
Modeling the Dynamics of User Preferences for
Sequence-Aware Recommendation Using Hidden Markov Models

Farzad Eskandanian
feskanda@depaul.edu

Center for Web Intelligence
DePaul University
Chicago, IL, USA

Bamshad Mobasher
mobasher@cs.depaul.edu

Center for Web Intelligence
DePaul University
Chicago, IL, USA

Abstract

In a variety of online settings involving interaction with end-
users it is critical for the systems to adapt to changes in user
preferences. User preferences on items tend to change over
time due to a variety of factors such as change in context, the
task being performed, or other short-term or long-term exter-
nal factors. Recommender systems need to be able to capture
these dynamics in user preferences in order to remain tuned
to the most current interests of users. In this work we present
a recommendation framework which takes into account the
dynamics of user preferences. We propose an approach based
on Hidden Markov Models (HMM) to identify change-points
in the sequence of user interactions which reflect significant
changes in preference according to the sequential behavior
of all the users in the data. The proposed framework lever-
ages the identified change points to generate recommenda-
tions using a sequence-aware non-negative matrix factoriza-
tion model. We empirically demonstrate the effectiveness of
the HMM-based change detection method as compared to
standard baseline methods. Additionally, we evaluate the per-
formance of the proposed recommendation method and show
that it compares favorably to state-of-the-art sequence-aware
recommendation models.

Introduction
Traditional methods for personalized recommendation in-
volve learning from long-term preferences of users and tai-
loring the recommendations to new users based on their
overall preference profiles. This approach, however, does not
take into account the fact that a user’s preferences change
over time and items that may have been relevant or of inter-
est in the past may no longer suit the needs of the user in the
present. Changes in a user’s preferences may occur because
of a variety of factors including changes in user’s situation,
context, the task at hand, or even due to one-time external
events.

This problem is particularly pronounced in domains
where a user’s interest in items may vary often in the course
of interactions with the system. An example of such a do-
main is music streaming where a user’s sequence of interac-
tions with the system (such as selecting, skipping, liking or
disliking a song) is recorded and some or all of this history

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of interactions is used to identify future items to present to
the user. But, even in domains with less transient behavioral
characteristics, user preferences may change over time be-
cause a user’s tastes may evolve slowly and thus older items
in the user profile may no longer reflect the user’s current
preferences (McAuley and Leskovec, 2013). Examples of
such a situation may be user preferences for wine where a
user’s taste may evolve over time due to experience and the
development of a more discerning palate.

To address this problem, recommender systems must be
able to model the dynamics of user preferences by identify-
ing change points in the user interaction sequence beyond
which a user’s behavior might indicate a significant change
in preferences, and finally to tailor the system’s recommen-
dations to the most relevant episodes within the user’s over-
all profile associated with the identified change points.

Recent research in recommender systems has tried to
address different aspects of this problem. For example,
context-aware recommender systems (CARS) (Adomavi-
cius and Tuzhilin, 2011; Hariri, Mobasher, and Burke, 2012;
Karatzoglou et al., 2010; Zheng, Mobasher, and Burke,
2014) try to take into account the current context of the user
or the most appropriate context for an item when generat-
ing recommendations. Most common approaches to CARS,
however, rely on explicit representation of contextual fac-
tors which are not always available and generally do not
try to model the dynamics of user preferences. Furthermore,
session-based recommender systems (Jannach and Ludewig,
2017; Hidasi et al., 2015) have been introduced with a focus
on developing models that generate recommendations using
only the observed behavior of a user during an ongoing ses-
sion while ignoring parts of user’s overall profile that are
considered to be associated with previous sessions. While
session-based recommenders address part of the aforemen-
tioned problem by trying to model sequential interactions
with the system, they generally do not address the problem
of explicitly modeling and automatically detecting change
points in user preference sequences.

In this work we present a recommendation framework
based on Hidden Markov Models (HMM) that integrates
automatic change point detection within sequences of user
interactions with recommendation models that take into ac-
count the dynamics of user preferences. We specifically fo-
cus on a setting where user preferences are implicitly and

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

425

sequentially captured during the course of a user’s interac-
tion with the system and where there is no explicit represen-
tation for contextual or other factors that may provide a pri-
ori indications of possible changes in user preferences. Our
goal is to automatically identify change points in user pref-
erences and use them to generate sequential recommenda-
tion. We conjecture that appropriate identification of change
points and tailoring recommendations to the most relevant
segments in the history of user interactions will lead to more
effective recommendation.

Given a sequence of user-item interactions, an HMM can
be used to identify the most likely sequences of hidden states
representing change points in user preferences. This change
point detection mechanism can be used to identify specific
segments of user-item interaction sequences to be used in
as input for a traditional non-sequential recommendation
model such as matrix factorization. This approach, in and of
itself, should lead to more effective recommendation when
compared to the same approach without change point de-
tection. However, the advantage of using HMMs is that the
same learned model can also be used to infer probabilities
associated with items in the observation sequences which in
turn can be used to directly generate recommendations for
next items without resorting to other non-sequential recom-
mendation models (Eskandanian and Mobasher, 2018).

The center piece of our proposed framework is the change
point detection mechanism using an HMM. The identified
change points are used to segment user sequences with
different segments representing significantly different pref-
erence models. We then integrate this change detection
method into a standard recommendation model using non-
negative matrix factorization.

We empirically evaluate our approach using two real mu-
sic streaming data sets from Spotify, Inc. and Lastfm. We
show that this principled approach for modeling preference
dynamics leads to more effective recommendations than
other baseline approaches to sequence-aware or session-
based recommendation (such as those using recurrent neural
networks).

Related Work
There are three general areas of research in recom-
mender systems that address the problem considering
changes in user preferences, interests, or situations. One is
Context-Aware Recommendation Systems (CARS) (Hariri,
Mobasher, and Burke, 2013; Adomavicius and Tuzhilin,
2011). Most CARS approaches assume a predefined repre-
sentational view to modeling context and the main goal is to
leverage contextual information in generating recommenda-
tions.

In other work, the case where contextual information is
not observable directly and has to be inferred has been stud-
ied (Hariri, Mobasher, and Burke, 2012). However, these
approaches are devised to infer the contextual information
implicitly using topic modeling of content information such
as tags associated with items. Also, in (Hariri, Mobasher,
and Burke, 2014), the authors have proposed to use a multi-
armed bandit algorithm in order to quickly adapt the recom-
mendations to the contextual changes in the case of interac-

tive recommendations in an online setting. The main focus
of that work is to apply bandit algorithms in interactive rec-
ommender systems and the change point detection is essen-
tially an add-on feature independent of the learned model.

In other work, Markov Models have been used to
model users’ sequential behavior (Hosseinzadeh Aghdam
et al., 2015; Rendle, Freudenthaler, and Schmidt-Thieme,
2010; He and McAuley, 2016; Rendle, Freudenthaler, and
Schmidt-Thieme, 2010; Abdollahpouri and Essinger, 2017).
In (Hosseinzadeh Aghdam et al., 2015) a Hierarchical Hid-
den Markov Model is used to implicitly model the hidden
states as context and generate recommendations using the
last inferred context of user. Although, same approaches are
used to model the dynamics of user preference, our model is
based on single hidden layer compared to a Hierarchical hid-
den structure. Besides simplicity, our work extends Viterbi’s
algorithm for decoding task and generates recommendations
using latent factors learned from Emission probabilities. The
simplicity of our model compared to (Hosseinzadeh Agh-
dam et al., 2015) makes it more efficient in training time.
There are also other recent approaches (He and McAuley,
2016; Rendle, Freudenthaler, and Schmidt-Thieme, 2010)
that are similar to our approach in terms of their overall goal
of modeling user dynamics, but different in terms of their
methodology.

Problem Definition and Background
In many recommendation domains users interact with a col-
lection of available items through various actions such as
viewing, clicking, or selecting items. These user-item inter-
action sequences form the underlying observations in our
HMM-based change detection and recommendation frame-
work.

Let U = {u1, u2, ..., uN} be a set of users and I = {i1, i2,
... iM} set of items. For each user u the list of his/her inter-
actions is denoted by Iu = 〈i(1), i(2) , ..., i(T)〉. Each element
i(t) in this list represents the interaction of user u with item
i at sequential index t and all of the items are ordered based
on the time of interaction.

A change point Λj in the sequence of user interac-
tions is an index that partitions this sequence into I1 =
〈i(1), ...i(Λj)〉 and I2 = 〈i(Λj+1), ...i(T)〉. In general, there
is no limit for the number of change points and the re-
sulting segments and there could be multiple change points
Λ = {Λ1, ...,Λk} within one user sequence depending on
the significance of changes in preferences. The challenge
here is to accurately detect the set of change points Λ. More
precisely, Λ should partition the sequence of user interac-
tion in a way that maximizes intra-partition similarity and
minimizes inter-partition similarity of 〈I0 , ..., Ik〉.

Hidden Markov Models
Hidden Markov Models (HMM) belong to the category of
probabilistic models specifically used for modeling sequen-
tial data. Markov Chains (MC) are the simplest in this cat-
egory which are based on following independence assump-
tion known as Markov property. Given a set of discrete time-
based variables Y ∈ {y1, y2, ...yn}, and a sequence of these

426

variables 〈Y1, ..., Yt−1, Yt〉, in a first-order Markov model
the probability of the Yt after seeing the sequence depends
only on the last observation P (Yt = y|Y1, ..., Yt−2, Yt−1)
= P (Yt = y|Yt−1). In recommendation domain due to the
large number of items and hence the resulting data sparsity,
Markov Chain models tend to perform poorly. Higher-order
Markov Chains can be used, but at the cost of significantly
higher time and space complexity.

Hidden Markov Models are extensions of Markov Chains
that model the sequential patterns in the data using the tran-
sition probabilities between the hidden states instead of ob-
servations. The underlying assumption is that the transition
probabilities among hidden states Z ∈ {z1, ..., zk} cannot
be inferred directly using observations. Formally, an HMM
model is defined by an initial hidden state distribution π,
state transition probabilities A = P (Zt|Zt−1), and emis-
sion probabilities B = P (Yt|Zt). We denote an HMM by
θ = (A,B, π).

HMMs have been used to solve three different general
problems that make these models very practical and suitable
in many situations (Gales, Young, and others, 2008).

1. Likelihood estimation problem: Given a sequence of ob-
servations 〈Y1, ..., Yt−1, Yt〉 , and θ, determine the P (Y1,
...Yt|θ).

2. Decoding problem: Given a sequence of observations
and θ, what is the most likely sequence of hidden states:
arg maxZ1,...Zt

P (Z1, ..., Zt, Y1, ..., Yt|θ)
3. Learning problem: Given a sequence of observations

and a set of hidden states, learn HMM parameters θ us-
ing maximum likelihood estimation.

In the following section we demonstrate how we can adapt
these problems and their solutions to the problem of detect-
ing changes in user preferences over time. The identified
change points can then be used in the recommendation phase
taking into account shifting user preferences.

Proposed Framework
Change Point Detection
Given a sequence of user-item interactions (implicitly rep-
resenting user’s preferences on items), we first learn θ =
(A,B, π). We use the well-known Baum-Welch algorithm to
learn the model from the data (Rabiner and Juang, 1986).
This method is based on the Expectation-Maximization
(EM) algorithm to find the maximum likelihood estimate of
θ using the sequence of observations. Next, using the learned
model we “decode” the hidden states related to each obser-
vation (i.e., each item in the interaction sequence). The stan-
dard algorithm for this task is the Viterbi algorithm (Ryan
and Nudd, 1993). Given a sequence of observations and θ,
Viterbi algorithm uses a dynamic programming approach to
find the the most likely hidden states corresponding to the
sequence of observations. It is this generated sequence of
hidden states which represents the dynamics of user prefer-
ences over time.

In order to identify a change point Λ we use the Viterbi al-
gorithm as follows. Viterbi relies on θ to find the maximum

Algorithm 1: Hidden Markov Change point Detec-
tion HMCD

Input: Set of sequences of User-Item interactions
X = {Iu1 , ..., Iun}; Threshold for change
detection τ ; Number of Hidden States h.

Output: Partitioned User-Item Matrix M .
1 M : User-item interaction matrix M ∈ {0, 1}n

′×m, where
n′ = n× k.
/* Learn HMM Model. */

2 θ ← Baum-Welch(X, h)
3 for u ∈ U do

/* Using Viterbi, Decode each item
i ∈ Iu. */

4 V ← V iterbi(θ, Iu)

/* Find time index of State Changes
in V’s path that pass the
probability threshold τ. */

5 Λ′ = {t|(Vt 6= Vt−1) ∧ P (Vt|Vt−1)P (it|Vt) > τ}
/* Partition Iu into k + 1 parts where

k = |Λ′|. */

6 〈I0u, ..., Iku〉 = Partition(Iu, Λ′)
7 for i = 0 to k do
8 Mu×k+i = Iiu
9 end

10 end
11 return M

path V = 〈v1, ..., vT 〉 among the hidden states correspond-
ing to each item in the sequence of observations. Suppose
that the hidden state corresponding to the Viterbi’s path at
time t is denoted by Vt. A change is detected if there is a hid-
den state Vt with maximum tendency to change from Vt−1,
that is: arg maxt P (Vt|Vt−1)P (it|Vt) Where Vt 6= Vt−1.

However, this approach only detects one change point
which has the highest probability. Also, the change point in
Viterbi’s path with maximum probability does not necessar-
ily correspond to a significant change in preference.

In order to address this issues, we add a threshold param-
eter τ to the change detection equation:

Λ′ = {t|(Vt 6= Vt−1) ∧ P (Vt|Vt−1)P (it|Vt) > τ} (1)

Since the end goal of detecting the changes in the user
preference is to increase the effectiveness of recommenda-
tions and hence is increasing accuracy, we tune the parame-
ter τ so that the maximum accuracy can be achieved.

Generating Recommendations Using Detected
Change Points
We call our approach for generating recommendations
Sequence-based Matrix Factorization (SMF). In this
method a Matrix Factorization model is used based on de-
tected change points in the sequence of user interactions.
After decoding the hidden states of each item in Iu and seg-
menting this sequence using Algorithm 1, we treat each
segment of items as a user profile vector used in the fac-
torization model. More formally, given Iu the sequence of
interactions of user u, the HMM decoding is used to identify

427

a list of change points Λ′. Then, Iu will be segmented into
〈i(1), ...i(Λ

′
1)〉 , ..., 〈i(Λ′

k+1), ...i(T)〉. Where the segments are
denoted by 〈I0

u, ..., I
k
u〉, and the list of k predicted change

points is denoted by Λ′. The new segments for every user are
used to generate a new user-item interaction matrix M . To
find approximate factorization of M ≈ p.qT , we use Non-
negative matrix factorization. The objective in this method
is to minimize the Euclidean distance between the approxi-
mated matrix p.qT and the actual matrix M . More precisely,
NMF minimizes ||M − p.qT ||2 with respect to p and q, sub-
ject to p, q > 0. Since, change point detection has decoupled
the items of each user profile in M which sequentially do
not belong to the same hidden state, the association of items
with sequential likelihood in matrix factorization will not be
lost. Therefore, using NMF we can estimate qT , the item
factors of M , which are based on the sequential patterns of
items in the original user-item matrix X . Note that as long
as we keep the number of change points small, the sparsity
as a result of segmentation should not decrease accuracy of
recommendations compared to static matrix factorization.

In order to generate recommendations for u, the last seg-
ment of the user interactions Iku , which represents the lat-
est preference of the user will be used (in future work we
will explore using other relevant or similar segments in ad-
dition to the last one in the user sequence). After training
the matrix factorization model the latent factor vector cor-
responding to the latest interests of user Iku will be used
to find the items with the best match to this representation:
Ru = arg maxl

j (pu.q
T
j),where pu corresponds to Iku which

is the latent factor of the latest segment of user u’s interac-
tion sequence. The above equation finds the top-l most simi-
lar items to pu using the dot product as a similarity function.

Experiments
In our experiments, we first evaluate the effectiveness of
the HMM-based change point detection when compared
to baseline CPD methods. Next we measure the impact of
change point detection on recommendation effectiveness.

We use two HMM models with various number of hidden
states labeled as S2 and S10 which indicate HMM models
with S = 2 and S = 10 hidden states, respectively. The sec-
ond set of experiments are designed to evaluate the proposed
Sequence-based Matrix Factorization (SMF) recommenda-
tion model (presented in previous section).

Datasets
We used the Spotify Playlist dataset from RecSys Challenge
2018 1 for our experiments. We randomly sampled 6,000
playlists from 1 million playlists available in this dataset
which have been created by Spotify’s users. Our sample
contains 6,905 unique Albums, 475,838 playlist-album pairs
with 98.9% sparsity. Also, the average length of playlists is
≈ 80. We chose this dataset because average length playlists
are usually focused on one or two moods or genres. There-
fore, this characteristic of playlists make them a good candi-
date for concatenating multiple playlists as a way to simulate

1https://recsys-challenge.spotify.com/

Figure 1: Error of predicted change points using baseline
methods and HMMs with different number of hidden states.

change points in the data. The procedure for generating the
data is as follows. First, we randomly sampled two playlists
p1 and p2 from the pool of 1M playlists. Then, we combined
them by selecting a random size window of each playlist.
The ground truth for change point is specified by the point
where p1 and p2 are concatenated. We use all of the users to
measure the accuracy of change point detection task. For the
recommendation, we hold the last 10 items of the playlist p2

(in the same order) as testing data for evaluation.
The second dataset which was scraped from LastFM’s

website2, contains information about 1,000 users. These
users on average listen to 7,000 albums in the course of
their interactions with LastFM. There are 5,000 items in this
dataset which are albums and the dataset is 99.94% sparse.
Unlike the previous dataset where we concatenated differ-
ent playlists to simulate change points, in this dataset there
is no ground truth or predefined change points in user inter-
actions. The main reason to use this dataset is to generate
recommendations using the predicted change points and to
evaluate recommendation accuracy. The last 40 items in the
sequence of interactions from test users are held for evaluat-
ing recommendation effectiveness.

Change Point Detection Baselines
We compared the HMM-based change point detection al-
gorithm to several standard change point detection methods
often used in time series analysis.
Cumulative Sum, CUSUM: A well-known approach for
change detection in time series. For each item i ∈ Iu
= 〈i(1), i(2) , ..., i(T)〉, CUSUM computes the Sj =∑j−1

t=0 D(i(t), i(t+1)), where D(i1, i2) is the Euclidean dis-
tance between two items that are represented using the latent
factors (10 factors in our experiments) in NMF. Whenever
the cumulative sum exceeds a threshold value Sj > τ ;∀j 6
T , Λ′ = j is selected as the change point in the Iu. In order
to tune the threshold parameter τ , we started with average
value of CUSUM among all item sequences and empirically

2https://www.last.fm/

428

Dataset Method P@1 P@5 P@10 R@1 R@5 R@10 nDCG@5 nDCG@10

Spotify Playlist

PopRank 4.06 3.70 2.89 0.20 0.92 1.44 0.95 1.19
MC 9.67 9.91 9.49 0.48 2.17 3.66 8.37 10.47
BPR 8.97 6.51 6.21 0.44 1.62 3.11 1.85 2.69
GRU 7.32 5.85 3.90 0.37 1.46 1.95 1.30 1.32

FOSSIL 4.02 2.97 2.57 0.20 0.74 1.49 0.77 1.01
NMF 11.92 9.20 7.92 0.60 2.30 3.96 3.61 4.68

SMF-S2(τ = 0.93) 13.46 10.01 8.40 0.67 2.50 4.20 3.76 4.71

LastFM Listen

PopRank 0.42 0.56 0.35 0.021 0.140 0.175 0.09 0.094
MC 9.77 9.41 8.74 0.263 1.245 2.316 2.43 3.32
BPR 15.79 5.26 4.73 0.394 0.658 1.217 2.44 2.53
GRU 5.22 4.42 3.82 0.26 1.112 1.915 1.54 1.98

FOSSIL 12.87 12.53 10.90 0.381 1.775 3.391 2.99 4.13
NMF 24.74 20.48 17.94 0.651 2.712 4.730 5.03 6.25

SMF-S3(τ = 0.9) 28.29 21.25 18.65 0.759 2.804 4.922 5.53 7.07

Table 1: Percentage accuracy of recommendations at various list sizes (top-1, top-5, and top-10).

tune this parameter where the minimum ∆ has been reached.
Sliding Window, SW: The sliding partition point (change
point) starts from the beginning of the user sequence Iu until
it reaches to a point Λ′ which maximizes intra-partition simi-
larity and minimizes inter-partition similarity. Although, this
is a greedy approach, in practice it produces fairly accurate
results. We use Euclidean distance as a measure of dissimi-
larity.
Random Partition, RP: Randomly assign a value to Λ′ such
that 0 6 Λ′ 6 |I lu|.

Recommendation Baselines
We used several non-sequential as well as recently pro-
posed sequence-aware recommendation approaches as base-
line recommendation methods to evaluate the effectiveness
of our proposed HMM-based algorithm. In all of the matrix
factorization approaches we set the number of latent factors
to 40 which provided best results. The baseline methods and
some of the parameters used in our experiments are listed
below.
FOSSIL, (He and McAuley, 2016): A method that
fuses similarity-based models with Markov Chains to
predict personalized sequential behavior. Parameters:
learning rate=0.01; Factors=40; α=0.2;
regularization=0.
GRU, (Hidasi et al., 2015): A Recurrent Neural
Network for session-based recommendation that is
widely used as a baseline for sequential recommen-
dation tasks. Parameters: loss=top1; number of
layers=100-50; update mechanism=Adam;
learning rate=0.001
BPR, (Rendle et al., 2009): Bayesian Personalized Rank-
ing optimizes a pairwise ranking objective function
via stochastic gradient descent. Parameters: learning
rate=0.01; Factors=40; regularization=0.
NMF, (Lee and Seung, 2001): Non-negative Matrix Fac-
torization is another baseline method that decomposes the
multivariate data for generating recommendations. NMF
uses multiplicative algorithm in order to minimize the

least squared error of predictions. Parameters: learning
rate=0.01; Factors=40; regularization=0.
MC: First-order Markov Chain is an item recommendation
method based on the sequential patterns captured by transi-
tions from items in all the user interactions.
PopRank: This method generates a recommendation list
for all users by ranking the items based on their popular-
ity among users. Popularity of items in the data are defined
by their frequency of being seen/rated by users.

Evaluation Metrics
The error of a single change point prediction is defined by
∆ = |Λ − Λ′| where Λ is the ground truth change point in
user sequence of interactions and Λ′ is the prediction. As
noted before, in our experiments we concatenated different
playlists to simulate a change point. Thus the end of one
playlist and the beginning of another represent the ground
truth change points in our test data. We then computed the
average error across all test cases.

In order to measure the ranking accuracy of recommenda-
tions, we used Precision, Recall, and normalized Discounted
Cumulative Gain (nDCG). The nDCG is time-aware since
the gain for items selected earlier by a user are larger when
compared to later items. In other words, the true ranking of
items are based on the time-based non-decreasing order of
items in a user profile. In Table 1 the accuracy measures are
based on various cutoff points in the recommendation lists.
For example P@1, R@5, and nDCG@10 are representing
Precision, Recall and nDCG of the top-1, top-5 and top-10
items in recommendation lists, respectively.

Experimental Results
The first task in our experiments was to evaluate the ac-
curacy of change point detection. Figure 1 shows the dis-
placement error of change point detection using the baseline
methods versus HMCD. We trained two HMM models with
2 and 10 hidden states (HMCD-S2 and HMCD-S10, respec-
tively). Since on average the length of each mixed playlist
is about 80, the chances of a random prediction hitting the

429

true change point Λ would be 1/80. The displacement er-
ror ∆ of this approach should be larger. However, when we
were generating the change points using playlists, we sam-
pled Λ from a uniform distribution. Therefore, the results of
RP were better than a completely random guess. HMCD-S2
and HMCD-S10 both outperformed the baseline methods.

Table 1 shows the performance of different recommen-
dation methods. Among the baseline methods, as expected
PopRank is the worst performing method in both datasets.
However, MC works surprisingly well on Spotify but not so
well on LastFM. The main reason could be that Spotify con-
tains public playlists potentially shared among many users
with similar transition patterns among albums. LastFM data,
on the other hand, contains individual listening logs corre-
sponding to unique actual user activity sequences. In gen-
eral, results on LastFM are more reliable because it contains
actual user data. The performance of BPR is also noticeable
compared to sequential recommendation methods such as
FOSSIL and GRU. We think that the good performance of
BPR is due to its ability to deal with binary or implicit feed-
back data (a pair-wise approach for ranking). Also, the poor
performance of GRU is probably because of long lengths
of the sequences of user interactions in both datasets. Usu-
ally, GRU works well on session-based data where the infor-
mation about users’ preferences are condensed into sessions
with small number of items. Finally, our method in Spotify
dataset using SMF-S2 outperforms all of the other methods
except MC, and in LastFM, SMF-S3 is the best performing
sequential recommendation model.

Conclusion
In this work, we introduced the concept of change point de-
tection in order to model the dynamics of user preferences in
sequential recommendation tasks. We devised a recommen-
dation framework based on Hidden Markov Models to detect
changes in user preferences and use the identified change
points to appropriately target generated recommendations.
Specifically we extended the standard Viterbi algorithm to
detect the change points in sequences of user-item interac-
tions. Using two datasets in music domain, we demonstrated
the effectiveness of our methods in terms of both accuracy
of change point detection and accuracy of resulting recom-
mendations.

References
Abdollahpouri, H., and Essinger, S. 2017. Towards effec-
tive exploration/exploitation in sequential music recommen-
dation.
Adomavicius, G., and Tuzhilin, A. 2011. Context-aware
recommender systems. In Recommender systems handbook.
Springer. 217–253.
Eskandanian, F., and Mobasher, B. 2018. Detecting
changes in user preferences using hidden markov mod-
els for sequential recommendation tasks. arXiv preprint
arXiv:1810.00272.
Gales, M.; Young, S.; et al. 2008. The application of hid-
den markov models in speech recognition. Foundations and
Trends R© in Signal Processing 1(3):195–304.

Hariri, N.; Mobasher, B.; and Burke, R. 2012. Context-
aware music recommendation based on latenttopic sequen-
tial patterns. In Proceedings of the sixth ACM conference on
Recommender systems, 131–138. ACM.
Hariri, N.; Mobasher, B.; and Burke, R. 2013. Query-driven
context aware recommendation. In Proceedings of the 7th
ACM conference on Recommender systems, 9–16. ACM.
Hariri, N.; Mobasher, B.; and Burke, R. 2014. Context adap-
tation in interactive recommender systems. In Proceedings
of the 8th ACM Conference on Recommender systems, 41–
48. ACM.
He, R., and McAuley, J. 2016. Fusing similarity models
with markov chains for sparse sequential recommendation.
In Data Mining (ICDM), 2016 IEEE 16th International Con-
ference on, 191–200. IEEE.
Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; and Tikk, D.
2015. Session-based recommendations with recurrent neural
networks. arXiv preprint arXiv:1511.06939.
Hosseinzadeh Aghdam, M.; Hariri, N.; Mobasher, B.; and
Burke, R. 2015. Adapting recommendations to contextual
changes using hierarchical hidden markov models. In Pro-
ceedings of the 9th ACM Conference on Recommender Sys-
tems, 241–244. ACM.
Jannach, D., and Ludewig, M. 2017. When recurrent neural
networks meet the neighborhood for session-based recom-
mendation. In Proceedings of the Eleventh ACM Conference
on Recommender Systems, 306–310. ACM.
Karatzoglou, A.; Amatriain, X.; Baltrunas, L.; and Oliver,
N. 2010. Multiverse recommendation: n-dimensional ten-
sor factorization for context-aware collaborative filtering. In
Proceedings of the fourth ACM conference on Recommender
systems, 79–86. ACM.
Lee, D. D., and Seung, H. S. 2001. Algorithms for non-
negative matrix factorization. In Advances in neural infor-
mation processing systems, 556–562.
McAuley, J. J., and Leskovec, J. 2013. From amateurs
to connoisseurs: modeling the evolution of user expertise
through online reviews. In Proceedings of the 22nd inter-
national conference on World Wide Web, 897–908. ACM.
Rabiner, L. R., and Juang, B.-H. 1986. An introduction to
hidden markov models. ieee assp magazine 3(1):4–16.
Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2009. Bpr: Bayesian personalized ranking from
implicit feedback. In Proceedings of the twenty-fifth con-
ference on uncertainty in artificial intelligence, 452–461.
AUAI Press.
Rendle, S.; Freudenthaler, C.; and Schmidt-Thieme, L.
2010. Factorizing personalized markov chains for next-
basket recommendation. In Proceedings of the 19th inter-
national conference on World wide web, 811–820. ACM.
Ryan, M. S., and Nudd, G. R. 1993. The viterbi algorithm.
Zheng, Y.; Mobasher, B.; and Burke, R. 2014. Cslim: Con-
textual slim recommendation algorithms. In Proceedings of
the 8th ACM Conference on Recommender Systems, 301–
304. ACM.

430

