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Abstract 
In this paper, we aim to predict students’ learning perfor-
mance by combining two-modality sensing variables, namely 
eye tracking that monitors learners’ eye movements and elec-
troencephalography (EEG) that measures learners’ cerebral 
activity. Our long-term goal is to use both data to provide ap-
propriate adaptive assistance for students to enhance their 
learning experience and optimize their performance. An ex-
perimental study was conducted in order to collet gaze data 
and brainwave signals of fifteen students during an interac-
tion with a virtual learning environment. Different classifica-
tion algorithms were used to discriminate between two 
groups of learners: students who successfully resolve the 
problem-solving tasks and students who do not. Experi-
mental results demonstrated that the K-Nearest Neighbor 
classifier achieved good accuracy when combining both eye 
movement and EEG features compared to using solely eye 
movement or EEG. 

 Introduction   
In recent years, there has been a rising interest in computer-
based learning environments in using different indicators to 
monitor students’ experience and learning performance. In 
fact, understanding students’ behaviour is of primary inter-
est since it allows learning systems to adapt help strategies 
accordingly. In this context, it is important to constantly as-
sess the learners’ cognitive states.  
 The use of sensing technology has proven its effective-
ness as they provide reliable indicators about the students’ 
behaviour within educational environments (Ben Khedher 
et al. 2019; Jraidi et al. 2013; Jraidi and Frasson 2013). Dif-
ferent physiological sensors are being used such as heart rate 
(AL-Ayash et al. 2016; Le et al. 2018), galvanic skin res-
ponse (Noroozi et al. 2018; Nourbakhsh et al. 2012), body 
posture (D’Mello et al. 2012; Grafsgaard et al. 2013), facial 
expressions (Sawyer et al. 2017; Whitehill et al. 2011), etc. 
Among all existing technologies, eye tracking (ET) and 
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electroencephalography are increasingly being used since 
they provide valuable quantitative and objective information 
regarding both the learners’ visual behavior and brain activ-
ity (Ben Khedher et al. 2017a, 2018a; Berka et al. 2007; 
Chaouachi et al. 2010).   
 EEG has been shown to be a predictor of learners’ mental 
state while interacting with computer-based learning envi-
ronments. Moreover, researches have shown that students’ 
mental states affect their cognitive process and thus their 
learning performance. Therefore, it is fundamental for intel-
ligent tutoring systems to identify learners’ states 
particularly negative states in order to develop appropriate 
interventions. For instance, engagement (Huang et al. 2014), 
frustration (Heraz et al. 2007), workload (Berka et al. 2007; 
Chaouachi et al. 2010) and confusion (H. Wang et al. 2013) 
are among the most common observed states that can be de-
tected using EEG during a learning process.  
 In the same context, eye movements are also closely 
linked to human cognition. Indeed, eye tracking have be-
come widely used in educational environments this last dec-
ade, since it provides effective clues to educators that may 
help them assess students’ learning experience in an effort 
to enhance learning materials. Eye movements are the most 
common data sources that eye tracking researchers analyze 
to make inferences about cognitive and attentional pro-
cesses. Several eye movement features can be employed to 
assess leaners’ attention namely, fixations (Ben Khedher et 
al. 2017b, 2018b; Scheiter et al. 2018; F. Wang et al. 2018), 
saccades ( Lallé et al. 2018) and pupillary responses (Toker 
et al. 2017).  
 The objective of the current study is to investigate 
whether combining EEG and eye tracking sensing modali-
ties can improve predict students’ learning performance. In 
particular, the goal is to use both kind of features in the con-
text of problem solving to discriminate between successful 
and non-successful learners.  

 

The Thirty-Second International Florida 
Artificial Intelligence Research Society Conference (FLAIRS-32)

396



 The rest of the paper is organized as follows: section 2 
outlines some related works, section 3 describe the experi-
mental protocol as well as the data preparation process. Sec-
tion 4 discusses the obtained results and finally section 5 
presents a conclusion and future works. 

Related Works 
Many researchers are paying a particular attention to multi-
modal sensor based approaches in order to provide a more 
robust assessment model. In fact, using different sensors 
provides an added value and may help overcome the issues 
faced when using a single modality. This multimodal sen-
sors-based approach is used in different research domains to 
explore users’ behaviour (Arroyo et al. 2009; Brouwer et al. 
2017; Jraidi et al. 2014; Lobo et al. 2016; Scharinger et al. 
2015; Slanzi et al. 2017). For instance, Slanzi and his col-
leagues used three different sensors namely, eye tracking, 
pupil dilation and EEG to analyze users’ behaviour when 
performing a web search in order to predict click intentions. 
Results demonstrated that fixations with clicks had greater 
pupil size than fixations without clicks. In the work of 
Brouwer et al. (2017), EEG and eye tracking technique were 
used as data sources during a visual search task. The authors 
used fixation duration and pupil size to explore whether the 
user fixated a target (i.e an interesting point within the envi-
ronment) is fixated or not. 
 Merging different data sources is also widely used in 
learning environments (Harley et al. 2015; López-Gil et al. 
2016; Lu et al. 2015; Rodrigue et al. 2015; Shen et al. 2009). 
For instance, Harley and his colleagues (2015) used facial 
expression, self-reports and electrodermal activity (EDA) 
for emotion recognition. Results indicated high agreement 
between facial expressions and self-report suggesting that 
these two modalities are reliable indicators of learners’ emo-
tions. However, low agreement was found in terms of EDA. 
Muldner and Burleson (2015) used EEG, eye tracking and 
skin conductance to differentiate between high and low cre-
ativity students (Muldner and Burleson 2015). Similarly in 
(Kruger et al. 2013), the authors measured cognitive load by 
means of pupil dilation, EEG and self-reports. They reported 
significant correlations between cognitive load and pupil di-
lation and EEG, respectively. For instance, negative emo-
tional states are correlated with higher cognitive load.  
 Although the previously stated works used several sen-
sors to assess learners’ cognitive behavior, they are not gen-
erally combining features from all sensors. Each channel is 
correlated in an isolated way to the target variable. In this 
work, we propose to combine EEG and eye tracking to as-
sess students’ learning performance during a problem-solv-
ing task. We used different features from both modalities 
and investigate whether the combination of several modali-
ties can outperform a single modality. 

Experimental Study 
In this experiment, we recorded the eye movements and cer-
ebral activity of novice medicine students as they were in-
teracting with our learning environment Amnesia and solv-
ing clinical cases. For that purpose we used eye tracking and 
encephalography (EEG) techniques to extract respectively 
two fixation-based metrics and two brain indexes as pre-
sented in figure 2.  

Apparatus 
For the eye movement recording, a commercial eye tracker 
(Tobii Tx300) with a sampling rate of 300 Hz was used. Par-
ticipants were seated in front of a 23-inch computer monitor 
(1920 x 1080 resolution) that integrates the infrared sensors 
and the camera. The monitor, on which the stimuli was dis-
played, was placed at a distance of 65 cm approximately 
from the participants’ eyes. Free head movements were al-
lowed during the experiment.  
 For the recording of the EEG signals, we used the Emotiv 
EPOC neuroheadset with a 128 Hz sampling frequency. The 
headset contains 16 electrodes placed according to the 10-
20 international standard (Klem et al. 1999) as shown in fig-
ure 1. Fourteen electrodes representing different brain re-
gions (O1, O2, P7, P8, T7, T8, C5, FC6, F3, F4, F7, F8, AF3 
and AF4) and two more reference electrodes corresponding 
to the P3 and P4 regions called respectively, Driven Right 
Leg (DRL) and Common Mode Sense (CMS). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Emotiv EPOCs eletrodes positioning. 

Participants 
We collected data from fifteen undergraduate students re-
cruited at the medicine department. Participants were be-
tween 20 to 27 years (M =21.8, SD =2.73).  

Protocol 
The first step for the participant is to sign a consent form 
that explains the material and the course of the experiment. 
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Then, an introductory scene was shown as well as a re-
minder of the game’s objectives. After, we outfitted the par-
ticipant with the EPOC headset and placed him in front of 
the eye tracker. Finally, a standard 9-point calibration was 
performed to evaluate the measured gaze point quality. All 
participants in the experiment passed the calibration phase 
successfully.  
 Upon the end of the setup process, the recording session 
begins by displaying the serious game to the participants. 
When playing, the learner resolved six different medical 
cases. For each medical case, the participants were in-
structed to identify the correct diagnosis and the appropriate 
treatment. They had to consider a series of observations such 
as patients’ demographic information, symptoms and ante-
cedents. For each diagnosis, the students were given differ-
ent response alternatives and they had up to three attempts 
to find out the correct answer. They could also collect addi-
tional clinical data such as analyses and antecedents until 
reaching the right diagnosis. Once the diagnosis is estab-
lished, the students had also up to three attempts to find out 
the adequate treatment and after three errors made either in 
the diagnosis or the treatment, the game is over.  
 The players had 30-45mn of time to interact with the 
whole game. Once they resolved all cases or the game was 
over, the learners filled a post-game questionnaire related to 
the game design and usability.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. General representation of the predictive model 

Data Preparation 
Eye Movement’s Recording 
We used iMotions 5.2 software for data analysis and fea-
tures extraction. The biometric Attention Tool integrates an 
eye tracking platform for visual attention detection that of-
fers a high quality data acquisition and analysis.  

 In each medical case, we divided the interface into differ-
ent regions as to perform detailed analyses according to dif-
ferent areas of interest (AOI). Six specific regions were de-
fined representing six task-relevant regions within the reso-
lution environment, as presented in figure 3: Information (I), 
Antecedents (A), Symptoms (S), Analyses (N), Diagnosis 
(D) and Treatment (T). The I are of interest contains the de-
mographic information of the patient (e.g. first name, age, 
weight, etc.). The A area includes the previous diseases that 
the patient could have had. All the symptoms related to the 
specific disease are represented in the S area. In the N region, 
we show additional clinical data such as heart rate and blood 
pressure. In the D region, we present different diagnosis al-
ternatives among which the student has to pick out the cor-
rect illness. Finally, in the T area we show different treat-
ment alternatives among which the student has to choose the 
adequate ones.   
 From eye movement recordings, two features were ex-
tracted namely; fixation duration and number of revisits. 
Fixation duration represents how long the participant main-
tains fixating each area of interest. Number of revisits rep-
resents how many times the participant re-fixate the AOI. 
Mental States’ Recording 
In this study, two brain indexes namely, mental engagement 
and mental workload, were extracted using the methodology 
of (Chaouachi et al. 2015). The engagement index was com-
puted by establishing a ratio between the three EEG fre-
quency bands θ (4-8 Hz), α (8-13 Hz) and β (13-22 Hz) as 
follows:  
 

Engagement index = β/ θ + α 
 

 For each participant, the three frequency bands were 
transformed by multiplying 1-second of the EEG signal by 
a Hamming window and applying a Fast Fourier Transform. 
Then θ, α and β values were summed to obtain a combined 
value over all the 14 regions. Finally, a 40-second mobile 
window was used to reduce the fluctuation of the obtained 
engagement index. For instance, the value of the index at 
time t represents the total average of the ratios computed on 
a period of 40-second preceding t.  
 Unlike the engagement index, for the mental workload 
measurement, there is no a standard index directly extracted 
from the EEG signals. For that purpose, the authors built a 
predictive mental workload model for each participant 
based on two phases namely, training phase and learning 
phase. In the first one, brainwave signals of the participants 
were recorded as they were resolving some cognitive tasks. 
Then, from the obtained data, EEG features were extracted 
and used as inputs in the model to derive a mental workload 
index as output. Then, the second phase was used to validate 
whether the workload index computed in the training phase  
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Figure 3. The six areas of interest in all the medical cases. 

was able to assess the evolution of students’ learning expe-
rience. For more details about the procedure, please refer to 
(Chaouachi et al. 2015).  
 In order to assess the learner's mental behavior, a slope of 
each index is computed using the least squared error func-
tion of the index’s values in each medical case. For the en-
gagement index, if the slope value is positive, then the 
learner is considered as mentally engaged. Otherwise, the 
learner is considered as mentally disengaged. For the work-
load index, if the slope value is between - 0.03 and + 0.03, 
than the workload is considered as positive. Otherwise, if 
the slope value is above 0.03, the learner is considered as 
overloaded, and if the slope is below -0.03 the learner is con-
sidered as underloaded. Thus, the learner’s mental state is 
considered positive, if he is mentally engaged and neither 
overloaded nor underloaded; otherwise, it is considered neg-
ative. 

Results and Discussion 
In this experiment, we combined Eye Movement (EM) and 
EEG features to predict learners’ performance by discrimi-
nating between two groups of learners (group 1: success and 
group 2: failure). Fifteen features were extracted that de-
scribe learners’ visual and cerebral activity namely, mental 
engagement, mental workload, mental state, fixation dura-
tion (in each AOI) and time to first fixation (in each AOI). 
Then, for classification, we used 6 different classifiers 
namely Naïve Bayes, Multilayer Perceptron, Binary Lo-
gistic Regression, K-Nearest Neighbor, Decision Tree, and 
Random Forest. We used k-fold cross validation technique 

for prediction performance. We run the classifiers with dif-
ferent values of k and we obtained higher accuracies with 
k=7.  
 The classifier with the highest accuracy is the K-Nearest 
Neighbor (KNN) generated using the IBk algorithm, fol-
lowed by Multilayer Perceptron (MP). We run also a base-
line classifier that predicts the class that has the most obser-
vations in the training dataset (Success in our case). From 
table 1, we reported the highest accuracy rates in all cases 
for the KNN classifier compared to MP and baseline sug-
gesting that using a fusion between EEG and eye movement 
features, we were able to identify successfully the learners 
who may need assistance to resolve the medical cases.  

Table 1. Classifier accuracy results 

 IBk MP Baseline 

Success 83% 76% 85% 

Failure 45% 27% 9% 

Overall 75% 65% 69% 

 
 Furthermore, we built two other classifiers using in the 
first one only features that are linked to learners’ eye move-
ment and in the second classifier only features that describe 
learners’ mental states in order to assess whether the perfor-
mance achieved by combining the two modality is better 
than using a single modality. For EM-based features, the IBk 
classifier achieved 65.38% accuracy. One can say that it is 
a high performance, however, the recall evaluation metric 
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was very low (0.182). The same trend was observed for 
EEG-based features, where the IBk classifier was only able 
to predict the most likely class (group 1: success) showing 
that both modalities were note able to identify the group of 
learners who failed in the cases’ resolution.   
 As presented in table 2, the combination of EEG and eye 
tracking has shown the highest prediction rate in terms of 
the second class. We can also notice from the table that us-
ing only EEG-based features, the classifier fails to recognize 
the negative class (i.e. failure). These findings clearly show 
that using both types of features EM and EEG can improve 
prediction performance to discriminate between two groups 
of learners.  
 These findings confirm that a prediction model can be 
built based on a combination of features from two modali-
ties such as fixation duration and mental state. We suggest 
that our multimodal sensor-based approach can be used to 
effectively predict learners’ performance during an interac-
tion with a learning environment. 

Table 2. Classifier accuracy results per modality 

 EEG ET EEG and ET 

Success 100% 78% 83% 

Failure 0% 18% 45% 

Overall 79% 58% 75% 

Conclusion 
In this paper we have presented a two-modality sensor-
based approach to automatically predict students’ perfor-
mance using eye movements and electrophysiological activ-
ity. Our objective was to investigate whether combining 
both features can efficiently discriminate between two 
groups of learners: students who successfully resolved the 
different medical cases and students who do not. 
 We conducted an experiment in which novice medicine 
students interacted with the Amnesia serious game and re-
solved clinical cases. An EEG headset and an eye tracking 
device were used to record learners’ brainwave signals and 
eye movements respectively. Different classifiers were used 
to predict students’ performance: 75% of accuracy was 
achieved. Results demonstrated that the combination of 
electrophysiological and eye tracking sensors produced bet-
ter performance than the use of a single sensor. As future 
work, we are planning to use this predictive model in real 
time in order to predict learners’ performance trend and de-
velop early help strategies accordingly to enhance their 
learning experience. 
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