduce the memory usage and to significantly
improve computational efficiency. In particular, it offers a
significant improvement over the currently available exact
computation algorithms which require exponential time and
space complexity. For DS-Conditional-One, the complex-
ity to compute conditional belief of an arbitrary proposi-
tion is O(2|A|+|A∩B|). Since it employs a brute force ap-
proach to compute all conditional beliefs, computational
time becomes O(2|A|+|A|+|A∩B|), which is expensive for
larger BoEs. Storing the BoE requires O(2|Θ|) space. Ap-
plying brute force approach on focal elements is also ex-
ponential and the computational complexity is O(|F|2|A|).
If it is required to store the computed results, the brute
force approach needsO(2|A|) space. Table 3 summarizes the
time and space complexity requirements of exact conditional
computation methods which can be utilized to compute all
FH conditional beliefs on CBFs.

Considering the uncertainty inherent in AI reasoning and
the advantages of DST methods in reasoning with uncer-
tainty, we believe that the proposed algorithm constitutes an
important step toward the utility of DST methods in real AI
systems.
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