
Synthesis of Limit Problems for Single-Variable Calculus

Blake Glueck
Bradley University

bglueck@mail.bradley.edu

Chris Alvin
Furman University

chris.alvin@furman.edu

Abstract

This paper presents a method for generating single-variable
limit problems for an introductory Calculus course. Our
method generates problems in two steps. The first step uses an
evolutionary approach to construct unique functions f . The
second step involves an analysis of f to compute distinct “ap-
proach” values. Our simulations demonstrate the limitations
and utility of our approach.

1 Introduction
Calculus textbooks are replete with quality limit problems;
however, no explicit techniques exist for generating fresh
problems that do not adhere to common problem templates
(Singh, Gulwani, and Rajamani 2012). Functions in limit
problems tend to evidence a similar, somewhat simple struc-
ture; hence, textbook problems may begin to present little
challenge for a fastidious student. We present a technique
for generating fresh limit problems that deviate from stan-
dard textbook structure.

In this paper, we consider limit problems of the form
limx→a f(x) where f is both a function and expression de-
fined by independent variable x. Our generation technique
operates in two steps. We first generate a function f using
an evolutionary technique where each function f is an indi-
vidual in the population of all functions. Second, for f we
compute ‘approach’ values (a in the limit expression).

Consider the expressions A = ln2(x)/(53− x)− |x| and
B =

√
1− x/(x + 3). Each expression can be represented

as a syntax tree following standard notions of mathematical
operator precedence and associativity we call an expression
tree; see Figure 1 and Figure 2, respectively. We note expo-
nential expressions (bn) are expressed as a binary function
exp(b, n) in Figure 2 and generally roots are represented as
rational exponents in our expression language.
Evolutionary Operations. Our technique operates with
standard evolutionary operations (selection, crossover, and
mutation) and evaluates the relative merit of individual func-
tions using a fitness function.

Selection. We select the most fit individuals according to
a fitness function fit. The larger the fitness score, the greater

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

-

÷

exp

ln

x

2

-

53 x

abs

x

Figure 1: A = ln2(x)
(53−x)−|x|

as an Expression Tree

÷

exp

-

1 x

÷
1 2

+

x 3

Figure 2: B =
(1− x)1/2

x+ 3
as an Expression Tree

-

exp

-

1 x

÷
1 2

abs

x

Figure 3: crossover(A,B)

= (1− x)
1
2 − |x|

÷

exp

-

1 x

÷
1 2

abs

x

Figure 4: Mutation:
AB∗ = mutate(AB) =√

1−x
|x|

the probability that an individual will be a member of the
next generation.

Crossover. The crossover operation takes two individuals
and produces one offspring individual and is based on sub-
tree replacement. For example, replacing the subtree rooted
at the division node (boxed ÷) in Figure 1 with the sub-
tree rooted at the exponential node (boxed exp) in Figure 2
results in the expression tree representing AB in Figure 3:
AB = (1− x)

1
2 − |x| = √

1− x− |x|.
Mutation. A mutation may be applied in several ways to

an expression tree. For example, in Figure 3 we may change
subtraction to division in AB resulting in AB∗ in Figure 4.
Mutation may have a significant impact on generated limit
problems. That is, AB (Figure 3) is structurally isomorphic
to AB∗ (Figure 4), but AB∗ =

√
1−x
|x| results in a more dif-

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

408

ficult limit problem at x = 0 due to the restrictive domain.
Computing ‘Approach’ Values. The second phase of limit
problem construction is to determine ‘approach’ values (a in
limx→a f(x)). Our analysis considers the domain of f . For
AB∗ in Figure 4, domain(AB∗) = (0, 1]. We intuitively
consider the two endpoints of the interval as possible ‘ap-
proach’ values: x = 0 and x = 1. For each candidate value
a, we determine the directions for which x may limit to-
ward a: from the right (+), from the left (−), or both. For
AB∗ =

√
1−x
|x| , we may only approach x = 0 from the right

and x = 1 from the left. Hence, we generate the limit prob-
lems: limx→0+

√
1−x
|x| and limx→1−

√
1−x
|x| .

2 Preliminaries
We restrict our definitions to the Euclidean Plane and as-
sume the standard definition of mathematical notions such
as endpoints, interval, domain, function, continuous, etc. We
use the standard notion of a bounded interval which con-
sists of all points that lie between fixed endpoints. Further, a
closed interval contains all of its limit points.

We partition the mathematical operators into unary and
binary subsets. The binary operators consist of addition (+),
subtraction (−), multiplication (∗), division (/ or ÷), and
exponentiation (exp or ̂). The set of unary operators con-
sists of basic trigonometric functions (sin, cos, tan), abso-
lute value (| | or abs), limited rational powers (2, 3, √, 3

√,
natural logarithm (ln), reciprocal (−1), and negation (−).
Our operands are limited to a subset of the real numbers and
an independent variable (commonly, x). Since coefficients
do not implicitly modify the difficulty of a limit problem
(while it does deepen an expression tree), we limit integer
values to [0, 100] and rational numbers to those with de-
nominators in [2, 9]. We also limit irrationals to π and e.

Each function corresponds to a valid expression tree in
which operands are leaves and all non-leaf nodes are opera-
tors. Let f be a function with domain D. An approach value
is a limit-point of D. An approach side is one of three forms
depending on the domain of a function f and an approach
value. Let a be an approach value for f . For an increasing
(resp. decreasing) sequence of points S ⊂ D limiting to-
ward a we say the approach side is from the left (resp. right)
and write a− (resp. a+). In cases where both decreasing and
increasing sequences limit toward a in D, we say the the ap-
proach side is two-sided. Hence, we may formally define a
single-variable limit problem.

Definition 1 (Limit Problem). A single-variable limit prob-
lem is a triple 〈a, s, f〉 where a is an approach value, s is an
approach side, and f is single-variable function.

For fitness of f , we compute several quantities based on
the expression tree of f : number of operators tf , number
of operands rf , the height hf , and the maximum level-
based width, wf . While it is not our goal to echo prob-
lems from a textbook, we do look to those problems as a
guide for fitness. For an initial population of problems, P0,
we compute the mean and standard deviation of each quan-
tity. As an example, for the number of operators, we have

Algorithm 1 Function Generation
Require:

1: P0: Corpus; GENS: Upper bound Epochs;
2: M: Mutation Rate; T : Tournament Size
3: function GENFUNCTIONS, (P0, GENS)
4: Pop ← INITIALIZE(P0)
5: for epoch ← 1 to GENS do
6: Pop′ ← ∅
7: for j ← 1 to |Pop| do
8: I1, I2 ← TOURN-SELECT(Pop, T)
9: I ← CROSSOVER(I1, I2)

10: Pop′ ← Pop′ ∪ MUTATE(I)

11: return Pop′

t̄P0
= 1

n ·∑f∈P0
tf and st =

√∑
f∈P0

tf

|P0|−1 , respectively. We

similarly compute the means r̄P0 , h̄P0 , and w̄P0 and standard
deviations sr, sh, and sw.

We seek to construct limit problems that deviate from
standard textbook problems; that is, we do not wish to mimic
the structure of existing limit problems (by, for example,
scraping textbooks). Therefore, our fitness function seeks to
maximize variation in z-scores for each of the characteristics
of a function f :
fit(f) =

∣∣∣ tf−t̄P0

st

∣∣∣+ ∣∣∣ rf−r̄P0

sr

∣∣∣+ ∣∣∣wf−w̄P0

sw

∣∣∣+ ∣∣∣hf−h̄P0

sh

∣∣∣.
3 Algorithm

3.1 Function Generation
Our evolutionary algorithm (EA) for function generation is
defined in Algorithm 1. For an initial population we use an
existing corpus of textbook limit problems, P0 (Line 4). We
use a refined initial population so that we avoid iterations to
search the space for a reasonable starting population.

We then construct the next generation of individuals using
a standard evolutionary approach (Line 6 to Line 10). We use
tournament selection (Miller and Goldberg 1995) on Line 8
to identify the two most-fit individuals (using fit) from a ran-
dom subset of the input set Pop of size T by calling TOURN-
SELECT. On Line 9 we then perform a CROSSOVER opera-
tion on the these two individuals resulting in a new individ-
ual I . Last, we selectively MUTATE I (Line 10) according to
the mutation rate M.
Crossover. We use a ‘balanced’ sub-tree replacement tech-
nique as our crossover operation. That is, for expression
trees S1 and S2 corresponding to two limit problems, I1
and I2, we identify respective candidate nodes n1 and n2

for which to perform replacement. We compute the height
of a desirable substitution subtree: the difference of the min-
imum depth �1 of all leaves in S1 and the height h1 of S1.
In Figure 1, hd = h1 − �1 = 4 − 2 = 2. We then choose
a node n2 with height hd in S2 as the root of our subtree to
copy: exp in Figure 2. If no such node exists in S2, the op-
eration fails. We then copy S1 with the subtree rooted at n1

replaced with the subtree rooted at n2; e.g., Figure 3. Since
the replacement subtree is the same height as the subtree it
is replacing, our operation mitigates imbalance.

409

Mutation. We describe three different mutations to expres-
sion trees: substitution, expansion, and regression.

Substitution mutation randomly selects a node and per-
forms a syntactically correct replacement. That is, if an op-
erator is chosen, a random, syntactically correct operator is
chosen: unary or binary. If an operand is chosen, an alter-
nate operand is generated for replacement. We restrict vari-
able replacement such that an argument to a function (sine,
square root, etc.) must maintain a variable expression:

√
x

will not be mutated to
√
2. For example, the subtraction root

node of Figure 3 is substituted to division in Figure 4.
Expansion mutation selects an arbitrary node w in the

expression tree of an individual and inserts a randomly-
generated unary operator as the new parent of w. If the root
of AB∗ in Figure 4 is expanded to include absolute value,
the expression

∣∣∣√1−x
|x|

∣∣∣ results; the expression tree is not de-
picted. Expansion may occur with a binary operator as well.
In this case, we also generate a new operand.

A regression mutation severs a link in an expression tree.
To be clear, regression mutation does not sever a subtree
from an expression tree. If the randomly selected unary node
n with parent p and single child c, the resulting subtree
rooted at p would now have child node c (eliminating n). For
a randomly selected binary node n with parent p and chil-
dren cL and cR, we select the subtree with greater height: p
is then the parent of cL or cR. For example, regressing AB∗
in Figure 4 at the absolute value node, results in

√
1− x/x.

3.2 Computing Approach Values
We must generate the approach value and approach side to
generate a complete limit problem limx→a f(x). For the ap-
proach value a, we first compute D = domain(f), the do-
main, D, of f . For meaningful limit problems, candidate ap-
proach values include finite interval endpoints in D (e.g.,
x = 0 for

√
x), around discontinuities (e.g., x = 0 for

(x−1)/x), and end behavior (e.g., x → ±∞). We also con-
sider as candidates the endpoints of subintervals with piece-
wise defined functions (e.g., x = 1 in |x− 1| /x).

For f and each candidate approach value a, we approx-
imate the limit infimum and limit supremum numerically
from the left and/or right. We do so by constructing an ap-
proach sequence of domain values of size M . We then add
subsequences of size N between each value in the approach
sequence. Last, we evaluate f at each value in the approach
sequence using an expert system (Wolfram and Gray 2018).
We can approximate a limit infimum and limit supremum
using this codomain sequence.

For end-behavior approach values a = −∞ or a = ∞,
we expand the distance between subsequent points as x
approaches a. That is, {xi} is constructed such that for
1 ≤ i ≤ M , |xi+1/xi| > K∞ > 1 for some constant
K∞. For a = −∞, it is clear xi < 0 for all i; similarly, for
a = ∞, xi > 0 for all i. In the case of a finite approach value
a, we consistently shrink the distance between subsequent
points such that for 1 ≤ i ≤ M , |a− xi| > |a− xi+1| > 0.
If we approach a from the right, for all i, xi > a; similarly,
approaching a from the left requires xi < a for all i.

Given an approach sequence of values, we construct a set

Table 1: Characteristics of Limit Problem Corpus
Operators Operands Height Width

Mean 3.79 3.69 4.03 2.85
Std. Dev. 1.60 1.64 1.06 1.07

of N interior sequences such that each element is between
the values in the approach sequence {xi}. That is, each in-
terior sequence {zj} of size N is generated such that for all
1 ≤ i ≤ M − 1, xi < zj < xi+1 for all 1 ≤ j ≤ N .
We then combine these x-values into a large, ordered ap-
proach sequence: X = {xi} ∪ {zj}1 ∪ . . . ∪ {zj}M−1. We
then compute the corresponding sequence of function val-
ues: FX = {f(x) | ∀x ∈ X}.

We then approximate the limit infimum and limit supre-
mum. If, as x approaches a in X , FX numerically limits to a
finite value L, the limit exists. We thus construct the associ-
ated limit expression noting a and the approach side. So for
a = ∞, we might write limx→∞ f(x) = L or in the case of
a finite a from the right, we may write limx→a+ f(x) = L.

If the limit of FX is numerically inconclusive,
we approximate lim supx→∞ f(x) by taking max-
ima of progressive subsequences of FX ; similarly for
lim infx→∞ f(x) and minima. If the limit infimum and
limit supremum computations imply FX is monotonic,
we know end-behavior limits tend toward ±∞. By
definition, if lim infx→a− f(x) = lim supx→a− f(x)
then limx→a− f(x); similarly for limx→a+ f(x). Last,
if limx→a− f(x) = limx→a+ f(x) = L it follows
limx→a f(x) = L. We generate limit problems accordingly.

4 Simulations
Setup. Our corpus of input limit problems consisted of 37
limit problems from a seminal Calculus textbook (Larson,
Hostetler, and Edwards 2002). We use Mathematica (Wol-
fram and Gray 2018) as an expert system for computing de-
scriptive elements of each function (e.g., domain, etc.).

We ran the algorithm described in §3 with the following
parameters. Selection uses tournament selection with tour-
nament size 5 and elitism (the unaltered most-fit individual
always proceeds to the next generation). To avoid expression
tree bloat, we used tree size (tree node count) 20 as the max-
imum number allowed after the crossover operation. After
some tuning, the mutation rate for each type of mutation was
set to 0.1. If regression would result in a tree of size smaller
than the minimum tree size of 5, no regression occurs.

A main focus of our approach is ensuring that the search
space is free of fundamentally uninteresting or unreason-
ably difficult expressions. In our implementation we exclude
the following configurations of binary operators, unary op-
erators, numbers, and variables: simplifiable constants (e.g.,
2+2), trivial unary operations such as |2|, and complex vari-
able expressions (xx, 2sin x, xex , (x3)

x, cosxsin x).
Results. We present some of our preliminary results. In or-
der to greater appreciate our results, we describe a sample
problem from our corpus. Many textbook limit problems
like limx→2+(x− 3)/(x− 2) evidence a domain restriction

410

Table 2: Generated Limit Problems after 100 Generations

lim
x→ln 3−

|x|+ 9

(3− ex) (x− 5)x
lim
x→0

3ee |x|
5x2

lim
x→5−

9

(3− ee) (x− 5)x |x| lim
x→0+

(−x− 4)x− 2x+ 5

−x
e
− 2x

lim
x→5−

9 |x|
(3− ex) (x− 5)x

lim
x→ln 3−

3 |x|
25 (3− ex) (x− 5)

lim
x→ln 3+

9 |x| − x

(3− ex) (x− 5)
lim

x→5−
9 |x| − x

(3− ex) (x− 5)

and thus are quite straightforward in terms of their solving.
This simplicity is quantitatively evident in the number of op-
erators (3), operands (4), height (2), and width (4). We can
see this general trend of ‘simpler’ limit problem functions in
our corpus by observing the mean and standard deviations
in Table 1.

Our goal is not to mimic textbook problems, but construct
more diverse and complex limit problem templates as de-
scribed in (Singh, Gulwani, and Rajamani 2012). We re-
port the means for generated problems contrasting our cor-
pus problems (Table 1): operators (10.65), operands (10.69),
height (6.88), width (7.69), and fitness score (15.59). Recall
that our limit problem fitness function (§2) maximizes com-
bined z-scores. Our upper bounds, in concert with our fit-
ness function thus shrink the search space to more palatable
problems. We present a sample of problems constructed af-
ter 100 generations in Table 2. Compared to the simplicity
of the corpus problem limx→2+(x− 3)/(x− 2), our gener-
ated problems are much more complex, yet manageable due
to our upper bounds on expression tree characteristics.
Discussion. We believe our algorithm provides a solid
framework for limit problem and limit problem template
generation; however, further tuning of parameters should
be investigated. Specifically, our fitness functions can be
moderated according to the desired problems. For exam-
ple, if we wish to explore the space of textbook prob-
lems, we would desire fitness scores of 0 which indicates
an ‘average’ problem. In fact, in some early experiments
we are able to generate simple textbook problems such as
limx→3−(x− 2)/(x− 3).

5 Related Work
Koza (Koza 1996) provides a comprehensive view of genetic
algorithms and genetic programs. In section 7.3, Koza pro-
vides an example of algebraic expression manipulation us-
ing an EA. He explores the problem of symbolic regression
using a set of functions similar to the set used in our simu-
lations. Although our goals differ, Koza explores a selection
procedure based on a “fitness roulette wheel.” In this roulette
implementation, Koza assigns each individual a proportion
of a roulette wheel based on that individual’s fitness value
compared to the combined fitness values of all individuals
in the population. When the roulette wheel is ‘spun,’ the in-
dividual with the highest fitness value has the highest prob-
ability of being selected for a given position in the next gen-
eration’s population. This contrasts our tournament selection
procedure of most-fit individuals in a random subset.

(Ferreira 2001) describes an alternative representation to
standard genetic algorithms by introducing gene expression
programming. This technique defines an individual to be a
fixed-length string composed of elements from two alpha-
bets: (1) a set of functions (+, −, etc.) and terminals (vari-
ables and constants) and (2) a set of terminals. The ma-
nipulations Ferreira defines on the strings guarantees syn-
tactically valid expressions. This technique is of interest if
we wished to explore the space of template functions for
‘simpler’ limit problems. However, we are left unconvinced
that the entire space could be explored with Ferreira’s algo-
rithms. We chose not to mimic the technique of Ferreira due
to the use of fixed-length strings. We believe non-expansive
strings would stifle the search for challenging function tem-
plates for limit problems.

Grosan (Grosan 2004) follows Ferreira by evolving ex-
pressions as fixed length strings of operators and operands.
Their fitness function takes the minimum of all constituent
subexpressions encoded in an individual justifying their
choice as “neither practical nor theoretical evidence that one
of these expressions is better than the others.” Whereas, our
technique attempts to define fitness based on diversity of
function characteristics.

6 Conclusions
We described a two-step process to limit problem gener-
ation. First, we defined an evolutionary approach to func-
tion generation via syntactic tree manipulation. We believe
this general approach can be used to generate expressions
for other classes of problems such as arithmetic expression
simplification (with +, −, ∗, ÷), domain computation, com-
plex derivatives, and more. Our second contribution is limit
problem construction via systematic numerical analysis of
function domains. Our experiments indicate the generated
problems are more appropriate as challenge problems for
students. Although our results are preliminary, we feel con-
structing diverse problem templates may be a tool for stu-
dent mastery and may aid educators when writing homework
sets or difficult exam problems.

References
Ferreira, C. 2001. Gene expression programming. Complex
Systems 13(2):87–129.
Grosan, C. 2004. Evolving mathmatical expressions using
genetic algorithms. In Genetic and Evolutionary Computa-
tion Conference (GECCO).
Koza, J. R. 1996. Genetic programming. Cambridge, MA:
MIT Press.
Larson, R.; Hostetler, R.; and Edwards, B. 2002. Calculus
with analytic geometry, 3rd Edition. Houghton Mifflin.
Miller, B. L., and Goldberg, D. E. 1995. Genetic algorithms,
tournament selection, and the effects of noise. Complex Sys-
tems 9(3).
Singh, R.; Gulwani, S.; and Rajamani, S. K. 2012. Auto-
matically generating algebra problems. In AAAI.
Wolfram, S., and Gray, T. 2018. Wolfram mathematica stu-
dent edition version 10.

411

