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Abstract 
Interaction with games can induce emotional reactions which 
could have an impact on players’ game experience and per-
formance. Physiological sensors such as EEG and eye track-
ing represent an important mean to track these emotional re-
actions. In addition, virtual reality isolates the players from 
the external environment, strengthening the emotional 
measures. In this paper, we present an explorative study of 
the use of eye tracking for game adaptation according to the 
players’ excitement. Results showed that there exists a rela-
tionship between the modification of the game’s speed and 
the EEG excitement index and a correlation between eye 
movement and excitement as well. These results suggest that 
eye tracking could be a valid support or replacement of EEG 
data in game adaptation. 

Introduction   
Recent years have witnessed an increasing interest in de-
signing adaptive and player-centric strategies within video 
games research studies (Frommel et al., 2018). This trend 
has been highlighted with the ongoing advances in Artificial 
Intelligence and more specifically in the field of affective 
computing (Brigham, 2017) One of the main challenges of 
these studies is to create sensing mechanisms able to infer, 
monitor and analyze the players’ affective states, and to pro-
vide the adapted interaction in order to improve their game 
experience. The advent of Virtual Reality (VR), started a 
big shift in the current game adaptation frameworks. Despite 
the VR impact on the players’ immersive experience, this 
technology significantly limits the ability to sense the play-
ers’ affective states compared to traditional assessment sys-
tems as the player’s face is completely hidden by the VR 
headset. For instance, commonly used emotion detection 
methods using facial expressions, traditional eye tracking 
devices or external judges are not compatible with VR. 
 In this paper we propose a novel approach in analyzing 
the players’ states using two main sensing techniques, 
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namely electro-encephalography (EEG) and a VR Headset 
with a built-in eye tracking. We will use EEG data as real-
time source of players’ excitement analysis as well as the 
main criteria of game adaptation. Eye tracking data will be, 
conversely, used in our offline analysis of players’ excite-
ment. 
 Frequently mixed up in the literature with arousal or emo-
tional intensity, players’ excitement represents a key factor 
in their overall game experience. Excitement is defined as 
the anticipation of a positively appraised energy-based event 
(Ganjoo, 2005). It is also defined as a positive emotional 
state that consists of a high level of pleasure and arousal 
(Dursun et al., 2010). Detecting and optimizing players’ ex-
citement could be highly beneficial in VR games. Therefore, 
the focus in this paper is to assess the efficiency using a 
built-in eye tracking VR headset to analyze players’ excite-
ment in an adaptive VR game environment. In particular, 
our hypotheses are the following; H1: is there a correlation 
between excitement and eye tracking in video games? 
And H2: Is there a possibility to adapt a game using only 
eye tracking? 
 The rest of this paper is organized as follows. In Section 
2, we give an overview of the related works. In Section 3 we 
describe AmbuRun VR game. In Section 4, we present our 
adaptation approach and the physiological sensors that we 
use. In Section 5 we detail the experiment procedure, and 
finally, in Section 6 we present the obtained results. 

Related Works 

Game Adaptation 
Game experience is considered as the most important part, 
in designing games. In fact, it is considered to be of key im-
portance for creating captivating and entertaining games 
(Chanel et al., 2011; Frommel et al., 2018). 
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 Research has shown that adjusting dynamically the diffi-
culty in video games improves the game experience. How-
ever, it can be difficult to find out when adjustments and 
adaptation are necessary. In their study Frommel et al. 
(Frommel et al., 2018) proposed an approach of emotion-
based dynamic difficulty adjustment that uses self-reported 
emotions to inform when an adaptation is necessary.  In or-
der to test their approach, they conducted a study with 66 
participants so as to explore performance and effects on 
player experience. The results show that their approach, 
which consists of adapting difficulty according to emotions, 
provided a better player experience than other approaches 
which consist of adjusting dynamically the difficulty. 
 In the same vein, Ben Abdessalem et al. (Ben Abdessalem 
et al., 2018), proposed a neurofeedback approach in adapt-
ing a VR game, in order to improve the users’ game experi-
ence. They intervened on the VR game, assessed the impact 
of the different interventions, and adapted the game using 
adaptation strategy according to the player’s affective state. 
They used an adaptation strategy that focused not only on 
the game parameters but also the player’s affective states. 
They evaluated this approach by conducting an experi-
mental study involving 20 participants. The results showed 
that the adaptation of the game, directed by the user’s emo-
tional reactions, optimized their frustration and excitement 
in the game. 
 Moreover, Chanel et al. (Chanel et al., 2011) proposed to 
maintain player’s engagement by adapting games difficulty 
according to player’s emotions. They analyzed self-reports 
and physiological data and found that playing the Tetris 
game at different levels of difficulty provoked different 
emotional states. The results obtained from their study 
demonstrate the importance of adapting the game difficulty 
according to the emotions of the player in order to maintain 
his engagement. 

Eye tracking and EEG 
Most studies in brain assessment and emotions detection 
fields have used EEG signals and eye tracking to detect and 
assess emotions and mental states. Several researches are 
based on EEG signals in order to recognize the user’s emo-
tions and mental states. Horlings and his colleagues 
(Horlings et al., 2008) conducted a study using IAPS (Inter-
national Affective Picture System) on students. They 
showed them different images that provoke some emotions 
and, in parallel, measured their mental activity with EEG. 
Results showed that EEG allows the recognition and classi-
fication of users’ emotions. 
 Some other researchers used EEG data in the detection of 
emotions for improving learning. Chaouachi et al. 
(Chaouachi et al., 2015b) integrated two mental state in-
dexes extracted from EEG which are engagement and work-

load in their system called Mentor. This system used differ-
ent rules in order to maintain students in a positive mental 
state while learning (Chaouachi et al., 2015a). D'Mello et 
al. (D’Mello et al., 2012) used eye tracking data to detect 
boredom and disengagement in an intelligent tutoring sys-
tem that uses a commercial eye tracker. The system reorients 
the attentional patterns of the students when he detects their 
disengagement or boredom during the activity. 

 Virtual Reality Games 
Due to its remarkable progress in recent years, virtual reality 
started to be used in many fields. In fact, this technology has 
a lot of advantages and the major one is immersion. VR 
tricks the mind of the user and increases his sense of pres-
ence in the virtual environment, so that he thinks that he is 
really inside this environment. VR makes the user believe 
that he is in a real world and promotes his performance in 
games (Biocca, 2006). Therefore, VR is being increasingly 
seen as the most interesting way to present a video game to 
players.  
 In the field of serious games, (Ghali et al., 2017), de-
signed a VR game to teach some basic physics rules. In fact, 
VR offered an environment in which the user can deploy in-
tuitive reasoning and acquire knowledge faster than usual 
academic training. They assessed users’ emotional behavior 
and changed assistance strategies in real-time according to 
player’s levels of engagement and frustration in order to im-
prove their intuitive reasoning. 
 Moreover, Pedraza-Hueso et al. (Pedraza-Hueso et al., 
2015) introduced the development of a VR system based on 
a serious game in order to allow users to carry out physical 
and cognitive rehabilitation therapies using an interface 
based on Microsoft© Kinect. Their VR game consists of dif-
ferent types of exercises by which the user can train and re-
habilitate several aspects such as cognitive capacities. 
 In this research, we will use VR in order to create an 
adaptable immersive game according to EEG and eye track-
ing signals. 

AmbuRun VR Game 
We started by creating AmbuRun VR game. This game is 
about an ambulance carrying a sick person. The player takes 
control of the ambulance and tries to arrive safely at the hos-
pital without damage in order to save the sick person. The 
player should dodge the cars, buses, and tracks on the road 
to arrive without harm (Ben Abdessalem et al., 2018). 
 In this game, as shown in Figure 1, the user interface has 
three main areas, top left, top middle and top right. In the 
top left of the scene, the player can see the health bar of the 
sick person so he can monitor the person’s health while driv-
ing. In the top middle of the scene, the number of attempts 
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to arrive at the hospital. In the top right areas, the player can 
see the number of kilometers traveled. 
 As we mentioned, the player should dodge cars, buses and 
trucks. The difference between the cars and buses/trucks in 
the game play is that, if the player hits a bus or a truck (a big 
obstacle), the sick person will instantly die and he must try 
again, but if the player hits a car, the health of the sick person 
will just decrease and he will not die instantly but only after 
multiple car hits. Figure 1 illustrates a screen capture of the 
game. 
 
 
 
 
 
 
 
 
 

 

Figure 1 – Screen Capture of AmbuRun VR Game 

In order to achieve our goal, AmbuRun should be adaptable 
and support the modification of its parameters and for that, 
we created this game in a way to support dynamic modifi-
cation remotely from a neural agent which will be described 
in the next section. The possible modifications of the game 
are the modification of the speed and the modification of the 
difficulty. We change the difficulty of the game by increas-
ing and decreasing the frequency of the obstacles. If the 
player encounters few cars and buses, the game will be easy, 
and if he cruises too many cars, the game will become hard. 
We change the speed of the game by increasing and decreas-
ing the speed of the ambulance. 
 In the next section, we will present our game adaptation 
approach and the different physiological sensors we  use. 

Game Adaptation Approach and  
Physiological Measurement 

In order to achieve our goals, we started by creating a game 
adaptation system which uses sensing technologies. We will 
start by presenting the sensing technologies that we will use 
in our approach. 

Game Adaptation System 
This system is composed of three main parts; the first one is 
the AmbuRun VR game presented in the previous section, 
the second one is a measuring module and the third one is 
the neural agent. 

Measuring Module 
The role of the measuring module in our system is to detect 
the different mental states and emotions. It receives the dif-
ferent signals form measuring tools (for instance EEG, Eye 
tracking, etc.), synchronizes, analyses them, then extracts 
emotions and mental states. Figure 2 illustrates a screen cap-
ture of the measuring module; the top five gauges are: med-
itation, frustration, engagement, excitement and valence, the 
bottom five gauges are the average band power (theta, alpha, 
low beta, high beta, gamma) and the two middle gauges are 
stress and long term stress. 
 
 
 
 
 
 
 
 

 

Figure 2 – Screen Capture of the Measuring Module 

 The module sends the emotions and cerebral states to the 
neural agent and stores these data in a local data base. In this 
paper we connected EEG as a measuring tool. 
Neural Agent 
The neural agent (Ben Abdessalem & Frasson, 2017) is an 
intelligent agent that was designed in order to perform two 
main functions: the first consists of receiving relevant infor-
mation about the player’s emotional state from the measur-
ing module. The agent analyzes this information and decides 
of the best intervention/modification to be performed on the 
game in order to reach a desired emotional level. The second 
involves observing whether the intervention reached its ex-
pected outcomes on the player’s emotional state. 

Physiological Measurement 
To measure the player’s excitement, our approach is based 
on using a sensor-based technique with two physiological 
data channels, namely, EEG and eye tracking. These two 
physiological data were connected to the measuring module 
with two different objectives: (1) EEG data was used to feed 
the system with real-time information about the player’s ex-
citement for real-time game adaptation purpose; (2) Eye 
tracking data was recorded for offline post-experimentation 
processing. 
EEG Measures 
In this study, we used Emotiv Epoc+ EEG headset technol-
ogy to track the excitement of the player. The headset con-
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tains 14 electrodes spatially organized according to Interna-
tional 10-20 system, moist with a saline solution. The elec-
trodes are placed at antero-frontal (AF3, AF4, F3, F4, F7, 
F8), fronto-central (FC5, FC6), parietal (P7, P8), temporal 
(T7, T8) and occipital (O1, O2) regions with two additional 
reference sensors placed behind the ears. The detailed posi-
tion of the measured regions is shown in Figure 3. 
 
 
 
 
 
 

Figure 3 – Emotiv Headset Sensors Placement 

Emotiv system generates raw EEG data in (µV) with 128Hz 
sampling rate as well as the five well-known frequency 
bands, namely Theta (4 to 8 Hz) Alpha (8 to 12Hz), low Beta 
(12 to 16 Hz), high Beta (16 to 25 Hz) and gamma (25 to 45 
Hz). Furthermore, the system uses internal algorithms to 
measure the following mental states: mediation, frustration, 
engagement, excitement and valence. Even though we don’t 
have access to the system proprietary algorithms to infer 
these mental states from the raw data and the frequency 
bands, a number of studies have established the reliability of 
the output (Aspinall et al. , 2015). 
Eye Tracking Measurement in VR 
Eye tracking data was collected using a built-in eye-tracking 
module inside the VR headset. The device uses a 5.7 inch 
display with a WQHD (2560x1440) resolution, 100 degrees 
as a field of view and 70 fps (frame per seconds) frame rate. 
The eye-tracking module is composed of 2 infrared eye 
tracking system (one for each eye) and has 120 fps frame 
rate with a tracking accuracy less than 1 degree. Fove VR 
headset provides software in which we can monitor the 
movement of eyes in real-time. Figure 4 illustrates a screen 
capture of Fove software interface. 
 
 
 
 

 

 

Figure 4 – Screen Capture of Fove Interface 

Since Fove software output only provides eye position in the 
three-dimensional space, a post-processing algorithm was 

developed in order to compute more meaningful metrics 
such as the eye distance and the fixation period. We used the 
Equation 1 to calculate the sum of the three-dimensional Eu-
clidean space distance between two eye tracking position 
over a T time period. 

! "(𝑥% − 𝑥%'()* + (𝑦% − 𝑦%'()* + (𝑧% − 𝑧%'()*
.

%/*
 

Equation 1 –Sum of three-dimensional Euclidean distance for T 
time period 

Experiment 
We experimented our approach on 20 participants (10 fe-
males), with a mean age = 31.05 (SD = 4.96). Before taking 
part of the experiment, each player signed a consent form in 
which the goal of the study and the different steps of the 
experiment were clearly explained. Then, the player was 
equipped with the Emotiv Epoc+ and Fove VR headset de-
vices described in the previous section. Once the player feels 
comfortable with the setup and ready to start, the measuring 
module, the neural agent as well as the AmbuRun VR game 
were simultaneously launched and the player starts interact-
ing with the game using a wireless gamepad. Earphones 
connected to the device were used in order to isolate the 
player from the ambient environment and to intensify his 
level of immersion in the VR game. Figure 5 illustrates the 
experimental process. Two data sources were simultane-
ously extracted and recorded: 

• EEG data used for online game adaptation. 
• Eye movement used for offline processing and 

analysis. 
 
 
 
 
 
 
 
 
 

Figure 5 – Process of the Experiment 

 During the experiment, the measuring module continu-
ously tracks the excitement values of the player. The neural 
agent computes at a periodic time interval of 20 seconds the 
mean level of excitement and adapts accordingly the speed 
of the game. 
 To sum up the following loop: AmbuRun à Measuring 
module à Excitement level à Neural agent à Game speed 
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à AmbuRun was used in order to adapt the game for all the 
participants. 
 After finishing the game session, each participant was 
asked to fill in a post-session questionnaire in which he pro-
vided his subjective feedback about the whole experience 
(for instance his opinion about using VR). The goal of this 
questionnaire was to help us improve our future research 
methodology. 

Results and Discussion 
The first objective of this research was to discover if there 
is a relationship between eye movement and the adaptation 
performed on the game to regulate the players’ excitement 
level. To this end, we started by analyzing the mean total 
distance performed by each player’s eyes 20 sec before and 
after the game adaptation. The results showed that except 
for participants 1, 13 and 15, 85% of the subjects showed an 
increase in their mean eye movement distance 20 seconds 
after the game modification was performed. The detailed re-
sults for all the participants are shown in Figure 6. 
 
 
 
 
 
 
 
 

 

 

Figure 6 – Histogram of Mean Eyes Distance Before and After 
Adapting the Game 

 The averaged analysis across all the participants showed 
also an increase of 16 % in the eye movement distance with 
an average distance of 10.52 before intervention and 12.22 
post intervention. 
 In order to confirm this interplay between the neural agent 
adaptive interventions in the game to regulate the players’ 
excitement and their eye movement patterns, we also con-
ducted a repeated measure ANOVA with the general mean 
eyes distance before and after the agent intervention as de-
pendent variable. Results show that there was a significant 
impact of the agent intervention on the participants’ eye 
movement (p=0.004 and F=8.23732). Table 1 details the ob-
tained results. 
 Likewise, the analysis of the players’ excitement level 
measured via EEG data showed also the same positive in-
crease trend in the average EEG excitement data 20 seconds 

after the neural agent modification of the game. More pre-
cisely a repeated measure ANOVA test with players’ excite-
ment level as dependent variable revealed a significant in-
crease of post agent intervention (p=0.000168 and 
F=14.660). Table 2 details the results and shows that when 
the agent makes the game faster, the mean excitement in-
crease from 0.437 to 0.489 (5.2% more). 
 

Table 1 – ANOVA Eye distance 

 Eye Distance Before Eye Distance After 
Mean 10.5216 12.2227 

SD 5.9772 6.4467 
N 220 200 
F 8.23732 
P 0.004 

 Table 2 – ANOVA excitement  
(More detailed study of this result could be found in XX and YY) 

 Excitement Before Excitement After 
Mean 0.437 0.489 

SD 0.214 0.203 
N 220 200 
F 14.660 
P 0.0001 

 
 This overall trend obtained in our first analysis lead to our 
second research question, which is: to what extent the eye 
movement and the excitement level measured by the EEG 
data are correlated? In order to have a more fine-grained 
analysis at the intervention level (N=220 interventions in to-
tal across all the participants), a Pearson correlation test be-
tween the eye movement difference (before and after the in-
tervention) and the mean excitement (before and after the 
agent intervention to increase the speed) was conducted. 
The results showed a significant fair correlation of 0.58 be-
tween these two measures (p<0.0001). 
 The detailed correlation for these two measures made for 
each participant confirmed also the existence of this rela-
tionship. In fact, the correlation between EEG excitement 
data and eye movement ranged from 0.04 (lowest correla-
tion value for a subject) to 0.906 (highest correlation value 
for a subject). Figure 7 shows a boxplot of all the correla-
tions made for all the participants in which the median cor-
relation is 0.6. 
 
 
 

Figure 7 – Boxplot of R Score Correlation for all the Participants 
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 The combination of our results could be summarized as 
follows: (1) the increase of the game’s speed generates more 
excitement, (2) the increase of the speed of the game makes 
the eyes move more, and, (3) if the excitement increase, the 
eyes move more.  
 In the light of these findings, we can intuitively state that 
the use of eye movement as an indicator of players’ excite-
ment level could be an interesting substitute or reinforce-
ment of EEG to intelligently adapt the game parameters. 
 We believe that eye tracking could be a very rich data 
source for adaptive strategies in VR games especially since 
they could be integrated in the VR device and they could be 
considerably less intrusive than EEG solutions. Neverthe-
less, we also believe that despite these promising results, a 
deeper analysis of the eye movement behavior integrating 
other player’s eye patterns such as fixation, blink rates and 
saccades supported with machine learning could drastically 
enhance the accuracy of the excitement estimates. For ex-
ample, in our study, three participants did not show an in-
crease on their eye movement following the agent interven-
tion. This could be attributed to several factors such as the 
players’ characteristics or the insensitivity to the nature of 
the intervention itself. Therefore, Artificial Intelligence re-
inforcement techniques combined with other metrics could 
be beneficial to overcome these challenges. 

Conclusion 
In this paper, we presented an explorative empirical study of 
the use of eye tracking as indicator of players’ excitement 
level. An experiment involving 20 participants was per-
formed during which they interacted with an adaptive VR 
game designed to adapt according to their EEG excitement 
data. Results showed that (1) there exists a significant rela-
tionship between the modification of the game’s speed pa-
rameter and the eye tracking movement; and (2) the exist-
ence of a correlation between the EEG excitement data and 
the players’ eye movement patterns. These results estab-
lished that eye tracking could be an interesting data source 
for VR adaptive games. In our future work we aim to build 
a machine learning model able to detect players’ excitement 
and to suitably adapt the game parameters using only eye 
tracking data. 
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