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Abstract

Case-Based Reasoning relies on the underlying hypothesis
that similar problems have similar solutions. The extent to
which this hypothesis holds good has been used by CBR de-
signers as a measure of case base complexity, which in turn
gives insights on its generalization ability. Several local and
global complexity measures have been proposed in the liter-
ature. However, the existing measures rely only on the simi-
larity knowledge to compute complexity. We propose a new
complexity measure called Reachability-Based Complexity
Measure (RBCM) that goes beyond the similarity knowledge
to include the effects of all knowledge containers in the rea-
soner. The proposed measure is evaluated on several real-
world datasets and results suggest that RBCM correlates well
with the generalization accuracy of the reasoner.

1 Introduction
Case-Based Reasoning (CBR) is a paradigm of research that
mimics the human way of re-using past experiences to solve
new problems (Kolodner 1992). A typical problem-solving
cycle in CBR consists of four main steps namely retrieve,
reuse, revise and retain (Aamodt and Plaza 1994). The re-
trieve step involves fetching one or more past experiences
that are similar to the new problem to be solved. In the reuse
step, the solutions of the retrieved experiences are adapted
to suit the current problem. In the revise step, a domain ex-
pert can if required, modify the new problem-solution pair
learned by the reasoner and in the retain step, the reasoner
chooses to store the new experiences in its case base.

From a knowledge engineering perspective, the total
knowledge present in a case-based reasoner is said to be
distributed across four knowledge containers (Richter 2003)
namely Case base, Vocabulary, Similarity and Adaptation.
Past experiences are captured as problem-solution pairs
called cases and the repository of all cases present in the
reasoner is called case base. Similarity and adaptation con-
tainers carry the retrieval and re-use knowledge respectively.
Vocabulary refers to the choice of language used to describe
the domain knowledge present in all other containers.

Design of a case-based reasoner involves significant
knowledge engineering. For example, one has to choose the
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initial set of cases, type of representation, local/global simi-
larity measures and adaptation rule sets to list a few. Though
CBR was originally developed for ill-defined domains, it
can be applied to a wide range of domains ranging from
well-defined to ill-defined. Depending on the underlying do-
main, the knowledge in each container could vary from be-
ing extremely simple to extremely complex (Ganesan and
Chakraborti 2018). In principle, any one container could
hold all knowledge in the reasoner. However, this is not de-
sirable from an efficiency point of view. Also, knowledge
can be shifted across containers and the nature of knowl-
edge versus the choice of container may influence the perfor-
mance of reasoner (Richter 1995). Hence, a CBR designer
would benefit from measures that guide the selection of the
best knowledge configuration. Essentially, one must be able
to estimate the generalization ability of the reasoner under
different design choices.

Given a knowledge configuration, a CBR designer relies
only on the training data to measure its complexity, which
is expected to correlate with the performance of the rea-
soner on test data. Despite being a critical issue, there are
only a few works in CBR literature that address the problem
of quantitatively evaluating design choices (see Section 2).
The existing measures evaluate only the impact of similarity
knowledge on case base and lack a systematic framework
to account for the interaction between knowledge contain-
ers. We observe that the utility of a case depends not only
on the similarity knowledge but also on the vocabulary and
adaptation knowledge. This can be attributed to the interde-
pendence between the containers as discussed earlier.

In this work, we propose a complexity measure that over-
comes the above limitation by accommodating the inte-
grated effect of different knowledge containers on the case
base. The proposed measure is called Reachability-Based
Complexity Measure (RBCM). RBCM exploits the idea of
reachability from (Smyth and Keane 1995) and is applicable
to both single case and compositional adaptation scenarios.
The proposed measure is evaluated on synthetic as well as
real-world data sets and is found to corroborate well with
the generalization accuracy of the reasoner.

2 Related Work
Lamontagne (2006) proposed a performance indicator called
case cohesion to guide the selection of similarity schemes
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for Textual Case-Based Reasoners (TCBR). Case cohesion
is defined from the local neighbourhood of textual cases and
measures the overlap of neighbours on the problem and so-
lution side. Since adaptation for TCBR systems is complex
and very less explored, case cohesion was proposed primar-
ily to select an appropriate retrieval scheme at the time of
case authoring. This measure is sensitive to the problem and
solution thresholds that are needed to fix the size of the local
neighbourhood.

Massie et al. (Massie, Craw, and Wiratunga 2007; Raghu-
nandan et al. 2008) proposed a complexity measure for case
base which is obtained by averaging the alignments of its
individual cases. Alignment of a case is measured by the av-
erage solution similarity of its neighbours weighted by their
problem side similarities to that case. If c is a case in case
base CB, then its local alignment is given by:

alignMassie(c) =

∑
c′∈NN(c) simP (c, c′) ∗ simS(c, c′)∑

c′∈NN(c) simP (c, c′)

(1)
where NN(c) is the local neighbourhood of some size k,
simP (c, c′) is the problem side similarity of c and c′ and
simS(c, c′) is the solution side similarity of c and c′. Now,
the alignment of the whole case base is given by:

alignMassie(CB) =

∑
c∈CB alignMassie(c)

|CB|
(2)

The same authors also propose an alignment based case-
profiling approach where the case base is represented as a
graph of the local alignment scores of its cases plotted in in-
creasing order. This visualization approach can help a main-
tenance engineer to identify the areas of high noise and/or
redundancy in the case base and to decide an appropriate
maintenance methodology.

The above two works are examples of local complex-
ity measures because the alignment of a case is calculated
only with respect to a small neighbourhood. The big pic-
ture i.e. alignment of case base is obtained from these local
case complexities. There are also global complexity mea-
sures that attempt to estimate the alignment of case base di-
rectly. Some of these are discussed below.

Chakraborti et al. (2008) proposed a stacking based visu-
alization approach for textual case bases. Their alignment
measure is called GAME where the complexity of a case
base is related to the compression of the case base image that
results from stacking. Raghunandan et al. (2008) propose
two complexity measures alignMST and alignCorr. The first
one uses the idea of spanning trees to measure global align-
ment while the second one uses the correlation of prob-
lem and solution side similarities of all cases in case base
to measure the same. Zhou et al. (2010) propose another
global complexity measure for the case base that uses the
rank correlation between most similar case rankings in prob-
lem space and most similar case rankings in solution space.
Cummins and Bridge (2011) use several dataset complexity
measures to evaluate case base editing algorithms used for
case base maintenance. Though this analysis focusses only
on classification domains, it presents an interesting applica-
tion for case base complexity measures.

Figure 1: Example to show that alignment of case base is
influenced by adaptation knowledge

2.1 Limitation of Existing Complexity Measures
The complexity measures discussed in the previous section
use similarity as their primary knowledge source for esti-
mating alignment. Case base alignment is low when simi-
lar problems have dissimilar solutions. But, Figure1 shows
how adaptation knowledge can influence the local align-
ment of cases. Cases C3 and C4 are similar on the prob-
lem side and dissimilar on the solution side. This is an in-
stance of a case (C3) having poor local alignment. How-
ever, if the reasoner were equipped with some appropriate
adaptation knowledge, then a solution of C3 can be adapted
to give C3′, which is more similar to the solution of C4
than the solution of C3 itself. Thus, the solutions of cases
C3 and C4 which are initially dissimilar become similar
after one of them is adapted to solve the other. This im-
pact of adaptation knowledge is not captured by the exist-
ing similarity measures. Also, the utility of a case in solv-
ing a target problem is affected by the knowledge in simi-
larity, adaptation, and vocabulary containers (Richter 1995;
Wilson and Leake 2001; Ganesan and Chakraborti 2018).
Hence, the complexity measures of case base need to go be-
yond just one knowledge container to accommodate the in-
tegrated effect of knowledge in all containers.

3 Proposed Approach
Learning in a case-based reasoner results not only from the
accumulation of experiences over time but also from the re-
vision of knowledge in its containers during maintenance.
The main aim of maintenance is to optimize the perfor-
mance of reasoner during its operational lifetime (Smyth and
McKenna 2001). Some of the performance metrics are re-
trieval time, adaptation cost and generalization accuracy. As
design and maintenance have shared objectives, complexity
measures for evaluating design choices can also benefit from
the ideas in maintenance research. In this section, we first
discuss the background needed to understand the proposed
complexity measure, followed by the details.

3.1 Background
As case base is a central source of knowledge in the reasoner,
most maintenance policies have targetted the compaction of
the case base to improve the retrieval efficiency. In case base
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maintenance, the central goal is to select a subset of cases
that can have the same problem-solving ability as the en-
tire case base. Several measures have been proposed to rank
the cases based on their contribution to the problem-solving
ability of the reasoner. Smyth and Keane (1995) identify two
key concepts which are coverage and reachability.

Reachability The coverage of a case is the set of target
problems that it can be used to solve. The reachability of a
target problem is the set of cases that can be used to provide
a solution for the target. These sets are computed based on
the assumption that the case base is a representative sample
of the target distribution.

CoverageSet(c) = c′ ∈ CB : Solves(c, c′) (3)

ReachabilitySet(c) = c′ ∈ CB : Solves(c′, c) (4)
Solves(c, t) iff c ∈ [RetSpace(t) ∩ AdaptSpace(t)] (5)

where t is a target problem to be solved. RetSpace(t) is the
set of cases retrieved for t and AdaptSpace(t) is the set of
cases that can be adapted to solve t. Though coverage is able
to measure the contribution of cases to competence, it does
not ensure that the contributions are unique. For example,
two cases c1 and c2 can have large but same coverage sets.

Following the above observation, Smyth and Kenna
(2001) proposed a case competence model where the cases
can be clustered into competence groups. Each competence
group makes a unique contribution to case base competence.
Within each competence group, the cases can be ordered
based on the relative coverage measure which is an attempt
to measure the unique competence contribution of individ-
ual cases. The idea behind relative coverage formulation is
that a case which solves many cases but is itself not solved
by many other cases contributes more to the global compe-
tence of reasoner. From the definition given below, we can
see that a case which is highly reachable contributes less to
the unique case competence whereas a case which is less
reachable contributes more.

RelativeCoverage(c) =
∑

c′∈CoverageSet(c)

1

ReachabilitySet(c′)

ReachabilityCA In compositional adaptation, solutions
from multiple neighbours are combined to solve the query
problem. For example, in a regression task, the reasoner
could use k neighbours to arrive a solution for the query
problem (Patterson, Rooney, and Galushka 2002); in the
cooking domain, the reasoner could combine the recipes
of k nearest cases to create a new recipe (Müller and
Bergmann 2014). There are also other instances of com-
positional adaptation in literature (Atzmueller et al. 2004;
Nasiri, Zenkert, and Fathi 2017).

Suppose that there exists a graph of case base where
each node represents a case and directed edges between
nodes imply that there exists a solves relation between
the corresponding cases. Then, the authors in (Mathew and
Chakraborti 2016) observe that in compositional adaptation,
the cases which are used for adapting the new solution have
an AND relation among them. Whereas, in case of single

case adaptation, there exist no such dependencies between
cases. If more than one single case adaptation can solve the
target problem and these multiple solutions are independent
of each other, then they exhibit an OR relation. The case
base graph is thus composed of AND-OR relations.

The relative coverage measure is not sensitive to the
AND-OR relations between cases. Mathew and Chakraborti
(2016) proposed a new measure called retention score that
estimates the retention quality of a case based on its ability
to cover highly retainable cases with the support of a few but
highly retainable cases. Retention score involves a recursive
formulation to estimate the global competence of each case
in the case base. We do not go into the details of this formu-
lation because for the current work, we are only interested
in the modified definitions of reachability and solves from
(Mathew and Chakraborti 2016) that accommodate compo-
sitional adaptation. ReachabilityCA of a case c is the set of
all those subsets of cases that can be retrieved and adapted
to solve c. Similarly, solvesCA relation is defined between a
subset of cases and the target problem.

ReachabilityCA(c) = {C ′ ⊂ CB : SolvesCA(C
′, c)} (6)

SolvesCA(C
′, c) iff C ′ ⊂ [RetSpace(t) ∩ AdaptSpace(t)] (7)

Footprint Set Based on the relative coverage or retention
scores of cases, a variation of Condensed Nearest Neighbour
(CNN) (Hart 1968) algorithm can be used to obtain a mini-
mal set of cases that have the same competence as entire case
base. This set is called footprint set (Smyth and McKenna
2001) and consists of non-redundant cases in the case base.

3.2 Reachability-Based Complexity Measure
The case competence measures discussed so far viz. cov-
erage, relative coverage and retention score have been pro-
posed in the context of case base maintenance. Unlike the
complexity measures discussed in Section 2 that look at case
base in isolation, these case competence measures are re-
lated to the retrieval and adaptation processes in the CBR
cycle. This is rendered by the definition of solves function
in Equations 5 and 7. The key observation is that com-
petence of a case is not independent of the knowledge in
other containers but emerges from their interaction (Gane-
san and Chakraborti 2018). For example, if a target problem
is not solved by the reasoner, one could simply add the new
problem-solution pair as a case into the case base. Alterna-
tively, a knowledge engineer can also explore the option of
revising the knowledge in vocabulary/similarity/adaptation
containers such that the target problem is solved by the cur-
rent case base itself. In the latter scenario, the competence of
cases in case base has been altered by the knowledge revi-
sions in the other containers. Hence, the solves and solvesCA

functions act as pathways through which the interaction be-
tween knowledge containers is reflected on the case base.

As discussed in the previous section, footprint set (Smyth
and McKenna 2001) refers to a minimal set of cases that
have the same problem-solving ability as the entire case
base. Ganesan and Chakraborti (2018) propose footprint size
reduction as a measure to quantify the knowledge tradeoffs
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between containers. Revision of knowledge in vocabulary/
similarity/ adaptation containers has its impact on the util-
ity of cases in the case base. Hence, the effective number
of cases needed to cover the entire case base decreases as
more domain knowledge is added to other containers. There-
fore, the authors hypothesize that a knowledge-rich configu-
ration leads to a greater reduction in footprint size and sug-
gest that footprint size reduction can be used to compare de-
sign choices. However, construction of footprint set is com-
putationally expensive and hence its frequent construction
during design evaluation may not scale well to large-sized
case bases. Also, the algorithm used for constructing foot-
print set may be varied and hence a footprint size based com-
plexity measure is sensitive to the footprint construction al-
gorithm involved. Motivated by the above observations, we
propose the following Reachability-Based Complexity Mea-
sure (RBCM).

RBCM =
|{c ∈ CB : {Reachability(c)− c} = ∅}|

|CB|
(8)

In the case of compositional adaptation, the definition gets
modified as shown below.

RBCMCA = |{c∈CB:{ReachabilityCA(c)−{c}}=∅}|
|CB| (9)

Equations 8 and 9 are essentially the same except that the lat-
ter definition explicitly accommodates compositional adap-
tation while the former does not. When only a single case
adaptation is involved, both equations will produce the same
complexity values. Further, as we are only interested in the
cases with null reachability, RBCMCA is not affected by the
nature of AND-OR relations between cases.

Smyth et al. (1995) use the term pivotal cases to refer to
cases which have zero reachability. They say that these piv-
otal cases make a unique contribution to case competence
but also comment that pivotal cases are generally outliers,
being too isolated to be solved by any other case. We believe
that it is more fitting to call pivotal cases as outliers because
once the case-based reasoner is deployed, one can expect
that it will accumulate more cases similar to those already
present in the case base. This is due to the two basic CBR as-
sumptions that problem re-occur and similar problems have
similar solutions. Hence, if a case is not reachable, it is more
likely to be an outlier than to be a source of unique contribu-
tion to case base competence. In the next section, we discuss
the experiments and results on the use of the proposed com-
plexity measure to evaluate design configurations.

4 Experiments & Results
In order to evaluate the proposed complexity measure, we
measure its correlation with generalization accuracy on sev-
eral real-world case bases. This includes four classification
datasets - Iris, Wine, Abalone, Breast Cancer, two regression
datasets- Boston, AutoMPG and two textual datasets from
20Newsgroups - Relpol and Hardware.

On each case base, the similarity, adaptation and/or vo-
cabulary knowledge contents are varied many times. For
each knowledge configuraion, we do a five fold cross val-
idation where the case base is randomly split into five equal

Classification Domain CB size Attributes Classes
Wine 179 13 3
Iris 150 4 3
Breast Cancer 569 31 2
Abalone 4177 8 29

Textual Domain CB size Vocab Classes
Hardware 3031 TF-IDF 2
Relpol 1168 TF-IDF 2

Regression Domain CB size Attributes
Auto-MPG 392 8
Boston 506 14

Table 1: Datasets

sized partitions. Of the five partitions, one is used as testing
data, which is used to estimate the generalization accuracy
of reasoner, and the other four are used as training data on
which RBCMCA, footprintCA size and Massie et al.’s align-
ment score are measured. This process is then repeated five
times and the results are averaged over five folds for each
measure.

Classification domains In classification domains, similar-
ity knowledge was varied from S0 to S9 and adaptation
knowledge was either null adaptation (R0) or majority vot-
ing by 3NN (R1). Similarity measure refers to the attribute
weights used for global similarity estimation. For example,
in the Iris dataset, there are four attributes namely sepal
length, sepal width, petal length and petal width. The sim-
ilarity measure (3, 2, 1, 1) gives more importance to sepal
length and sepal width than the other two attributes. The at-
tribute weights were varied manually to give 10 different
similarity configurations. As some datasets have as many
as 30 attributes (see Table 1), the similarity configurations
are not explicitly shown in the results except for the Iris
dataset. Total number of data points for correlation estima-
tion in each case base is 20. Results on classification do-
mains are shown in Tables 2a, 2b, 2c and 2d. In all these
tables, Solved% is the percentage of correctly classified test
instances and shows the generalization ability of reasoner.

It is expected that footprint size and RBCMCA show a
negative correlation with Solved% whereas the alignment
score shows a positive correlation. It can be observed that
RBCMCA has the strongest correlation with generalization
accuracy on all case bases except on Abalone dataset, where
it is comparable to footprint size. Though the similarity mea-
sures were created randomly, we could observe that the ones
with good domain knowledge lead to lower complexity val-
ues. For example, on Iris dataset, petal length and petal
width are important attributes for classification based on do-
main knowledge. Measures like S2, S5 that emphasize these
attributes lead to lower complexity values.

Regression domains In regression domains, similarity
knowledge was varied from S0 to S5 and adaptation knowl-
edge from R0 to R3 resulting in 20 data points for corre-
lation estimation in each case base. Results on regression
domains are shown in Tables 2e and 2f. Similarity configu-
rations were obtained in the same way as explained before.
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Sim Adapt FPCA Solved
%

RBCM RBCM
CA

Align
(k=3)

S0:3200 R0 52 71.33 0.29 0.29 0.72
S0:3200 R1 54.4 75.33 – 0.26 0.72
S1:1111 R0 17.2 95.33 0.05 0.05 0.94
S1:1111 R1 17.4 95.33 – 0.04 0.94
S2:0032 R0 12 93.33 0.05 0.05 0.95
S2:0032 R1 14.6 96 – 0.04 0.95
S3:1100 R0 50.2 72.67 0.29 0.29 0.73
S3:1100 R1 55.2 72.67 – 0.25 0.73
S4:3211 R0 19 92.67 0.06 0.06 0.93
S4:3211 R1 25 95.33 – 0.05 0.93
S5:1234 R0 14.4 95.33 0.05 0.05 0.95
S5:1234 R1 16.4 96 – 0.05 0.95
S6:2231 R0 16.4 95.33 0.06 0.06 0.94
S6:2231 R1 19.2 96 – 0.04 0.94
S7:2312 R0 17.8 94 0.06 0.06 0.94
S7:2312 R1 20.6 95.33 – 0.05 0.94
S8:4310 R0 27.8 88 0.12 0.12 0.85
S8:4310 R1 32.6 90 – 0.1 0.85
S9:1200 R0 49.4 71.33 0.29 0.29 0.72
S9:1200 R1 55.8 69.33 – 0.27 0.72

r -0.97 -0.99 0.98

(a) Iris

Sim Adapt FPCA Solved
%

RBCM RBCM
CA

Align
(k=3)

S0 R0 17 96.59 0.04 0.04 0.95
S0 R1 17 97.19 – 0.04 0.95
S1 R0 18.2 94.35 0.05 0.05 0.95
S1 R1 15.8 96.63 – 0.03 0.95
S2 R0 18.2 94.9 0.04 0.04 0.95
S2 R1 16.4 97.75 – 0.03 0.95
S3 R0 16.8 97.16 0.03 0.03 0.95
S3 R1 18 96.06 – 0.04 0.95
S4 R0 16.4 97.17 0.03 0.03 0.96
S4 R1 20.8 97.19 – 0.03 0.96
S5 R0 19 97.16 0.03 0.03 0.96
S5 R1 16.4 98.3 – 0.02 0.96
S6 R0 19.8 96.06 0.04 0.04 0.95
S6 R1 20.4 96.62 – 0.04 0.95
S7 R0 28.4 94.94 0.06 0.06 0.91
S7 R1 29.6 92.7 – 0.07 0.91
S8 R0 23.4 94.9 0.06 0.06 0.93
S8 R1 23.4 93.24 – 0.06 0.93
S9 R0 16.6 96.06 0.04 0.04 0.95
S9 R1 20 95.51 – 0.04 0.95

r -0.72 -0.91 0.75

(b) Wine

Sim Adapt FPCA Solved
%

RBCM RBCM
CA

Align
(k=3)

S0 R0 2879 20.28 0.8 0.8 0.21
S0 R1 3080.6 13.81 – 0.86 0.21
S1 R0 2879.6 19.73 0.8 0.8 0.2
S1 R1 3091 12.57 – 0.87 0.2
S2 R0 2932.2 17.96 0.82 0.82 0.18
S2 R1 3141.2 10.65 – 0.89 0.18
S3 R0 2882.4 20.06 0.8 0.8 0.2
S3 R1 3094.4 13 – 0.87 0.2
S4 R0 2856 20.33 0.79 0.79 0.2
S4 R1 3101 13.41 – 0.87 0.2
S5 R0 2870.6 19.85 0.8 0.8 0.2
S5 R1 3094.6 13.14 – 0.87 0.2
S6 R0 2873.2 20.18 0.8 0.8 0.2
S6 R1 3083.6 13.41 – 0.87 0.2
S7 R0 2886.6 19.34 0.8 0.8 0.2
S7 R1 3095.6 13.26 – 0.87 0.2
S8 R0 2871.4 20.69 0.8 0.8 0.2
S8 R1 3103.8 13.26 – 0.88 0.2
S9 R0 2901.6 18.6 0.81 0.81 0.19
S9 R1 3112.6 11.73 – 0.88 0.19

r -0.9927 -0.9922 0.2185

(c) Abalone

Sim Adapt FPCA Solved
%

RBCM RBCM
CA

Align
(k=3)

S0 R0 70.2 92.61 0.07 0.07 0.92
S0 R1 71.4 93.14 – 0.07 0.92
S1 R0 67.6 92.62 0.07 0.07 0.92
S1 R1 70.6 93.49 – 0.07 0.92
S2 R0 69 92.09 0.08 0.08 0.92
S2 R1 67.6 93.49 – 0.06 0.92
S3 R0 78 89.98 0.09 0.09 0.9
S3 R1 81.6 92.61 – 0.08 0.9
S4 R0 69 92.61 0.07 0.07 0.92
S4 R1 70.2 93.67 – 0.07 0.92
S5 R0 77.6 92.26 0.09 0.09 0.91
S5 R1 78.6 92.97 – 0.07 0.91
S6 R0 71 92.26 0.08 0.08 0.92
S6 R1 73.2 92.97 – 0.07 0.92
S7 R0 103.4 89.46 0.11 0.11 0.88
S7 R1 102.6 90.69 – 0.09 0.88
S8 R0 82.4 92.09 0.08 0.08 0.9
S8 R1 84.6 91.56 – 0.08 0.9
S9 R0 64 92.61 0.07 0.07 0.93
S9 R1 66.4 93.49 – 0.06 0.93

r -0.76 -0.89 0.80

(d) Breast cancer

Sim Adapt FPCA Solved
%

RBCM RBCM
CA

Align
(k=3)

S0 R0 215.8 43.61 0.55 0.55 0.9
S0 R1 208.2 48.19 – 0.5 0.9
S0 R2 208.8 48.44 – 0.5 0.9
S0 R3 224.4 40.04 0.59 0.59 0.9
S1 R0 224.8 40.05 0.58 0.58 0.89
S1 R1 216.2 45.67 – 0.54 0.89
S1 R2 217.6 45.67 – 0.54 0.89
S1 R3 233.4 36.99 0.62 0.62 0.89
S2 R0 220.2 41.07 0.57 0.57 0.9
S2 R1 211.8 44.63 – 0.51 0.9
S2 R2 211.6 44.89 – 0.51 0.9
S2 R3 229.6 39.03 0.61 0.61 0.9
S3 R0 214 43.36 0.55 0.55 0.9
S3 R1 209.2 47.44 – 0.51 0.9
S3 R2 209.4 47.44 – 0.51 0.9
S3 R3 226.2 40.04 0.6 0.6 0.9
S4 R0 223.8 40.05 0.59 0.59 0.89
S4 R1 211.2 44.39 – 0.53 0.89
S4 R2 213.4 44.65 – 0.53 0.89
S4 R3 236 34.7 0.65 0.65 0.89

r -0.95 -0.96 0.32

(e) Auto-MPG

Sim Adapt FPCA Solved
%

RBCM RBCM
CA

Align
(k=3)

S0 R0 290.4 42.88 0.58 0.58 0.89
S0 R1 295 42.68 – 0.6 0.89
S0 R2 294.8 42.68 – 0.6 0.89
S0 R3 256 53.17 0.48 0.48 0.89
S1 R0 278.2 48.42 0.53 0.53 0.91
S1 R1 289.6 49.22 – 0.53 0.91
S1 R2 288.2 49.02 – 0.53 0.91
S1 R3 243.6 57.33 0.44 0.44 0.91
S2 R0 280.4 47.04 0.55 0.55 0.91
S2 R1 280 48.82 – 0.54 0.91
S2 R2 279 48.82 – 0.54 0.91
S2 R3 245 56.73 0.44 0.44 0.91
S3 R0 281.6 48.62 0.53 0.53 0.91
S3 R1 283 49.22 – 0.53 0.91
S3 R2 282.6 49.02 – 0.53 0.91
S3 R3 249 56.54 0.44 0.44 0.91
S4 R0 287 43.68 0.55 0.55 0.91
S4 R1 277 46.45 – 0.56 0.91
S4 R2 276.4 46.25 – 0.56 0.91
S4 R3 289 44.07 0.56 0.56 0.91

r -0.91 -0.97 0.36

(f) Boston

Table 2: Correlation with generalization accuracy on classification and regression domains. Results are averaged over 5 folds.
r is Pearson correlation coefficient.

Adaptation knowledge was as follows: R0 is null adaptation,
R1 involves averaging the solutions of 3NN, R2 involves
distance based weighted average of the 3NN solutions and
R3 is domain based knowledge. For regression, Solved%
is the percentage of test instances whose prediction error is
within the acceptable error limit fixed by the user. In our ex-
periments, we fixed this limit as 10% of actual solution. Re-
sults show that RBCMCA has the strongest correlation with
generalization accuracy in regression tasks too.

Textual domains We experimented with two textual
datasets from 20Newsgroups namely Relpol and Hardware.
The two classes present in Relpol dataset are religion and
politics while those in Hardware dataset are IBM and Mac.
Euclidean distance was used to estimate the problem side
similarity. Vocabulary knowledge was varied from V0 to V2

which are count based vectors, TFIDF1 and latent seman-
tic vectors (Deerwester et al. 1990) respectively. Adapta-
tion knowledge was either null adaptation (R0) or major-
ity voting based on 3NN (R1). Tables 3a and 3b show that
RBCMCA has the strongest negative correlation.

1https://en.wikipedia.org/wiki/Tfidf

5 Discussion

As explained in Section 3.1, the functions solves
and solvesCA in the definition of reachability act
as pathways that enable the knowledge in vocabu-
lary/similarity/adaptation containers to influence the case
base. Hence, the proposed reachability-based complexity
measure provides an integrated measure of complexity that
takes into account the interaction between knowledge in all
CBR containers. This is unlike the existing alignment-based
complexity measures that look at the case base in isolation
without involving the CBR process cycle. From the experi-
ments, we are able to see that RBCM has a definitive advan-
tage over existing alignment-based measures. Though foot-
print size shows strong correlation with generalization ac-
curacy, the algorithm used for constructing footprint set can
vary and hence a footprint size based complexity measure
becomes sensitive to the footprint construction algorithm in-
volved. Also, unlike RBCM, construction of footprint set by
a variant of the Condensed Nearest Neighbour (CNN) rule
as explained in (Smyth and McKenna 2001) is computation-
ally expensive and can easily become an overkill when used
for evaluating design choices.
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Vocab Adapt FPCA Solved% RBCM RBCMCA Alignment
(k=3)

V0 R0 666.60 89.18 0.11 0.11 0.82
V0 R1 772.80 87.53 – 0.12 0.82
V1 R0 351.00 97.13 0.03 0.03 0.95
V1 R1 395.80 96.80 – 0.03 0.95
V2 R0 384.40 93.24 0.07 0.07 0.92
V2 R1 360.40 94.29 – 0.06 0.92

Pearson
Coeff

r -0.92 -0.99 0.97

(a) Relpol

Vocab Adapt FPCA Solved% RBCM RBCMCA Alignment
(k=3)

V0 R0 455.60 71.06 0.30 0.30 0.67
V0 R1 329.40 76.11 – 0.25 0.67
V2 R0 359.80 81.51 0.19 0.19 0.77
V2 R1 349.80 78.60 – 0.22 0.77
V1 R0 349.00 83.39 0.17 0.17 0.78
V1 R1 310.80 86.64 – 0.15 0.78

Pearson
Coeff

r -0.77 -0.99 0.86

(b) Hardware

Table 3: Correlation with generalization accuracy on textual domains. Results are averaged over 5 folds

6 Conclusion
In this paper, we have proposed a new complexity measure
for case base reasoners that takes into account the inter-
action between knowledge containers. Unlike the existing
alignment-based complexity measures that rely only on sim-
ilarity knowledge, the concept of reachability used in RBCM
is able to integrate the impacts of knowledge in all CBR
containers on case base. RBCM is applicable to both single
case and compositional adaptation scenarios. Experiments
on several real-world datasets suggest that RBCM correlates
strongly with generalization accuracy of case-based reason-
ers. Hence, it can be used by CBR designers and mainte-
nance engineers to quantitatively assess design choices. Cur-
rently, RBCM focusses only on the cases with null reacha-
bility. As part of our future work, we would like to study the
complexity profile of the case base at a more fine-grained
level.
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