
C2C Trace Retrieval: Fast Classification
Using Class-to-Class Weighting

Xiaomeng Ye
Indiana University Bloomington

xiaye@iu.edu

Abstract

Traditional case-based classification methods are based on
feature similarity. In contrast, class-to-class (C2C) weighting
also considers whether the difference between two cases has
been seen before. Combined with instance-specific weight-
ing, C2C weighting learns the local patterns of both simi-
larities and differences (shortened as patterns). Once C2C
weightings has learned the pattern between case A of class
C1 and some set of cases R of class C2, given a query Q
whose difference from A matches the pattern between A and
R, then we can skip cases around A and continue the search
for near neighbors around R.
Based on this, we developed an algorithm, C2C trace re-
trieval, which quickly traverses promising cases, retrieves rel-
evant cases from different classes, and provides an informed
hypothesis of the query’s class. C2C trace retrieval achieves
great efficiency at a reasonable cost of accuracy. Therefore,
C2C trace retrieval can be used as a fast classification method
or as the first pass for a more sophisticated method.

Introduction
The focus of k-nearest neighbor algorithms (k-NN) is to
find cases with similar feature values for a query case
(Wettschereck, Aha, and Mohri 1997). The presumption of
k-NN is that cases of the same class share similar (impor-
tant) features. Along this line of study, class-to-class (C2C)
weighting (Ye 2018) learns the patterns of similarities and
differences between classes, and uses the patterns in classi-
fication tasks. Based on the assumption that cases of classC1

are different from cases of classC2 in a systematic way, C2C
weighting opens up a brand-new avenue of case retrieval and
explanability. However, preliminary experiments show that
C2C weighting performs slightly worse than global weight-
ing because the weightings can be skewed.

The goal of this study is two-fold: 1) we improve C2C
weighting by combining it with instance-specific weight-
ing. We also train the native and non-native class weightings
of C2C weighting separately. In the improved C2C weight-
ing, a comparison between a query and a case identifies
not only whether they match, but also where else to look
if their difference has been seen before. 2) Using the novel
local knowledge provided by C2C weighting, we develop an

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

agent-based case retrieval method, C2C trace retrieval. We
use C2C trace retrieval to find relevant and yet diverse cases,
the majority vote of which provides an informed guess of the
query’s class.

C2C trace retrieval is a retrieval method based on patterns
of both similarities and differences (shortened as patterns).
At inference time, its time complexity does not hinge on the
size of the case base. We compare C2C trace retrieval with
other case retrieval methods and locate its uniqueness in the
spectrum of case retrieval methods. We evaluated C2C trace
retrieval on multiple data sets and compare its classification
accuracy and number of similarity calls made with k-NN, k-
dimensional tree and locality-sensitive hashing. Our results
show that C2C trace retrieval achieves superior efficiency at
a reasonable cost of accuracy.

Background
Case Retrieval Methods in CBR
For the purpose of this study, we present a few assumptions
before discussing case retrieval methods: 1) Each case is rep-
resented by a vector of nominal and numerical features along
with a class label; 2) Each case has only one class or label,
and the training cases include cases from all classes; 3) The
similarity measure for each feature is given. A detailed de-
scription of case retrieval methods can be found in (Richter
and Weber 2013). Most relevant methods are listed below.

Two-stage retrieval methods filter for promising cases in
the first stage before conducting a more costly case compar-
ison. These methods reduce the search space to reduce the
cost of case retrieval. In MAC/FAC (“many are called but
few are chosen”), the MAC stage narrows down the search
space by roughly searching among probe cases, and the FAC
stage further confirms the match of the found cases using a
more sophisticated similarity measure (e.g. structural map-
ping engine) (Gentner and Forbus 1991). Protos uses a pro-
totypical case base along with the real case base. Given an
input query, it first finds the closest prototypical case, which
then redirects to a set of real cases (Ray Bareiss, W. Porter,
and Wier 1990). Fish and Shrink is a two-stage method
where the Fish stage computes the distances between the
query and some cases, and the Shrink stage uses triangle
inequality to filter out cases (Schaaf 1996).

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

353

A k-dimensional tree (KD-tree) divides points in a k-
dimensional space into a binary tree (Bentley 1975). When
building the tree, an attribute and a critical value are selected
for every node. Cases with corresponding attribute values
lower than the critical value are assigned to one side of the
node, while the rest of cases are assigned to the other side.
Search is done by traversing the tree.

Locality-sensitive hashing (LSH) is a good representa-
tive of a family of approximate nearest neighbors algorithms
(Indyk and Motwani 1998). LSH reduces case retrieval time
by utilizing hash functions to hash similar cases into the
same bins. The nearest neighbors of an input query can
be approximated by applying the hash functions. Different
hashing algorithm suits the need of different similarity mea-
sures.

Feature Weighting Methods in k-NN
In k-NN, the similarity between two cases is measured
by the combination of differences of all features, e.g. Eu-
clidean distance. The difference of a feature can be weighted
to (de)emphasize its importance in the overall measure
(Wettschereck, Aha, and Mohri 1997). Weightings can also
be assigned based on the classes of cases (Marchiori 2013).
For situations when the importance of features varies across
regions of the case space, local weightings are developed to
assign weightings in each region (Aha and Goldstone 1992;
Friedman 1994; Ricci and Avesani 1995).

Instance-specific weighting is a local weighting method
where each case has its own set of feature weightings. The
ISAC system (Bonzano, Cunningham, and Smyth 1997)
modifies the instance-specific feature weightings using in-
trospective learning based on classification performance.
If the retrieved case correctly predicts the class of the
query case, ISAC increases weightings of matching features
and decreases weightings of unmatching features. Similar-
ity scores between cases of the same class are thus driven
higher. If the class of the retrieved case does not match that
of the query case, ISAC decreases weightings of matching
features and increases weightings of unmatching features,
to make the two cases more distant.

Class-to-class (C2C) Weighting
The weighting methods described in the above section rely
on the presumption that cases of the same class share sim-
ilar features. k-NN algorithms using such weightings are
similarity-based retrieval methods (López de Mántaras et al.
2005). C2C weighting adds the additional assumption that
cases of two different classes have certain features that dif-
fer consistently. In addition to the similarity patterns within
each class, which traditional weighting methods do, C2C
weighting aims to find the patterns between classes to po-
tentially apply these patterns in classification (Ye 2018).

C2C weighting as it is used by k-NN can be described by
the following equations:

A = {A1, A2, ..., Ad, Ci} ∈ CB, (1)

W = {
m∑
i=1

m∑
j=1

wij}, (2)

wij = [wij1, wij2, ..., wijd], (3)

fd(vt, vb) = 1− 2
|vt − vb|

vmax − vmin
, (4)

activation(A,B,wij) =
d∑

v=1

wijv ∗ fd(Av, Bv). (5)

The equations are explained as: (1) Let there be m classes, a
caseA from the case base CB is defined as the composite of
d features,A1 toAd, and a class labelCi.Ci is the class label
representing the ith class. (2)W is the set of all class weight-
ings, where (3) each class weighting wij is a vector of d fea-
ture weightings describing the pattern from Ci to Cj . wijv

is the vth feature weighting in the class weighting wij. (4)
fd(vt, vb) measures the feature distance between two fea-
tures vt and vb with range [−1, 1]. (5) activation(A,B,w)
is the activation score between two cases A and B under
class weighting wij .

We refer to wij as a native class weighting if i = j,
and as a non-native class weighting if i 6= j. Native class
weightings capture the pattern of similarity within the same
class, which traditional feature weightings also do. Non-
native class weightings capture the patterns between classes.
Most importantly, non-native class weightings can have neg-
ative feature weightings.

In (4), if two features are similar then the feature dis-
tance fd(vt, vb) is positive; if they are different then the
feature distance is negative. In (5), a negative feature dis-
tance multiplied by a negative feature weighting positively
contributes to the total activation score. This mechanism re-
wards patterns of differences in the presence of negative fea-
ture weightings.

In activation(A,B,w), the choice of w depends on the
classes of A and B. In testing mode, case A is a case from
the case base CB, and case B is the query whose class (Cj)
is unknown. We suggest all possible classes of B, and use
the class with the highest activation score(s). This is how k-
NN may use C2C weighting to predict the class of a query:

B = {B1, B2, ..., Bd, Cj}, (6)
where Cj is unknown. In 1-NN (when k = 1), Cj is deter-
mined by:

Cj = argmax
1≤j≤m

activation(A,B,wij)∀A ∈ CB (7)

and this can be extended to k-NN by a majority vote on Cj

from the k highest activation scores.
The implementation and training of C2C weighting di-

rectly follows the example of the ISAC system (Ye 2018).
Weightings for matching features in correct predictions
and unmatching features in incorrect predictions are in-
creased, while other weightings are decreased. We modify
the weightings by:

wijv(t+ 1) = wijv(t)± δ ∗
Fc

Kc
, (8)

where wijv(t) is the v-th feature weighting at time step t. δ
is a fixed value. Fc is the number of times the case has been
falsely retrieved and Kc is the number of times the case has
been correctly retrieved. In short, the feature weightings are
changed so that frequently seen patterns between classes can
leads to high activation scores in testing mode.

354

Improved C2C Weighting
There are two flaws in the original design of C2C weighting:
1) Cases of class Ci are used to train the native class weight-
ing wii, and cases of a different class Cj to train the non-
native class weighting wij . However, the training of tradi-
tional feature weightings involves both positive and negative
examples. Therefore, native class weightings are often not
properly trained and skewed. 2) If cases of different classes
are spread widely, each case may have its own patterns with
other classes instead of a single pattern defined between the
classes.

Corresponding to each flaw, we implement two improve-
ments for C2C weighting: 1) We train native class weight-
ings with both positive and negative examples; 2) We
integrate C2C weighting with instance-specific weighting
(shortened as IS weighting). In other words, equation 2, 3,
and 5 are changed into the following:

W = {
∑

A∈CB

m∑
i=1

m∑
j=1

wAij}, (9)

wAij = [wAij1, wAij2, ..., wAijd], (10)

activation(A,B,wAij) =

d∑
v=1

wAijv ∗ fd(Av, Bv). (11)

In the resulting instance-specific C2C weighting (short-
ened as IS-C2C weighting), native class weightings inherit
the benefits of IS weighting and learn the patterns of similar-
ity in local regions, while non-native class weightings learn
the patterns between local regions in different classes.

The new training scheme is described in Algorithm 1. Na-
tive class weightings are initialized with feature weightings
equal to 1, while non-native class weightings are initialized
with feature weightings equal to −1.

Understanding C2C Weighting
C2C weighting was previously shown to perform slightly
worse than global weighting (Ye 2018). However, for the
improved IS-C2C weighting, accuracy matches that of its
counterpart, IS weighting. To understand this, we need to
clarify a few concepts:

The foundation of IS-C2C weighting is IS weighting.
The native class weightings in IS-C2C weighting are essen-
tially IS weighting. When using IS-C2C weighting, the ma-
jority of best matched cases in k-NN are actually suggested
by native class weightings. Additionally, a non-native class
weighting is trained only if the weighting leads to some case
retrievals in the training phase. In some scenarios, not many
non-native class weightings are trained, thus reducing the
overhead of IS-C2C weighting.

Non-native class weightings are local and directional.
In IS-C2C weighting, a non-native class weighting is trained
for the pattern from one case to a local region in some other
class. The knowledge is local knowledge anchored to one
case. The suggestive power of a non-native class weight-
ing is best used along with other native and non-native

Algorithm 1 IS-C2C Weighting Training Algorithm

Require: CB, the case base.
1: for each wAij ∈W do
2: set wAijv = 1 where 1 ≤ v ≤ d
3: if i 6= j then
4: set wAijv = −1 where 1 ≤ v ≤ d
5: end if
6: end for
7: repeat
8: for each B = {B1, B2, ..., Bh, Cj1} ∈ CB do
9: for each Ci where 1 ≤ i ≤ m do

10: retrieve k cases A1 ... Ak of class Ci

11: with the highest activation(A,B,wAij2)
12: where A ∈ {A1, ..., Ak}
13: for each A ∈ {A1, ..., Ak} do
14: update FA,KA based on j1, j2
15: for each v where 1 ≤ v ≤ d do
16: new w = wAij2v ± δ ∗ FA

KA

17: if i = j2 and new w < 0 then
18: set new w to 0.001
19: end if
20: wAij2v = new w
21: end for
22: Normalize wAij2
23: end for
24: end for
25: end for
26: until training converge / max # of iterations reached

class weightings. For example, both New York and Philadel-
phia are northeast of Washington, so further information is
needed to differentiate between New York and Philadelphia.

C2C Trace Retrieval
Traditional weighting methods only show how well a stored
case A matches a query Q. On the other hand, IS-C2C
weighting can suggest whether the difference is similar to
one of its learned patterns when the match fails. If the dif-
ference between Q and A is similar to the learned differ-
ence between some region R and A, it suggests Q and R
share similar features. C2C trace retrieval repeatedly uses
the learned difference patterns to suggest promising search
areas, thus skipping vast majority of the irrelevant cases.

Assuming case A is of class Ci, the weighting wAij tells
us about the pattern between the case A and a region R in
class Cj . To further take advantage of this knowledge, we
can also record cases (R1, R2...) in that region R. This is
done by keeping a log and recording cases (R1, R2...) of
class Cj that leads to the training of weighting wAij . We
refer to this log as the training history of weighting wAij .
The length of a training history shows the number of times
a weighting is trained. Notice that cases that are not of class
Cj may also influence wAij (as negative examples) but they
are not recorded in this training history.

C2C trace retrieval in its current design is an agent-based
retrieval method where each agent is composite of an ex-
tendable list of cases, or a trace. It functions as following:

355

1. Given an input query, the agents starts out by randomly
pick t cases from every class. Cases with multiple well-
trained non-native class weightings are preferred.

2. Each case chosen in Step 1 functions as the initial case of
a trace. As there are m classes, there will be m · t traces .

3. For each trace, the agent compares the last case A on the
trace with the query, using each of the native and non-
native class weightings anchored on A.

4. Assume the highest activation score is yielded by weight-
ing wAij . The agent retrieves the most recent case S from
the training history of weighting wAij , and appends case
S to the tail of the current trace.

5. If case S already appears on this trace, or if the training
history of wAij is empty, the current trace is stable.

6. Repeat step 3-5 until all traces are stable.
7. The agents combine all unique cases in traces into one

pool, and carry out a k-NN using IS-C2C weighting in this
pool. The k cases with the highest scores are retrieved.

The number of traces t is a trade-off decision between effi-
ciency and accuracy. If t = 1, C2C trace retrieval is just a
crude guess. If t is set to the number of all cases then C2C
trace retrieval produces the same prediction as a k-NN us-
ing IS-C2C weighting. For best performance, the number of
traces starting in a class should be proportional to the num-
ber of cases in the class.

The choice of initial cases in Step 1 is crucial. Picking
cases whose training history is short or empty will lead to
short and uninsightful traces. A long training history indi-
cates that the weightings of a case are trained multiple times
to reflect strong patterns across the case space. In our im-
plementation, we order cases by the lengths of their training
history and use a Poisson random number generator (λ = 1)
to pick initial cases.

Computational Complexity
Assuming the size of case base is n, number of attributes d,
number of classes m, number of training iterations I , this
section discusses computational complexities. IS weighting
works with one set of feature weightings for each case while
IS-C2C weighting does the same with at most m sets.

In k-NN, the training complexity of IS weighting or
global weighting isO(dIn2). The training complexity of IS-
C2C weighting isO(dImn2). The retrieval time complexity
of IS weighting is O(dn), and that of IS-C2C weighting is
O(dmn).

As for the retrieval time complexity of C2C trace retrieval,
there are O(mt) traces in total, each trace is of an expected
length L, every case requires O(m) similarity measure calls
and each call is O(d). Therefore the time complexity for
building traces is O(dm2tL). After gathering all traces, we
have in total O(mtL) cases. To select k most similar cases,
we can reuse similarity scores from the previous stage.

In sum, the retrieval time complexity of C2C trace re-
trieval is O(dm2tL). In retrospect, L is often less than m,
as a trace normally would not re-enter a class after leaving
it. t is a user-set value, and a small t is good enough when a
class that is not wide-spread or when m is big.

iris echo WDBC Cleveland MNIST(1) MNIST(2) letter red white
d 4 6 30 13 196 196 16 11 11
n 150 97 569 303 1478 706 2000 1599 4898
m 3 2 2 2 2 10 26 6 6

Table 1: Data sets information

For KD-tree, the training complexity is O(n log n). For
1-NN, the testing complexity is usually O(log n), but O(n)
in the worst scenario (Bentley 1975). The testing complexity
varies because the search for nearest neighbors might require
backtracking in a KD-tree. The cost of backtracking hinges
on the dimensionality of the domain. In practice, the testing
complexity is O(2d + logn).

For LSH, the training complexity is shown to be polyno-
mial and the testing complexity polynomial in d and log n.
In practice, it offers orders of magnitude improvement in ef-
ficiency over KD-tree (Indyk and Motwani 1998). In testing,
the LSH implementation we use is O(dHL) in hashing and
O(bLNc) in collision resolution, where H is the number of
dot products per hash (or the number of indices for a hash
code), b is the average bin size, L is the number of projec-
tions (or hashes),Nc is the expected number of collisions per
projection (Slaney and Casey 2008). However, LSH poses
some complexity in design as it requires a suitable choice of
a family of hashing functions for a given problem domain.

Performance
We examine the performance of C2C trace retrieval on
classification tasks, and compare it with k-NN using
global/C2C/IS-C2C weighting, KD-tree, and LSH. We ex-
amine the algorithms under eight data sets: Wisconsin
diagnostic breast cancer (WDBC), Heart Disease Cleve-
land, echocardiogram (echo), iris, red and white wine, let-
ter recognition (Dheeru and Karra Taniskidou 2017), and
MNIST (LeCun and Cortes 2010). We modified the letter
and MNIST data set to make the experiment runnable on
computers with 8GB RAM. 10% of the letter data are used.
MNIST images are blurred from 28*28 to 14*14 and part of
all cases are used in two experiments: (1) only two of digits
(0 and 1) about 700 samples each; (2) all ten digits, about
70 samples each. For white wine, we merge 5 cases of class
9 to class 8, to make white wine more comparable with red
wine where there are no class 9 cases. Details about the data
sets are listed in Table 1.

We use the implementation of k-NN and KD-tree from
the Java-ML library (Abeel, de Peer, and Saeys 2009). The
C2C feature weightings are trained until they converge (all
within 20 iterations). For all experiments, the performance
of each algorithm is evaluated with 10-fold cross validation.
Lastly, we use k = 5 and t = 5 (except for red and white
wine, where we use t = 1 because some of the classes are
very small).

As Euclidean distance applies to all our data sets, we use
the package TarsosLSH (Six 2013) because this LSH im-
plementation supports the Euclidean hash family, which is
based upon (Slaney and Casey 2008). We usedH = 10, L =
30. H and L are explained before. To determine the width
of a projection, w, the algorithm first searches for the clos-

356

est neighbor within a time limit for 30 trials, and then the
product of the average distance to the closest neighbor and
a constant multiple (we use 9) serves as the width. In real-
ity, researchers can tune these parameters for maximal ef-
ficiency or for a probabilistic guarantee of finding the true
nearest neighbor. For the purpose of this study, fine tuning
is not needed, as we use LSH as a classifier and we use the
majority vote of the candidates in found bins after hashing.
We want to advise the readers that the evaluation here is by
no means a definitive comparison between the algorithms.
Each algorithm may be fine tuned to achieve better perfor-
mance in certain domains, for example, by careful choices
of k in k-NN, the balancing of KD-tree, different choices of
H , L, and w in LSH, and the number of traces per class t in
C2C trace retrieval.

Accuracy is measured by the average accuracy across all
classes, weighted by the size of each class. The results are
listed in Table 2. C2C trace retrieval is generally worse when
compared to other methods. While the gain in efficiency is
small, the loss in accuracy is also small, as shown in the ex-
periments with Cleveland, echo, and iris. When C2C trace is
greatly faster, it loses more accuracy, as shown in the exper-
iments with WDBC, MNIST(1), red and white wine.

Efficiencies of the algorithms are loosely comparable
since they all require similarity measure calls between cases
(activation measure call in the case of C2C), which consti-
tute the most expensive operations of each algorithm. More
specifically, we measure: the number of similarity measure
calls made in C2C trace retrieval and k-NN, the number of
nodes inspected in KD-tree (traversing a node requires at
least one similarity measure call between the node and the
query) (Moore 1991), and the number of items in the re-
trieved bins after hashing (ranking the items requires simi-
larity measure calls). These numbers implies the numbers of
similarity measure calls made in the algorithms. We measure
the sum of these numbers for all cases in the 10-fold cross
validation. The results are listed in Table 3 and the costs per
query case are in Table 4. Note that LSH requires additional
H ·L = 300 dot products per query case during the hashing
phase, and a similarity measure call is essentially a dot prod-
uct. The cost of hashing for LSH is included in the Tables 4.

In our experiments with WDBC, MNIST(1), red and
white wine, C2C trace retrieval greatly reduces the number
of similarity measure calls. This effect is not obvious when
n or d is small, as in iris and echo.

However, C2C trace retrieval has an unusually high num-
ber of similarity measure calls in MNIST(2) and letter. Us-
ing letter as an example, the C2C parameters are m = 26,
t = 5, L ' 2.2. The total number of calls for every query
is m2tL = 7436, multiplying this with the number of cases
n = 2000, we get 14872000. This matches our observation
and computational complexity analysis where the complex-
ity of C2C trace retrieval isO(dm2tL). Whenm is large and
n is small, m2 catches up to n and the efficiency advantage
of C2C trace retrieval is diminished. In these scenarios, we
can reduce t to reduce the cost of C2C trace retrieval.

In summary, C2C trace retrieval excels in terms of effi-
ciency when n or d is huge. When m is huge, we can avoid

iris echo WDBC Cleveland MNIST(1) MNIST(2) letter red white
k-NN 0.973 0.494 0.929 0.667 0.993 0.928 0.983 0.629 0.633
C2C 0.906 0.463 0.913 0.646 0.477 0.818 0.976 0.711 0.722

IS-C2C 0.964 0.515 0.966 0.828 0.903 0.830 0.982 0.712 0.733
KD-tree 0.973 0.494 0.929 0.667 0.993 0.928 0.983 0.667 0.673

LSH 0.951 0.505 0.927 0.650 0.989 0.927 0.983 0.659 0.684
C2C trace 0.916 0.526 0.759 0.769 0.885 0.884 0.953 0.634 0.601

Table 2: Weighted Average Accuracy

iris echo WDBC Cleveland MNIST(1) MNIST(2) letter red white
k-NN 20250 8466 291384 82626 2022300 448590 3600000 2301120 21591362
C2C 60750 16932 582768 165252 3727296 3968040 93600000 13806720 129548172

IS-C2C 38985 14711 350334 165252 3852660 3716635 41398200 4404926 34161235
KD-tree 11433 10480 357745 121350 2577812 843482 3105318 1778233 11206435

LSH 2551 2814 37307 27142 546162 304615 1116846 108689 213548
C2C trace 21491 5104 28358 26174 94820 746205 14943012 76820 294804

Table 3: Number of Distance Measure Calls

iris echo WDBC Cleveland MNIST(1) MNIST(2) letter red white
k-NN 135 87 512 273 1368 635 1800 1439 4408
C2C 405 174 1024 545 2521 5620 46800 8634 26449

IS-C2C 259 151 615 545 2606 5264 20699 2754 6974
KD-tree 76 108 629 400 1744 1195 1552 1112 2288

LSH 17 29 65 90 370 431 558 68 44 (+300)
C2C trace 143 52 50 86 64 1057 7472 48 60

Table 4: Number of Distance Measure Calls Per Query Case
(Best Numbers Highlighted)

creating too many traces by reducing t.

Discussion
Drawbacks
Nondeterministic Nature The agent-based design of C2C
trace retrieval is nondeterministic. We randomly choose
cases that are promising in starting informative traces by
choosing cases with the longest training history. Because of
the nondeterministic nature of C2C trace retrieval, we lack
theoretical discussion about the error rate bound of the clas-
sification.

Memory Usage and Training Time When n or d is huge,
IS-C2C weighting can become too cumbersome to train and
store. This is a direct issue inherited from IS weighting, forc-
ing us to down sample some of the data sets in experiments.

There are two ways to alleviate the problem: 1) Since the
weighting wAij associated with a case A can be trained in-
dependently from other weightings, we may complete train-
ing some feature weightings and store them in a hard-drive-
based database before training more feature weightings. In
testing, C2C trace retrieval starts with t cases from every
class, so it is only necessary to load the feature weightings
of these cases. 2) condensing the case base so we do not need
to store feature weightings for all cases.

Condensing the Case Base
IS weighting and IS-C2C weighting store some feature
weightings for every case, which can be problematic when
the case base is huge. Condensed nearest neighbors (Hart
2006) can be used to reduce the case bases under IS
weighting. IS-C2C weighting, inheriting the drawbacks of
IS weighting, also inherits from it improvement techniques,
such as CNN. Interestingly, when using C2C weighting, a
whole class might be removed if the non-native class weight-
ing of another class can correctly predict this class. This phe-
nomenon is explained in (Ye 2018).

357

Relation with Index-based Retrieval Methods
An index-based retrieval method builds an index to look up
cases in the training stage. Some examples are Protos, KD-
tree, and LSH. In C2C trace retrieval, cases with the longest
training histories function as the initial indices. The training
of IS-C2C weighting automatically identifies these indices.
Different from traditional indices, which suggest “whether
to look into a neighborhood”, IS-C2C weighting indices
also suggest “where else to look”. IS-C2C weighting indices
might also be useful for other index-based retrieval methods.
In fact, in Protos, one “indexing mechanism is based on the
differences between pairs of ‘neighboring’ exemplars in the
category structure” (Ray Bareiss, W. Porter, and Wier 1990).

Future Directions
C2C trace retrieval retrieves cases from multiple classes.
The heterogeneous cases offers a novel explanation for the
final classification. These cases also serve as interesting al-
ternatives to the query, allowing the user to explore similar
cases of different classes.

C2C weighting can also be used in detecting anomalies or
unseen classes. C2C weighting learns and stores difference
patterns in the training data. Given a query, C2C weight-
ing is able to detect if the query conforms to difference pat-
terns learned from the training data. If the query shows signs
of new difference patterns while not following the already
learned ones, the query is possibly an anomaly or of an un-
seen class.

Summary
Taking advantage of the local knowledge offered by IS-C2C
weighting, C2C trace retrieval provides a quick approximate
solution for the task of classification. Case retrieval meth-
ods often suffer when the size or dimensionality of the case
base is huge, rendering C2C trace retrieval an attractive al-
ternative. Multiple experiments demonstrated that C2C trace
retrieval achieves great efficiency at a reasonable cost of ac-
curacy.

References
Abeel, T.; de Peer, Y. V.; and Saeys, Y. 2009. Java-ml: A
machine learning library. The Journal of Machine Learning
Research 10(931–934).
Aha, D. W., and Goldstone, R. L. 1992. Concept learning
and flexible weighting. In Proceedings of the Fourteenth
Annual Conference of the Cognitive Science Society, 534–
539. Erlbaum.
Bentley, J. L. 1975. Multidimensional binary search trees
used for associative searching. Commun. ACM 18(9):509–
517.
Bonzano, A.; Cunningham, P.; and Smyth, B. 1997. Using
introspective learning to improve retrieval in CBR: A case
study in air traffic control. In Leake, D., and Plaza, E., eds.,
Proceedings of the 2nd International Conference on Case-
Based Reasoning (ICCBR-97), volume 1266 of LNAI, 291–
302. Berlin: Springer.

Dheeru, D., and Karra Taniskidou, E. 2017. UCI machine
learning repository.
Friedman, J. H. 1994. Flexible metric nearest neighbor clas-
sification. Technical report, Stanford University.
Gentner, D., and Forbus, K. 1991. MAC/FAC: A model of
similarity-based retrieval. In Proceedings of the Thirteenth
Annual Conference of the Cognitive Science Society, 504–
509. Chicago, IL: Cognitive Science Society.
Hart, P. 2006. The condensed nearest neighbor rule (cor-
resp.). IEEE Trans. Inf. Theor. 14(3):515–516.
Indyk, P., and Motwani, R. 1998. Approximate nearest
neighbors: Towards removing the curse of dimensionality.
In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC ’98, 604–613. New York, NY,
USA: ACM.
LeCun, Y., and Cortes, C. 2010. MNIST handwritten digit
database.
López de Mántaras, R.; McSherry, D.; Bridge, D.; Leake,
D.; Smyth, B.; Craw, S.; Faltings, B.; Maher, M.; Cox, M.;
Forbus, K.; Keane, M.; Aamodt, A.; and Watson, I. 2005.
Retrieval, reuse, revision, and retention in CBR. Knowledge
Engineering Review 20(3).
Marchiori, E. 2013. Class Dependent Feature Weighting
and K-Nearest Neighbor Classification. Berlin, Heidelberg:
Springer Berlin Heidelberg. 69–78.
Moore, A. W. 1991. An intoductory tutorial on kd-trees.
Ray Bareiss, E.; W. Porter, B.; and Wier, C. 1990. Protos:
An exemplar-based learning apprentice. 29:549–561.
Ricci, F., and Avesani, P. 1995. Learning a local simi-
larity metric for case-based reasoning. Berlin, Heidelberg:
Springer Berlin Heidelberg. 301–312.
Richter, M., and Weber, R. 2013. Case-Based Reasoning: A
Textbook. Berlin: Springer.
Schaaf, J. 1996. Fish and shrink. a next step towards efficient
case retrieval in large scaled case bases. In Smith, I., and
Faltings, B., eds., Advances in case-based reasoning, 362–
376. Berlin: Springer Verlag.
Six, J. 2013. Tarsoslsh. https://github.com/JorenSix/
TarsosLSH.
Slaney, M., and Casey, M. 2008. Locality-sensitive hashing
for finding nearest neighbors [lecture notes]. IEEE Signal
Processing Magazine 25(2):128–131.
Wettschereck, D.; Aha, D.; and Mohri, T. 1997. A review
and empirical evaluation of feature-weighting methods for
a class of lazy learning algorithms. Artificial Intelligence
Review 11(1-5):273–314.
Ye, X. 2018. The enemy of my enemy is my friend: Class-
to-class weighting in k-nearest neighbors algorithm. In Pro-
ceedings of the Thirty-First Florida Artificial Intelligence
Research Society Conference, 389–394.

358

