
Axiomatic Evaluation of Epistemic Forgetting Operators

Gabriele Kern-Isberner, Tanja Bock
Department of Computer Science

TU Dortmund University, Dortmund, Germany

Christoph Beierle, Kai Sauerwald
Department of Computer Science

University of Hagen, Hagen, Germany

Abstract

Forgetting as a knowledge management operation has re-
ceived much less attention than operations like inference or
revision. It was mainly in the area of logic programming
that techniques and axiomatic properties have been studied
systematically. However, at least from a cognitive view, for-
getting plays an important role in restructuring and reorga-
nizing a human’s mind, and it is closely related to notions
like relevance and independence which are crucial to knowl-
edge representation and reasoning. In this paper, we propose
axiomatic properties of (intentional) forgetting for general
epistemic frameworks which are inspired by those for logic
programming, and we evaluate various forgetting operations
which have been proposed recently by Beierle et al. accord-
ing to them. The general aim of this paper is to advance for-
mal studies of (intentional) forgetting operators while cap-
turing the many facets of forgetting in a unifying framework
in which different forgetting operators can be contrasted and
distinguished by means of formal properties.

1 Introduction
The term forgetting is used in various frameworks for quite
different operations (Eiter and Kern-Isberner 2018). In the
AGM framework (Alchourrón, Gärdenfors, and Makinson
1985), forgetting is called contraction and refers to the re-
moval of a part of one’s beliefs while in logic programming,
forgetting aka variable elimination has been widely used
for the removal of middle variables from a knowledge base
(Lin and Reiter 1994). Recently, Beierle et al. (Beierle et al.
2019) discussed even more kinds of forgetting collected by
findings in the knowledge representation literature as well
as by common-sense understanding of forgetting. Each re-
search field set up its own set of properties, or postulates, to
distinguish between different forgetting operators. The field
of logic programming offers the widest variety of opera-
tors and properties which were collected and categorized by
Goncalves, Knorr, and Leite (Gonçalves, Knorr, and Leite
2016). We use this as a good starting point for building up a
general, unifying framework for forgetting.

In this paper, we bring these different approaches to (in-
tentional) forgetting together and present axiomatic proper-
ties of forgetting which are inspired by the postulates hav-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing been proposed for logic programming but expressed in
a more abstract framework for forgetting operations in epis-
temic states. The logical object that is to be forgotten can be
a variable or a sentence, thus covering both the operations
of contraction and of variable elimination. We also consider
a form of forgetting that can be achieved by conditionaliza-
tion. We reinterpret the ASP postulates in the setting of epis-
temic states by defining formal analogies where, e.g., a logic
program corresponds to an epistemic state. To realize sub-
stantially different forgetting operators like the ones men-
tioned above in one logic framework, we need to make use
of approaches that provide a sufficiently broad base for op-
erations. Spohn’s ranking functions (Spohn 1988) have been
used in (Beierle et al. 2019) to exemplify different forgetting
operations in one semantic framework, and they also prove
to be useful here for evaluating different forgetting opera-
tions according to the novel postulates. The results help re-
vealing different features of the operators. More precisely,
the main contributions of this paper are:
• We present novel postulates for forgetting sentences or

variables from epistemic states, translating the basic ideas
of postulates for forgetting in logic programs having been
proposed by (Wong 2009; Gonçalves, Knorr, and Leite
2016) to more general frameworks; conditionals play a
major role in this translation.

• The forgetting operators contraction, marginalization and
conditionalization from (Beierle et al. 2019) are evaluated
according to these postulates.

• The novel postulates prove to be helpful to distinguish dif-
ferent kinds of forgetting, thus at the same time revealing
basic differences but also similarities among them.
This paper is organized as follows: In Section 2, we recall

the formal preliminaries, to be able to present different prop-
erties of forgetting operators in ASP proposed over the years
in Section 3. After briefly summoning the different kinds
of forgetting in Section 4, we present general postulates for
forgetting operators in Section 5. The postulates are used to
evaluate the kinds of forgetting in Section 6, and in Section 7
we conclude and point out future work.

2 Preliminaries
Propositional Logic Let LΣ be a propositional language
finitely generated by a signature Σ. We write AB for A∧B,

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

470

and A instead of ¬A. For an atom a, let ȧ denote any of its
literals a, a. ΩΣ denotes the set of possible worlds (propo-
sitional interpretations) over Σ. As usual, ω |= A means
that the propositional formula A ∈ LΣ holds in the possi-
ble world ω ∈ Ω, and Mod(A) = {ω ∈ Ω | ω |= A}
denotes the set of all such possible worlds. We will use ω
both for the model and the corresponding complete conjunc-
tion containing all atoms either in positive or negative form.
The marginalization of a propositional formulaA to a signa-
ture Σ′ ⊆ Σ, A|Σ′ , is defined by iteratively forgetting every
σ ∈ Σ \ Σ′ with forget(A, σ) = A+

σ ∨ A−σ , where A+
σ and

A−σ are the results of replacing all occurrences of σ inAwith
> and ⊥, respectively. If A ∈ L is a formula, then the min-
imal set of signature elements from Σ needed to represent a
formula which is equivalent to A is denoted by ΣA.

ASP We consider logic programs under the answer set se-
mantics (Gelfond and Leone 2002). A logic program P is a
set of rules r of the form h← a1, . . . , al, not b1, . . . , not bm
where h and all elements in B+(r) = {a1, . . . , al} and
B−(r) = {b1, . . . , bl} are atoms. The set of all atoms of
a program is denoted by ΣP . A set of atoms S is called a
model of a program P if for all r ∈ P if B+(r) ⊆ S and
B−(r) ∩ S = ∅ then h ∈ S. The Gelfond-Lifschitz reduct
of a program P relative to a set of atoms S is the program
PS = {h ← B+(r) | r ∈ P,B−(r) ∩ S = ∅}. S is an an-
swer set of a program P if S is a minimal model of PS . The
set of all answer sets of a logical program P will be denoted
by AS(P). The V-exclusion of a set of answer sets M by
a set of atoms V ⊆ Σ isM||V = {X \ V | X ∈ M}. P1

and P2 are called strongly equivalent1, namely P1 ≡S P2, if
AS(P1∪P ′) = AS(P2∪P ′) for any logic program P ′ (Lif-
schitz, Pearce, and Valverde 2001).

Definition 1 (Forgetting operator for ASP (Gonçalves,
Knorr, and Leite 2016)). Let C be a class of logic programs
over Σ. A forgetting operator is a function f : C × 2Σ → C,
such that f(P, V) is a logic program over ΣP \V . Then, we
call f(P, V) the result of forgetting V in P .

Conditionals By introducing a new binary operator |, we
obtain the set (LΣ|LΣ) = {(B|A) | A,B ∈ LΣ} of condi-
tionals over LΣ. (B|A) formalizes “ifA then usuallyB” and
establishes a plausible connection between the antecedent
A and the consequent B. Conditionals with tautological an-
tecedents are taken as plausible statements about the world.
Following (DeFinetti 1974), a conditional (B|A) can be ver-
ified (falsified) by a possible world ω iff ω |= AB (ω |= AB)
and is not applicable to ω if ω 6|= A.

As established semantics for conditionals, we use Ordi-
nal conditional functions (OCFs), also called ranking func-
tions, κ : Ω → N with κ−1(0) 6= ∅, which were introduced
(in a more general form) first by (Spohn 1988). They ex-
press degrees of plausibility of propositional formulas A by
specifying degrees of disbelief of their negations A. More

1Some works define strong equivalence over HT-models (Lifs-
chitz, Pearce, and Valverde 2001). Since we only adapt the general
idea of equivalence here, we will not go deeper into it.

formally, we have κ(A) := min{κ(ω) | ω |= A}, so that
κ(A ∨B) = min{κ(A), κ(B)}.

A conditional (B|A) is accepted in the epistemic state κ,
written as κ |= (B|A), iff κ(AB) < κ(AB), i.e. iff the ver-
ification AB of the conditional is more plausible than its
falsification AB. This transfers easily to a propositional for-
mula A by defining κ |= A iff κ |= (A|>), iff κ(A) > 0.

In most approaches to belief change, the new informa-
tion is given by a propositional formula or by a set of
propositional formulas. In the general framework developed
by Kern-Isberner in (Kern-Isberner 2001) change opera-
tions taking conditionals or sets of conditionals into account
are provided, based on the central principle of conditional
preservation. We focus in this paper on the special case for
a change with a single proposition A.
Definition 2 (c-change by a single proposition (Kern-Is-
berner et al. 2017)). A belief change from κ to κ◦ byA fulfils
the principle of conditional preservation and is called a c-
change with A if there exist integers κ0, γ

+, γ− such that:

κ◦(ω) = −γ− − κ(A) + κ(ω) +

{
γ+ if ω |= A

γ− if ω |= A
(1)

The abstract definition of a c-change allows for defining
the several kinds of forgetting of Section 4, see (Beierle et
al. 2019) for the full list of definitions.

3 ASP Postulates for Forgetting
ASP is presumably the discipline with the most properties
describing forgetting operators. Whereas the AGM postu-
lates for contraction have been established several years ago,
it is still debatable which of the proposed properties for
ASP are really necessary or meaningful. We recall here two
different works on postulates and properties (Wong 2009;
Gonçalves, Knorr, and Leite 2016). Let P, P ′ be logical pro-
grams, V, V ′ sets of atoms we want to forget, and f(P, V)
the result of the forgetting of V in P .

Wong defined properties for logic programs relative to a
notion of equivalence,≡, and called them postulates for ASP
logic program forgetting. We recall here only two of his pos-
tulates, the rest uses very specific aspects of logic program-
ming, making a generalization difficult. For the entire list
see (Wong 2009).

(F0) If P ≡ P ′ then f(P, V) ≡ f(P ′, V)

(F6) f(f(P, V ′), V) ≡ f(f(P, V), V ′)

The forgetting operators collected by Goncalves, Knorr,
and Leite (Gonçalves, Knorr, and Leite 2016) are defined
by properties of logical programs relative to a notion of
equivalence, ≡, and entailment, |= (e.g. defined over HT-
models (Lifschitz, Pearce, and Valverde 2001)).

(wC)asp AS(P)||V ⊆ AS(f(P, V))

(sC)asp AS(f(P, V)) ⊆ AS(P)||V

(CP)asp AS(f(P, V)) = AS(P)||V

(wE)asp (AS(P) = AS(P ′))⇒
(AS(f(P, V)) = AS(f(P ′, V)))

(W)asp P |= f(P, V)

471

(SE)asp (P ≡ P ′)⇒ (f(P, V) ≡ f(P ′, V))

As we will use the same abbreviations for the general
properties later we indicate the ASP properties here with the
superscript asp.

4 Kinds of Forgetting
In (Beierle et al. 2019) an abstract model is used in which
an agent is equipped with an epistemic state Ψ (also called
belief state) and an inference relation |≈. They make no fur-
ther assumptions about how this belief state is represented,
except that Ψ makes use of a language L over a signature
Σ. The relation Ψ |≈ A holds if an agent with belief state
Ψ infers/believes/accepts A with A ∈ L or A ∈ (L|L). Let
Ψ|Σ′ be the marginalized belief state for a subset Σ′ of sig-
natur elements with Ψ|Σ′ |≈ A iff Ψ |≈ A for all A ∈ LΣ′ .
Under the assumption that a conditionalization operator | on
Ψ exists, Ψ|A has the intended meaning that Ψ should be
interpreted under the assumption that A holds. In particular,
we can assume that Ψ|A |≈ A holds for every A.

If Ψ is a prior state, then we denote with Ψ◦A the poste-
rior belief state of the agent after forgetting A resp. change
operation on A. In this context the object A that we want to
forget can be a formula from L, or a variable from Σ. Differ-
ent notions of forgetting can be specified by the inferences
an agent can or can no longer draw after the change opera-
tion on A (Beierle et al. 2019); i.e., types of forgetting are
characterised by their respective success condition. In this
paper we focus on the three following major types of forget-
ting that have been applied in various frameworks:

Contraction Ψ◦A 6|≈ A
Marginalization Ψ◦A = Ψ|Σ\ΣA

Conditionalization Ψ◦A = Ψ|A
Contraction refers to the intention to directly give up in-

formation A, as it is known from the AGM framework (Al-
chourrón, Gärdenfors, and Makinson 1985). Marginaliza-
tion and conditionalization are well-established operators;
they are reinterpreted here for defining forgetting operators
that take the informationA to be forgotten as their argument.

5 General Postulates of Forgetting Operators
We now want to define general postulates for operators
based on the postulates/properties for ASP of Section 3. We
will use the same abstract framework as described above
based on belief states Ψ and will find abstract correspon-
dences for the different components of the properties. A
logic program P will be translated into an epistemic state Ψ,
and the result of forgetting, in ASP denoted by f(P, V), will
be Ψ◦A. The V-exclusion ||V corresponds to the marginaliza-
tion |Σ\ΣA

on propositional formulas. In order to be able to
define abstract postulates independent of a concrete logic,
we need a few prerequisites about belief states that go be-
yond classical logics while obeying general logical tradi-
tions. First and most importantly, belief states shall be ca-
pable of dealing with conditionals by means of an inference
relation (or acceptance relation) |≈, i.e., Ψ |≈ (B|A) iff Ψ
accepts (B|A), and Ψ |≈ A iff Ψ |≈ (A|>). The set of

all (conditional) inferences will be denoted by C(Ψ) with
C(Ψ) = {(B|A) ∈ (L | L) | Ψ |≈ (B|A)}. We define the
entailment relation between two belief states Ψ1,Ψ2 by us-
ing the conditional inference relation and have Ψ1 |≈ Ψ2

iff C(Ψ2) ⊆ C(Ψ1). The equivalence relation over logic
programs, ≡, is lifted to an equivalence relation over be-
lief states, ∼=, as well. The equivalence is defined by the
entailment relation |≈ on belief states with Ψ1

∼= Ψ2 iff
Ψ1 |≈ Ψ2 and Ψ2 |≈ Ψ1. We use a propositional belief oper-
ator Bel (Ψ) ⊆ L representing the most plausible beliefs of
an agent. Bel (Ψ) then corresponds toAS(P) and is defined
as Bel (Ψ) = {A ∈ L | Ψ |≈ (A|>)}.

With this framework we are able to define general pos-
tulates that can be specialized for concrete logics by only
specifying the inference relation |≈. To show the connection
to ASP we note after each postulate the names of its corre-
spondent ASP postulate/property where possible.
Weakening Ψ |≈ Ψ◦A (W)
The posterior belief state has at most the same conditional
inferences as the prior belief state.
weakened Consequence Bel (Ψ)|Σ\ΣA

⊆ Bel (Ψ◦A) (wC)
Marginalized beliefs of the prior state are preserved; in par-
ticular those that do not contain any forgotten atoms.
strengthened Consequence
Bel (Ψ◦A) ⊆ Bel (Ψ)|Σ\ΣA

(sC)
Beliefs of the posterior belief state have to be marginalized
beliefs of the prior belief state.
Consequence Persistence Bel (Ψ◦A) = Bel (Ψ)|Σ\ΣA

(CP)
Beliefs in the posterior belief state are the same as marginal-
ized beliefs of the prior belief state; in particular, formulas
that have none to be forgotten atom are preserved.
weak Equivalence
If Bel (Ψ) ≡ Bel (Φ) then Bel (Ψ◦A) ≡ Bel (Φ◦A) (wE)
If the belief sets of two belief states are equivalent before,
then this equivalence is preserved while forgetting.
(Strong) Equivalence If Ψ ∼= Φ, then (Ψ◦A

∼= Φ◦A) (E)
If two belief states are equivalent before the forgetting oper-
ation, then the posterior belief states are equivalent as well.
Order Independence (Ψ◦A)◦B

∼= (Ψ◦B)◦A (OI)
The result of an iterated forgetting is independent of the or-
der in which the operators are applied.

These postulates make it possible to compare particular
forgetting operators within one framework. In the following
we will use them to evaluate the three different forgetting
operations of Section 4.

6 Evaluation of Different Kinds of Forgetting
by Postulates

We concentrate on the concrete instantiation of the opera-
tions with ranking functions shown in (Beierle et al. 2019).
To apply the postulates to ranking functions we only need to
define how the (conditional) inference relation will be inter-
preted in this framework.

Let κ be a ranking function over Σ. The conditional in-
ference relation is defined as C(κ) = {(B|A) ∈ (L|L) |
κ |≈ (B|A)} and a conditional is an inference of a ranking

472

(W) (wC) (sC) (CP) (wE) (E) (OI)

Contraction 7 7 7 7 7 7 7

Marginalization 3 3 3 3 3 3 3

Conditionalization 7 7 7 7 7 3 3

Table 1: Fulfilled postulates (3) of the kinds of forgetting.

function, κ |≈ (B|A), iff κ(AB) < κ(AB). With this, our
notion of equivalence corresponds to the definition of infer-
entially equivalent, ≡ |∼ , ranking functions by Beierle and
Kutsch (Beierle and Kutsch 2018).

Definition 3 (inferentially equivalent). Two ranking func-
tions κ and κ′ are inferentially equivalent, denoted by κ ≡ |∼
κ′ iff for all (B|A) it holds that κ |= (B|A) iff κ′ |= (B|A).

This can be evaluated by comparing the ranks of all worlds.

Proposition 1 ((Beierle and Kutsch 2018)). κ, κ′ are infer-
entially equivalent, κ ≡ |∼ κ′, iff for all ω1, ω2 ∈ Ω it holds
that κ(ω1) ≤ κ(ω2) iff κ′(ω1) ≤ κ′(ω2).

The implementation of each forgetting operator for rank-
ing functions will be recalled from previous works in the
respective subsection. All results, as to whether a forgetting
operation fulfills certain postulates or not, are summarized
in Table 1.

Contraction
c-contraction adapts c-changes as given in Definition 2 to
the case of contraction.

Definition 4 (c-contraction by a single proposition (Kern-Is-
berner et al. 2017)). A change from κ to κ◦ is called a c-
contraction with A, if there exist integers γ+, γ− such that
Equation 1 holds and the following condition is satisfied:

γ− − γ+ ≤ κ(A)− κ(A) (2)

Proposition 2. c-contraction does not fulfill (W), (wC),
(sC), (CP) (wE), (E), and (OI).

Proof. For (W) let κ be a ranking function over Σ = {a, b}
with κ(ab) = κ(ab) = 0, and κ(ab) = κ(a b) = 1. By
contracting κ with a and γ+ = 2, γ− = 0, the two levels
flip. It is κ◦a(ab) = κ(a b) = 0 and κ◦a(ab) = κ(ab) = 1,
which leads to (a|b) ∈ C(κ◦a) but (a|b) 6∈ C(κ).

c-contraction does not fulfill (wC). Let κ be a ranking
function over Σ = {a, b} with κ(ab) = 0, κ(a b) = 1, and
κ(ab) = κ(ab) = 2. The contraction of κ with a and γ+ =
0, γ− = 1 leads to κ◦a(ab) = κ(a b) = 0, κ◦a(ab) = 1, and
κ(ab) = 2. So it is b ∈ Bel (κ)|{b} = Cn(ab)|{b} = Cn(b)

but b 6∈ Bel (κ◦a) = Cn(ab ∨ ab).
The counterexample for (W) is also a counterexample

for (sC). We have a ∈ Bel (κ◦a) = Cn(a), but a 6∈
Bel (κ)|{b} = Cn(a)|{b} = Cn(>). c-contraction does not
fulfill (wC) nor (sC), therefore (CP) cannot be fulfilled.

c-contraction does not fulfill (wE). In Figure 1 we have
two ranking functions, κ1, κ2, with the same worlds in the
lowermost layer. So, the prior belief sets are the same, i.e.,
Bel (κ1) = Bel (κ2) = Cn(a). After the contraction with a

a b, ab ab, ab ab ab
ab a b a b ab
ab ab ab, ab ab, a b
κ1 κ2 (κ1)◦a (κ2)◦a

Figure 1: Counterexample for (wE) for Contraction

a b
a b
ab ab a b
ab ab ab, a b ab
ab ab ab, ab ab, ab
κ1 κ2 κ1

◦
a κ2

◦
a

Figure 2: Counterexample for (E) for Contraction

and γ+ = 1, γ− = 0 this leads to two different belief sets,
Bel ((κ1)◦a) = Cn(b) 6= Bel ((κ2)◦a) = Cn(ab ∨ ab).

c-contraction does not fulfill (E). Two equivalent ranking
functions are shown in Figure 2, κ1 and κ2, whereas κ2 has
an empty layer. This leads to different total pre-orders after
forgetting a with c-contractions and γ+ = 2, γ− = 0, e.g
we have (a|b) 6∈ C((κ1)◦a)) but (a|b) ∈ C((κ2)◦a)).

For (OI) consider the case where we have individual im-
pacts for the contraction with a, namely γ+

a = 2, γ−a = 0,
and for the contraction with b: γ+

b = 1, γ−b = 0. These
impacts are fixed for both application orderings. The con-
traction first by a and then by b leads to the ranking func-
tion (κ◦a)◦b shown on the left of Figure 3, which is differ-
ent from the ranking function (κ◦b)

◦
a shown on the right,

which is the result of first forgetting b and then a, e.g it is
(a|b) ∈ C((κ◦b)

◦
a) and (a|b) 6∈ C((κ◦a)◦b).

Marginalization
Definition 5 (marginalization of κ to Σ′ (Beierle et al.
2019)). Let κ be a ranking function over Σ and Σ′ ⊆ Σ.
The marginalization of κ to Σ′, denoted by κ|Σ′ : ΩΣ′ → N,
is given by

κ|Σ′(ω′) = min{κ(ω) | ω ∈ ΩΣ and ω |= ω′}. (3)

Applying this to implement marginalization as a forgetting
operation according to Section 4, we obtain

κ◦A = κ|Σ\ΣA
.

Proposition 3. Marginalization fulfills (W), (wC), (sC),
(CP), (wE), (E), and (OI).

a b
ab

a b, ab ab ab, a b ab, ab
ab, ab, ab, ab ab, ab ab ab, ab ab, a b

(κ◦a)◦b κ◦a κ κ◦b (κ◦b)
◦
a

Figure 3: Counterexample for (OI) for Contraction

473

abc, a bc, a b c
abc abc, a bc, a b c

abc, abc, abc, abc ab c
κ κ◦b = κ|b

Figure 4: Counterexample for (W) for Conditionalization

Proof. We show all properties for general marginalizations
κ|Σ′ , this yields immediately the statement of the proposi-
tion for the forgetting operator as a special case of marginal-
ization. (W) is clear because of κ|Σ′(AB) = κ(AB) for
A,B ∈ LΣ′ .

For (wC) fix an arbitrary B ∈ Bel (κ)|Σ′ . By definition
of marginalization there exists a C ∈ Bel (κ) such that B =
C|Σ′ = C+

Σ′ ∨ C−Σ′ . It follows that κ(C) > 0 and C |= B

holds. Then, we obtain κ(B) ≥ κ(C) from the contra po-
sition of C |= B and thus κ(B) > 0. Because B ∈ Bel (κ)
and ΣB ⊆ Σ′, it follows that κ(B) = κ|Σ′(B) > 0 and we
immediately get the result B ∈ Bel (κ|Σ′).

For (sC) assume B ∈ Bel (κ|Σ′), which directly implies
that B ∈ LΣ′ and 0 < κ|Σ′(B) = κ(B). We can conclude
that B ∈ Bel (κ) and by B ∈ LΣ′ we get that B is equiv-
alent to B|Σ′ with respect to the models in ΩΣ′ . This leads
to the result B ∈ Bel (κ)|Σ′ . By (wC) and (sC) we have
Bel (κ)|Σ′ = Bel (κ|Σ′), therefore, (CP) is fulfilled.

Marginalization fullfills (wE) because Bel (κ1) =
Bel (κ2) means, that for all ω ∈ Ω it holds that κ1(ω) = 0 if
and only if κ2(ω) = 0 holds. κ1|Σ′(ω′) = 0 if there exists a
world ω with ω |= ω′ and κ1(ω) = 0 and these are the same
worlds for κ2, which leads to Bel (κ1|Σ′) = Bel (κ2|Σ′).

For (E) let κ1
∼= κ2, and let B,C ∈ LΣ′ . It is (C|B) ∈

C(κ1|Σ′) iff κ1|Σ′(BC) < κ1|Σ′(BC) iff κ1(BC) <
κ1(BC) due to B,C ∈ LΣ′ . With κ1

∼= κ2, this holds
iff κ2(BC) < κ2(BC) iff κ2|Σ′(BC) < κ2|Σ′(BC), i.e.,
(C|B) ∈ C(κ2|Σ′). Therefore, C(κ1|Σ′) = C(κ2|Σ′), and
hence κ1|Σ′ ∼= κ2|Σ′ .

Marginalization fulfills (OI) because the marginaliza-
tion first to A and then to B is the same as the marginal-
ization to {A,B}. In both cases the rank of a world is de-
termined by taking the minimum rank of a world over the
reduced signature Σ \ (ΣA ∪ ΣB).

Conditionalization
Definition 6 (conditionalization of κ by A (Spohn 1988)).
Let κ be a ranking function and A a proposition, then the
conditionalization of κ by A is the ranking function κ|A :
Mod(A)→ N, defined on the models of A as follows:

κ|A(ω) = κ(ω)− κ(A) (4)

According to Section 4, this yields the forgetting operation

κ◦A = κ|A.

Proposition 4. Conditionalization fulfills (E) and (OI)
but does not fulfill (W), (wC), (sC), (CP), and (wE).

ab ab
ab ab ab ab

ab, a b ab, a b ab ab
κ1 κ2 κ1|a κ2|a

Figure 5: Counterexample for (wE) for Conditionalization

Proof. For ease of reading, we show the properties to hold
for general conditionalizations κ|A. Conditionalization ful-
fills (E). κ1

∼= κ2 iff C(κ1) = C(κ2). This is the case
iff for all (B|C) it holds κ1 |≈ (B|C) iff κ2 |≈ (B|C).
From Proposition 1 if follows that for all ω1, ω2 ∈ Ω we
have κ1(ω1) ≤ κ1(ω2) iff κ2(ω1) ≤ κ2(ω2). We now
only consider the models of A. The condition is still true
which leads to κ1(ω′1) ≤ κ1(ω′2) iff κ2(ω′1) ≤ κ2(ω′2) for
all ω′1, ω

′
2 ∈ Mod (A). Since the subtraction of κ1(A) resp.

κ2(A) does not change anything, for all ω′1, ω
′
2 ∈ Mod (A)

it is the case that κ1(ω′1) − κ1(A) ≤ κ1(ω′2) − κ1(A) iff
κ2(ω′1)− κ2(A) ≤ κ2(ω′2)− κ2(A). Because we only con-
sider models of A at this point, for ω′1, ω

′
2 ∈ Mod (A) we

get κ1|A(ω′1) ≤ κ1|A(ω′2) iff κ2|A(ω′1) ≤ κ2|A(ω′2). This
is the case if κ1|A |≈ (B|C) iff κ2|A |≈ (B|C), leading to
C(κ1|A) = C(κ2|A) and hence to κ1|A ∼= κ2|A.

For (OI) let κ′ be the ranking function that is ob-
tained by the conditionalization of κ by A, thus κ′(ω) =
κ|A(ω) = κ(ω)− κ(A). By conditioning κ′ with B we get
(κ|A)|B(ω) = κ′(ω) − κ′(B) = κ(ω) − κ(A) − κ′(B)
for models of AB. With κ′′ = κ|B we have (κ|B)|A(ω) =
κ′′(ω) − κ′′(A) = κ(ω) − κ(B) − κ′′(A) for models of
AB. Since κ′ is a ranking function over the models of
A it is κ′(B) = min{ω∈Mod (A)|ω|=B} κ(ω) − κ(A) =

κ(AB)−κ(A). This leads to (κ|A)|B(ω) = κ(ω)−κ(A)−
κ′(B) = κ(ω)− κ(A)− κ(AB) + κ(A) = κ(ω)− κ(AB)
for models of AB. With an analogous calculation we get
κ′′(A) = κ(AB)−κ(B) and (κ|B)|A(ω) = κ(ω)−κ(AB)
for models ofAB. Thus, we get (κ|A)|B(ω) = (κ|B)|A(ω)
for all ω |= AB.

Let κ be a ranking function as shown in Figure 4. The
forgetting of b leads to the conditionalization of κ to b, κ◦b =

κ|b, and to a removal of all the most plausible worlds. As a
result we get (c|a) ∈ C(κ◦b) but (c|a) 6∈ C(κ) so that (W)
is not fulfilled.

Conditionalization does not fulfill (wC). Let κ be a rank-
ing function over Σ = {a, b} with κ(ab) = 0, κ(ab) =
κ(ab) = 1 and κ(a b) = 2. By conditionalizing κ to awe get
κ|a = κ◦a and κ◦a(ab) = κ◦a(ab) = 0. This leads to a loss of
the belief in b, because it is b ∈ Bel (κ)|{b} = Cn(ab)|{b} =
Cn(b), but b 6∈ Bel (κ◦a) = Cn(a).

The previous example also shows that conditionalization
does not fulfill (sC). The conditionalization of κ to a leads
to the belief in a, a ∈ Bel (κ◦a) = Cn(a), whereas this
belief is not present in the prior ranking function, a 6∈
Bel (κ)|{b} = Cn(ab)|{b} = Cn(b). Conditionalization does
not fulfill (CP) because neither (wC) nor (sC) is fulfilled.

Figure 5 shows that conditionalization does not fulfill
(wE). It is Bel (κ1) = Bel (κ2) = Cn(a). By condition-
alization of κ1, κ2 to a all worlds of the most plausible

474

level are deleted. The worlds of the second plausibility level
form the new beliefs, yielding b∈Bel (κ1|a) = Cn(ab), but
b 6∈Bel (κ2|a) = Cn(ab).

7 Conclusion and Future Work
In this paper, we presented general axiomatic properties for
forgetting operators on epistemic states that are inspired by
postulates having been proposed in the framework of answer
set programming (ASP). In order to capture both the formal
setting and the intuition behind the ASP postulates suitably,
we reinterpreted logical notions and their roles for ASP rea-
soning in a generic epistemic framework and used these for-
mal correspondences to translate the postulates. Then, we
chose three central forgetting operators presented in (Beierle
et al. 2019) and evaluated them according to the epistemic
postulates. The results of this evaluation (see Table 1) show
that forgetting in ASP is very similar to marginalization that
fulfills all the postulates, but very different from contraction
which rather follow the ideas of AGM theory (Alchourrón,
Gärdenfors, and Makinson 1985) and do not comply with
any postulate. The similarity between ASP forgetting and
marginalization is not surprising because both implement
variable elimination. However, while marginalization occurs
as a very simple and natural operation in (semi-) quantitative
frameworks like probabilistics and ranking theory, forget-
ting in qualitative logical environments seems to demand for
comprehensive investigations and theories (see, e.g., (Del-
grande 2017)). General axiomatic properties as the ones we
propose in this paper may be very helpful for making sub-
tle differences between specific forgetting operators appar-
ent, therefore we will continue our axiomatic evaluations on
more forgetting operators.

The non-compliance of contraction with the postulates
suggests that AGM-like changes are not suitable to imple-
ment forgetting in the ASP sense. Nevertheless, as Del-
grande states (Delgrande 2017), multiple and more complex
types of belief changes could achieve results analogous to
forgetting in the sense of syntax reduction. This leaves much
room to bring together the multiple kinds of forgetting in
the common-sense understanding into one theory. It is part
of our ongoing work to broaden the axiomatic framework of
forgetting by also taking AGM-inspired postulates into ac-
count, and to evaluate more forgetting operators (e.g., from
(Beierle et al. 2019)) according to it.

Conditionalization shows that there are more forgetting
operators beyond variable elimination and contraction. Usu-
ally looked upon as a means to perform revision by assuming
sentences A to hold, the forgetting aspects of conditional-
ization, i.e., its irreversible blinding out of all cases where
A does not hold, are often overlooked. Our results show that
forgetting by conditionalization is similar to both variable
elimination and contraction, but with different respects.

The forgetting operators that we evaluated in this paper
are all based on ranking functions (Spohn 1988), but our
epistemic postulates are applicable to more general notions
of epistemic states. The next step will be to study forgetting
operators on epistemic states that are equipped with total
preorders to implement plausibility relations. This epistemic

setting is particularly useful in the areas of nonmonotonic
reasoning and belief revision.

References
Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985. On
the logic of theory change: Partial meet contraction and re-
vision functions. Journal of Symbolic Logic 50(2):510–530.
Beierle, C., and Kutsch, S. 2018. Computation and compar-
ison of nonmonotonic skeptical inference relations induced
by sets of ranking models for the realization of intelligent
agents. Applied Intelligence. (to appear; online first 2018,
June 23).
Beierle, C.; Kern-Isberner, G.; Sauerwald, K.; Bock, T.; and
Ragni, M. 2019. Towards a general framework for kinds
of forgetting in common-sense belief management. KI -
Künstliche Intelligenz. (to appear; First Online 8 December
2018).
DeFinetti, B. 1974. Theory of Probability, volume 1,2. New
York: John Wiley and Sons.
Delgrande, J. P. 2017. A knowledge level account of forget-
ting. J. Artif. Intell. Res. 60:1165–1213.
Eiter, T., and Kern-Isberner, G. 2018. A brief survey on
forgetting from a knowledge representation and reasoning
perspective. KI - Künstliche Intelligenz.
Gelfond, M., and Leone, N. 2002. Logic programming and
knowledge representation – the A-prolog perspective. Arti-
ficial Intelligence 138:3–38.
Gonçalves, R.; Knorr, M.; and Leite, J. 2016. The ulti-
mate guide to forgetting in answer set programming. In
Baral, C.; Delgrande, J. P.; and Wolter, F., eds., Principles
of Knowledge Representation and Reasoning: Proceedings
of the Fifteenth International Conference, KR 2016, Cape
Town, South Africa, April 25-29, 2016., 135–144. AAAI
Press.
Kern-Isberner, G.; Bock, T.; Sauerwald, K.; and Beierle,
C. 2017. Iterated contraction of propositions and condi-
tionals under the principle of conditional preservation. In
Benzmüller, C.; Lisetti, C. L.; and Theobald, M., eds., GCAI
2017, 3rd Global Conference on Artificial Intelligence, Mi-
ami, FL, USA, 18-22 October 2017., volume 50 of EPiC
Series in Computing, 78–92. EasyChair.
Kern-Isberner, G. 2001. Conditionals in nonmonotonic rea-
soning and belief revision. Springer, Lecture Notes in Arti-
ficial Intelligence LNAI 2087.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Trans. Comput. Logic
2(4):526–541.
Lin, F., and Reiter, R. 1994. Forget it! In In Proceedings of
the AAAI Fall Symposium on Relevance, 154–159.
Spohn, W. 1988. Ordinal conditional functions: a dynamic
theory of epistemic states. In Harper, W., and Skyrms, B.,
eds., Causation in Decision, Belief Change, and Statistics,
II. Kluwer Academic Publishers. 105–134.
Wong, K.-S. 2009. Forgetting in Logic Programs. Ph.D.
Dissertation, University of New South Wales.

475

