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Abstract

Belief revision consists in modifying an epistemic state
in the light of a new information. In this paper, we
focus on the so-called multiple iterated belief revision
process called C-revision. Epistemic states are repre-
sented in terms of Ordinal Conditional Functions OCF
and penalty knowledge bases. The input is a set of con-
sistent weighted formulas. We show that C-revision, de-
fined at a semantic level using OCF, has a very natural
counterpart in penalty logic.

Introduction

Belief revision (Alchourrén, Girdenfors, and Makinson
1985; Williams 1995; Williams and Rott 2001), is an im-
portant field of research in artificial intelligence and knowl-
edge representation areas. It consists in defining processes
for modifying initial beliefs in the light of new information,
considered as fully reliable.

Three main elements are necessary to define a revision
process. The first one concerns the representation of current
beliefs or, more generally, of epistemic states. In this paper,
at the semantic level, we will use ordinal conditional func-
tions OCF (Spohn 1988; 2012) to represent epistemic states.
An ordinal conditional function, denoted by «, is an uncer-
tainty distribution where each element w of the universe of
discourse €2 (here a set of propositional logic interpretations)
is associated with a positive integer number. x(w) is often
interpreted as a degree of surprise that w is the real world.
Examples of belief revision methods that use OCF to repre-
sent epistemic states are C-revision (discussed in this paper)
and the so-called transmutations (Williams 1994).

At the syntactic level, epistemic states are represented
using weighted logics. They are sets of pairs of the form
(¢, ;) where ¢; is a propositional logic formula and «; is
the uncertainty degree associated with ¢;.

Weighted knowledge bases have been intensively used in
the literature for handling uncertainty (such as in a pos-
sibilistic logic framework ((Lang 2001; Benferhat 2010;
Dubois and Prade 2018)) or for handling inconsistency
(Benferhat et al. 2002; Brewka 1989; Benferhat, Dubois, and
Prade 1999; Williams 1995).
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Examples of weighted logics are (min-based and product)
possibilistic logic (Dubois and Prade 2014; Lang 2001) and
penalty logic (Pinkas 1991; Dupin De Saint-Cyr, Lang, and
Schiex 1994; Darwiche and Marquis 2004). In this paper we
use penalty logic where «;’s are positive integers.

The second element needed to define a revision process,
concerns the representation of the new information. Typi-
cally, in belief revision the new information is encoded by
a formula of propositional logic. Some works represent new
information with uncertain observations which may repre-
sent a partition over a set of interpretations as in (Jeffrey
1965; Dubois and Prade 1997; Benferhat et al. 2009) . In
some approaches, the input information is simply the whole
epistemic as in (Benferhat et al. 2000). In this paper, the
new information will be represented by a consistent set of
weighted propositional logic formulas.

The last element concerns the definition of the revision
operator itself, denoted by . In this paper, we will use
the multiple revision operator, called c-revision, proposed
in (Kern-Isberner and Huvermann 2015). This revision op-
erator (x) takes as input an ordinal conditional function x, a
consistent set of weighted formulas S, and produces a new
ordinal conditional function k x S. The revision operation
takes into account the fact that formulas of the input are is-
sued from different and independent sources.

The main contribution of this paper consists in defining a
syntactic representation of xk x S using penalty logic which
is a weighted logic where knowledge bases are sets of pairs
(i, ;). ¢;’s are propositional logic formulas and «;’s are
positive integers. The weight «; is often interpreted as a
price (or cost) to pay if the propositional formula ¢; is not
satisfied.

We show that C-revision, defined at the semantic level us-
ing ordinal conditional functions, has a very natural coun-
terpart in penalty logic, defined at the syntactic level using
weighted (penalty logic-based) knowledge bases.

The rest of this paper is organized as follows. Section
2 gives a refresher on ordinal conditional functions and
penalty logic. While Sections 3 and 4 present belief revision
and multiple iterated belief c-revision respectively. Section
5 gives the encoding of multiple iterated belief C-revision
using penalty logic. Finally, Section 6 concludes the paper.



OCF and penalty logic

This section is divided into two subsections in which we
first give a brief refresher on Ordinal Conditional Functions
(OCFs) (for more details see (Spohn 1988; 2012)) and then
we present penalty logic (for more details see (Dupin De
Saint-Cyr, Lang, and Schiex 1994)).

Ordinal Conditional Functions

Let £ be a propositional language based on a finite set of
propositional variables. T et L represent tautology and con-
tradiction respectively. ¢, 1, ...etc represent formulas of L.
The set of interpretations is represented by (2. An interpre-
tation of 2 is denoted by w.

An Ordinal Conditional Function distribution (Spohn
1988; 2012) can be simply viewed as a function that assigns
to each interpretation w of {2 an integer denoted by x(w).
k(w) represents the degree of surprise of having w as being
the real world. x(w) = 0 means that nothing prevents w for
being the real world. k(w) = 1 means that w is somewhat
surprising to be the real world. x(w) = 4o0c simply means
that it is impossible for w to be the real world.

For instance, suppose that we are interested in encoding
our beliefs regarding the amenities and facilities offered by
a hotel in Paris’ downtown.

Let a be a propositional symbol to express the fact that
a hotel has a kitchen in the room. Let s be a propositional
symbol to express that a hotel has a swimming pool.

Assume that available beliefs are expressed by the follow-
ing ordinal conditional function x such that:
k(ma A =s) = 0, kla A—s) = k(-a As) =
k(a A s) = +oo.

The ordinal conditional function, given above, first repre-
sents the fact that having none of the two amenities is the
normal situation. And it is somewhat surprising to have one
of the amenities. And lastly it is impossible that a hotel in
Paris’ downtown offers both amenities.

An OCF & defined on €2 can be extended to formulas of
the propositional language. The cost of a propositional logic
formula v, denoted by x(%)), is equal to the minimal cost of
interpretations that satisfy v :

R($) = min{r(w),w = ¥}

with by convention (L) = +o0.

1 and

Penalty logic

Penalty logic is a weighted logic which has been introduced
in (Pinkas 1991), and then developed in (Dupin De Saint-
Cyr, Lang, and Schiex 1994; Pinkas and Loui 1992). It asso-
ciates to each formula in the knowledge base a weight which
represents a price to pay if the formula is not satisfied.
More precisely, a penalty knowledge base PK is a finite
set of pairs (¢;, ;) such that ¢;’s are formulas of the propo-
sitional language £ and «;’s are strictly positive integers'.
The integer «; is the penalty associated with the formula ¢;.
The higher the weight «; is, the more important the formula

¢i is.

' As we will see later, we will allow a negative integer to be only
associated with the contradiction formula L.
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In particular, if for some formula ¢; we have o; = +00
then ¢; is considered as an integrity constraint that should
absolutely be satisfied. In the following, a penalty base P/C
is denoted by:

PK = {((]5170[1),2 = ].7 7TL}

If the costs of formulas in a penalty base PK are all equal
to +oo, this means that no formula of PK should be vio-
lated. In this case, penalty logic is reduced to the proposi-
tional logic.

The following definition explains how to associate, to
each weighted knowledge base, an ordinal conditional func-
tion over the set of interpretations.

Definition 1 (Pinkas 1991)

Each penalty (or weighted) base PK = {(¢i, ;) : i =
1..n} induces for each interpretation w € ) a cost, denoted
kpic(w), which is equal to the sum of penalties of formulas
of PK that are violated by w. Namely Vw € ):

rpic(w) =

07 lfv(d)u Oéi) S PK:>W |: ¢i7
o (piy i) € PK,w [~ ¢i}, otherwise

In the following, kpx is simply called the ordinal condi-
tional function OCF associated with PK. The way the OCF
distributions are produced from penalty logic bases is very
close to the way possibility distributions are produced from
product-based possibilistic knowledge bases.

One can easily check that if a formula ¢ appears sev-
eral times in a penalty knowledge base P/C, we can replace
all its occurrences by a single occurrence of the formula ¢
weighted by the sum of the weights associated with this for-
mula.

Namely, if (¢, «) € PK and (¢, 8) € PK then PK is
equivalent to (PK — {(¢,a), (6, )} U{(d,a + B)})

Example 1 Let P = {(a,3), (b,7), (—b,2)} be a penalty
knowledge base. Its associated OCF distribution is illus-
trated in Table 1:

Table 1: An example of OCF distribution xpx obtained from
the knowledge base PK using Definition 1

w kpic(w)
ab 2

a—b 7

—ab 5

—-a—b | 10

Note that in this example, there is no interpretation w such
that kpx(w) = 0. This reflects that the penalty base PK is
inconsistent.

Belief revision

Belief revision was originally introduced by Alchourron,
Girdenfors and Makinson (Alchourrén, Girdenfors, and
Makinson 1985) (Girdenfors 2003). They proposed a set of
axioms (called AGM postulates) to characterize the rational-
ity of a revision process.



In (Darwiche and Pearl 1997), the authors have proposed
an extension of the AGM model by adding postulates that
manage the iterated revision. Jin and Thielscher (2007) have
also proposed a new postulate for iterated revision called
Independance postulate. This later was generalized by Del-
grande and jin (2012) by introducing a new set of postulates
that surpasses weakness of postulates proposed in (Darwiche
and Pearl 1997).

In uncertainty theories, several works have been proposed
for revising ordinal conditional functions (Hdming and Pe-
ters 2010; Benferhat and Tabia 2010).

In possibility theory, the revision of possibilistic belief
bases has been proposed, for example in (Benferhat et al.
2009; Dubois and Prade 1997), using the possibilistic coun-
terpart of Jeffrey’s rule (Jeffrey 1965).

Possibility theory has strong connections with ordinal
conditional functions. In possibility theory, the uncertainty
distribution; called a possibility distribution; is denoted by
m. It assigns to each interpretation w a positive real number
in the unit interval [0, 1].

The revision of a possibility distribution 7 by an input
composed of a set of weighted formulas p = {(¢;, a;),i =
1..n} is as follows :

V(pi,ai) € p,Yw F ¢y, m(wlp) = a; @ m(w|edi)

where ® represents either the product operator or the min
operator depending on the nature of the packaging used in
the possibility theory. Note that, in Jeffrey’s rule, as well as
in its possibility theory counterpart, formulas of the input
¢i’s € p represent a partition,
namely
VA{i, ¢i € u} is a tautology
and
Vi, Vj, ¢; A 1pj is a contradiction (with ¢ # j)
The following section presents a revision process that op-
erates on ordinal conditional functions. This revision opera-
tion is called c-revision.

C-revision and multiple iterated c-revision

This section recalls briefly the multiple C-revision in-
troduced in (Kern-Isberner and Huvermann 2015; Kern-
Isberner 2004). The multiple iterated C-revision consid-
ers that the input of the revision process is a set of
weighted formulas (and not a single formula) & =
{(517 61)7 © (gna ﬂn)}

Note that ¢;’s are jointly consistent. So the way the input
is viewed in C-revision departs from the one used in Jeffrey’s
rule where the input formulas induce a partition over §2.

The C-revision is defined at a semantic level for ordinal
conditional functions. It takes as input an OCF distribution
K, a consistent set of weighted formulas and produces a new
OCF distribution denoted by x x S. More precisely :

Definition 2 Let x be an OCF distribution, and let S =
{(&1,51), -, (&n, Bn)} be a consistent set of weighted for-
mulas where weights are positive integers (3; € N'7).

The new OCF distribution k x S, obtained after the revision
of k by S using *, is defined as follows :
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Yw € Q,
RxS(W) = k(W) = KEL A AE) + 201, e, Bi

where each B; satisfies the following condition :

Vi e {1,..,n},

Bi > k(€1 Ao Nn) — :r;&zg{/s(w) + i wiee, Bit

One can easily check that if w is a model of &1 A ... A &,
then k x S(w) = 0.

Besides counter-models of &;’s are shifted up by their as-
sociated weights ;’s.

The presence of the sum operator (>_) in the definition of
k% S reflects the fact that the formulas £; are independent.

Lastly, the inequality constraints on [3;’s given in Defini-
tion 2 ensures that x * S(=¢§;) > 0.

It has been shown in (Kern-Isberner and Huvermann
2015) that multiple iterated c-revision satisfies the extended
AGM postulates (as described in (Kern-Isberner and Huver-
mann 2015)), and the two postulates (PC3) and (PC4) of
Delgrande and jin (2012).

It has also been argued in (Kern-Isberner and Huvermann
2015) that Jin’s and Thielscher’s (Ind) postulate (Jin and
Thielscher 2007) is not necessary for multiple iterated c-
revision.

Example 2 Let us take again the OCF distribution given in
Example 1. Table 2 is obtained from Table 1 by applying
Definition 2 with : S = {(a, 5), (—b,7)}>.

Table 2: C-revision of the distribution given in Example 1
using §= {(aa 5)7 (ﬁbv 7)}

w kpic *x S(w)
ab 2

a—b 0

—ab 10

—a—b | 8

For instance:

kpr*S(a—b) = k(a—b) — k(aA—b) 40 (since a—b = a
and a—b = —b) =7-7=0. and kpx *S(—ab) = k(—ab) —
k(a A —b) + 5 (since —ab [~ a) +7 (since —ab = —b)=5 -
7+ 12=10.

In (Benferhat and Ajroud 2016) the syntactic counterpart
based on possibilistic weighted bases has been proposed.
The computation of the function « associated with P is
obtained by an equation similar to the one given in Defi-
nition 1 (the maximum operator is used instead of the sum
operator).

The major disadvantage of the syntactic representation
proposed in (Benferhat and Ajroud 2016) is that the obtained
revised base is larger than the original knowledge base.

The aim of the following section is to propose a compact
and direct encoding of multiple C-revision using penalty
logic.

2For sake of simplicity, in this example we choose concrete val-
ues of (3;’s. In the original definition of C-revision, f3;’s are sym-
bolic weights.



Syntactic revision of a penalty base

Let kpx be the ordinal conditional function associated with
a knowledge base P/C using Definition 1.

Recall that, from Definition 2, the revision operation C-
revision is defined by :

Yw € Q,

kpk *S(w) = kpk (W) — kpic(§1 Ao Ap) + Z Bi

i=1wEu;

Our aim is to provide a syntactic counterpart of x x S.
More precisely our aim is to compute a new weighted base
PK1 (from P and S) such that:

Yw,

kpr1(w) = kpk x S(w)

Where xpi1 (resp kpx) is the ordinal conditional func-
tion associated with PK1 (resp PK) given by Definition 1,
and kpi * S is the above C-revision of kpx by S using
Definition 2.

Thus, given the above equation regarding the definition of
C-revision, the syntactic C-revision requires the following
steps:

e A syntactic computation, from the weighted base PK, of
kpic(E1 Ao ANER) s

e A syntactic computation of the weighted base associated
with rpic(w) + 3200 e, Bis

e A syntactic computation of the weighted base associated
with kK x S.

These three main steps are described in the following
three subsections respectively.

Syntactic computation of the input weight

Let us start with the syntactic computation of kKpic(§1 A ... A
&n). We consider the following notations, given a penalty
base PK :

e PLK* : is the propositional base obtained by only consid-
ering propositional formulas of P/C without taking into
account their weights, namely PK* = {¢;, (¢i, ;) €
PK}. For instance, if PK = {(—a,2),(b,7),(c V
=b,5), (a V¢, 4+00)} then PK* = {—a,b,cV —b,a V c}

e SW(K) : is a function that sums the weights of a sub-
base K of PK : SW(K) = > {a; : (¢s, ) € K}.
For instance, if PK = {(—a,2), (b, 7),(c V =b,5),(a V
¢, +00)}and KK = {(b,7), (cV =b,5), (a V ¢, +00)} then
SW(K)="1.

Then the syntactic computation of kKpx (&1 A ... A &y,) is
obtained using the following proposition:

Proposition 1 Lez :
o PIC : be a penalty base ;
® ) : be a consistent formula (here v =& N ... N&y)

e A: be a sub-set of PK that  :
A* A ) consistent and PB - PIC,B* A
¢ consistent, SW(B) > SW(A).

such
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We have :
rpx(¥) = min{rpi(w),w = ¢}
= SW(PK) — SW(A)
Proof 1 From Definition 1 we have :
rpi () = min{kpx (W), w = ¥}
— minu {0 w ¥ A -0:})

= min,{SK(PK) — S {ai,w = ¢ Ap}}
= SW(PK) — maz,{> {os,w |= ¢; A1p}}
= SW(PK) — maz {SW(C),C CPK,w = C* A}}

(D

= SW(PK) — max{SW(C),C C PK,C* A
1 consistent}}

= SW(PK) — SW(A)

(for sake of the proof, > {«; (¢i,05) € PK} is

replaced by > {o;})

The computation of the sub-base A (and STW(A)) can
be obtained using a polynomial number of calls to a Partial
Max-SAT test. This step is not developed in this paper.

Example 3 Let us continue our example with:
PK ={(a,3),(b,7),(—b,2)}
and:
S ={(a,5),(—b,7)}.
Using Proposition 1 :
kpic(a A —b) = SW(PK) - SW(A) =T.
An example of the sub-set A such that :

o (A* A a A —b) is consistent, and
e (AB C PK,B consistent with (a A —b),SW(B) >
SW(A))
is A={(a,3),(-b,2)}.
One can also easily check that :
kp(aN—b)=12—-5=T.
Next section is devoted to the integration of the input in
the penalty knowledge base.

The integration of the input S in the weighted base

This subsection shows that integration of the new infor-
mation into the penalty knowledge base is immediate as
indicated in Proposition 2:

Proposition 2 Let PK = {(¢;, ;) : i = 1..n} be a penalty
base, and kpx be its associated distribution using Defini-
tion 1. Let S = {(&1,51) -, (&n, Bn)} be the input. The
syntactic counterpart of :

kprc (@) = kpc@) + > B
i=m,wlEE;

PIC/ =PKLU {(EZa/BZ)vlL = 17 ,TL}



The proof is immediate. It is enough to notice that
Vie{l,..,n}andVw € Q,

ifw £ &

otherwise

kpk(w) + Bi,
wpk(w),

EP’CU{(&,&)}("‘)) = { 2

Example 4 Let us continue the previous example. Applying
proposition 2 gives us :

PK" =PKU{(a,5)} U{(-b,7)}

- {(CL, 3)a (ba 7)3 (_'bv 2)} U {(aa 5)} u {<_‘bv 7)}

= {(a7 3)7 (b7 7)7 (ﬁbﬂ 2)7 (a7 5)7 (ﬁb> 7)}

The associated distribution of PK is given in Table 3 :

Table 3: The distribution associated with P after integrat-
ing the input

w rpk (W)
ab 9

a—b 7

—ab 17
—a—b | 15

Shifting down an OCF by x(& A ... A &,)

The last step provides the syntactic characterization of shift-
ing down the weight of each interpretation x(w) by (&1 A
... A &,). This shifting operation ensures that the resulted
OCF k' = k(w) — k(&1 A ... A &,) is normalized (namely
there will exist at least an interpretation with a weight equals
to 0).

In this section, we consider a very slight extension of
the syntactic revision based on penalty logic, with negative
weights only associated to the formula (_L). These negative
weights express a guaranteed reward. However weights
associated with non-contradictory formulas ¢; # 1 remain
positive. The other definitions, in particular Definition 1,
also remain unchanged.

Proposition 3 Ler PK = {(¢;, ;) : i = 1.n,; € R*}
be the penalty base obtained in the previous step (Proposi-
tion 2), and kpx be its associated distribution. The syntactic
counterpart of :

kpir(w) = kpe(w) — kpe(§1 A . AN &) 3)
is :
PK'=PKU{L, —kprc(E1 A ... A&}
The proof is immediate by applying Definition 1. Indeed,
Vw, kpier =

o if w = PK
B e L0 1 (i, 05) € PIC/} otherwise
Lo ifwh L

—kpic(§1 N ... NEy) otherwise

= fpi (W) — Kprc (€1 A e A Ey)
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Example 5 Let us illustrate the last step using Proposition
3. We have:

PK" =PK" U {J_, —/ip;c(gl VANTRIVAN {,L)}
The final penalty base is :
PICW = {(a7 3)a (b7 7)7 (_‘bv 2)3 (a7 5)v (_‘ba 7)7 (J—a _7)}

and its associated distribution is given in Table 4. We can
clearly check that Table 4 is the same as the one of Table 2.

Table 4: Distribution of the resulted base which represents
the C-revision of kpxc with S = {(&1, 81), ... (€n, Bn) }

w kpic(w)
ab 2

a—b 0

—ab 10
—-a—b | 8

Propositions 1-3 provide the characterization of the C-
revision using weighted logic bases.

Note that the space complexity is linear with respect to
the initial knowledge base for the three steps proposed in
Propositions 1, 2 and 3.

The computational time complexity is also linear for steps
given in Proposition 2 and Proposition 3. However comput-
ing k(&1 A ... A&,) (the step given in Proposition 1) needs
a polynomial number of calls to a Max-SAT prover (an NP-
Complete problem) with respect to the size of the knowledge
base.

Conclusion

Multiple iterated c-revision is a revision process that mod-
ifies an OCF by taking into account a set of independent
formulas.

In this paper, multiple iterated c-revision has been en-
coded using penalty logic. This is done in three steps:
i) computing k(& A ... A &), ii) computing k(w) +
> iem wiee, Bi and i) shifting down an OCF £ by a con-
stant number.

A future work is to provide an experimental study by com-
paring the syntactic computation of c-revision, given in this
paper, with the one given in (Benferhat and Ajroud 2016).
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