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Abstract

We demonstrate the value of learning dense representations
(embeddings) of collections of codes representing various do-
mains of medical information. These embeddings are learned
jointly using sparse representations of diagnosis, procedures
and prescriptions extracted from medical claims, in order to
infer semantic relationships both within, as well as between
domains. We show that learning meaningful embeddings al-
lows for a rich representation of a patient’s clinical state at
a point in time, a mechanism for assigning robust clinical
similarity between patients, and a data representation which
is generally useful in modeling various health care related
events, such as the next most likely event (i.e. diagnosis, pro-
cedure or prescription), or the likelihood of a specific event in
the future (e.g. an emergency room visit). Three methods are
showcased in this paper including: general embedding, task-
specific embedding, and a combination of the two, which we
refer to as ”super” embedding for the purpose of this paper.

1 Introduction
Information related to a typical health care event can be as-
sociated with one of three clinical domains: diagnosis, pro-
cedures, and prescriptions. It follows that, for the purpose of
modeling clinical events, we can represent a medical claim
as a collection of codes and their corresponding timestamps.
Each of these domains are represented by a standard coding
system such as the International Classification of Diseases
(ICD9 and 10), which are used to classify diagnosis, or the
National Drug Code (NDC) for pharmaceuticals. Individ-
ual codes have meaningful relationships within and across
clinical domains, which are not inherent in the codes them-
selves (e.g. a diagnosis of hypertension and subsequent pre-
scription for blood pressure medication). In this work, we
employed techniques common in modern natural language
processing, in particular neural network language models.
The sequential nature of medical claims lends itself naturally
to modeling techniques such as Recurrent Neural Networks
(RNN), which we used to model the next most likely event,
or sequence of events, at the patient level.

In many clinical predictive modeling efforts, researchers
hand-engineer features from a patients clinical history.
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These features can be constructed from a patients demo-
graphic information, as well as past medical events such as
types and frequencies of visits, characteristics of prescrip-
tions, time between successive events of a given type, and
the presence or absence of certain diagnosis or procedures.
While this feature engineering methodology can be highly
effective, hand engineering a set of good features requires
a great deal of time and domain expertise. In addition, this
feature aggregation approach will squander most of, if not all
of the longitudinal information contained in the raw medical
claims. For example, a procedure such as knee surgery fol-
lowed by a prescription for pain medication most likely has
a different meaning than a prescription for pain medication
that precedes a surgery, even if both events happened during
the same time period. In contrast, by learning embeddings
that represent not only a clinical event, but the semantic rela-
tionship between such events in a sequential manner, we are
taking advantage of the continuous nature of the data. More-
over, by learning meaningful embeddings and using them as
inputs to a clinical predictive model, we eliminate the need
to hand engineer features based on intuition and domain ex-
pertise. As a result, we show that these learned represen-
tations can be used to represent a patient’s state at a given
point in time, which can then be used as a feature vector to
effectively predict future health care related events.

2 Background
Several well-known methods have been proposed to learn
general-purpose, dense representations from collections of
documents such as Word2Vec, which comprises skip-gram
and continuous bag-of-words (Mikolov et al. 2013), Global
Vectors (GloVe) (Pennington, Socher, and Manning 2014),
and stacked autoencoders (Vincent et al. 2010). These meth-
ods have been widely used in Natural Language Processing
(NLP) tasks with great success. Recently, and in part due to
the prevalence of Electronic Health Records (EHR), neural
network language modeling has become popular in the bio-
medical and healthcare industries. Medical data can be mas-
sive and diverse, which lends itself well to machine learning
techniques. In addition to the size and diversity of the data, it
is also high dimensional, sparse, and heterogeneous, which
requires thoughtful preprocessing in order to extract a com-
pact, real-valued, vectorized representation. Moreover, it is
challenging to determine the best way to learn dense rep-
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resentations of medical events in a manner which also pre-
serves the primary information. Related works have shown
how embeddings can capture semantic relationships from a
corpus of medical codes, which are in turn useful for a va-
riety of clinical applications such as cohort selection, risk
prediction, and patient similarity matching (Glicksberg et al.
2018; Nguyen et al. 2018; Zhu et al. 2016; Che et al. 2017;
Cai et al. 2018; Dubois et al. 2017).

Similar to (Choi, Chiu, and Sontag 2016), we learned new
distributed representations using a combination of diagnosis,
procedures, and pharmacy codes from medical claims data.
First, we trained a skip-gram model to generate what we
refer to as ”general-purpose” embeddings. We then trained
a Long Short-Term Memory Network (LSTM) (Hochreiter
and Schmidhuber 1997) with attention (Bahdanau, Cho, and
Bengio 2014) to learn task-oriented embeddings, with the
objective, or ”task” being the prediction of the next event at
the patient level. We further combined the two approaches
(general and task-specific) into a single model to be trained
on a new prediction task. Experimental results show that
each of the learned dense representations are meaningful
when analyzed by a medical expert. Furthermore, the results
suggest that each of these models capture a different repre-
sentation of the data, which sometimes overlaps to reveal a
new viewpoint, as in the combined embeddings example.

3 Materials and Method
We deployed three different techniques to learn dense repre-
sentations (embeddings) of medical codes. The first method
used was Word2Vec, in particular the skip-gram model,
which is a well-known method for learning dense represen-
tations from sequences of text. In the skip-gram model, em-
beddings are learned by considering the context in which
each code appears over time. In other words, if we see tar-
get word A, what’s the likelihood that we see context word
B within a window of size n around the target. There is
no explicit task aside from semantic relationships between
codes that is being learned using this method, hence we re-
fer to such dense representations as ”general” embeddings
for the remainder of this paper. We were also interested in
exploring how these embeddings could be learned as part of
a deep learning model with a specific predictive task. We re-
fer to this type of representation as ”task-specific” embed-
dings, since they encompass not only correlation between
data points, but are learned by optimizing an objective func-
tion which is focused on outputting the correct prediction.
We explored further by combining these two techniques,
which we refer to as ”super” embeddings, to investigate the
ability of the new model to improve the classification task,
as well as the associated learned representation.

As mentioned above, we learned the general-purpose em-
beddings via the skip-gram method with negative sampling.
To learn the task-specific embeddings we used a Recurrent
Neural Network (RNN) to predict the next event. Lastly, we
used the same RNN architecture from the previous step, but
with a concatenated ”super embedding” layer composed of
the general and task-specific embeddings. Each model and
its parameters are explained below.

Data Preprocessing
A typical medical claim contains collections of codes repre-
senting diagnosis, procedures, and prescriptions associated
with a given higher level event, such as an office visit or
hospital stay. By extension, a patient’s claims history com-
prises a sequence of clinical events with corresponding diag-
nosis, procedures, and prescriptions over a certain time pe-
riod. For the experiments performed in this paper, we sam-
pled approximately 1.2 million patients between 2016 and
2018, and used all associated medical claims going back
at most one year from a given, patient specific date. In or-
der to get the raw data into a format which could be used
as input to our models, we performed several preprocess-
ing steps. First, we grouped the fine grained sparse codes
into higher level groupings. There are around 20k procedure
codes, 40k diagnosis codes, and over 300k pharmaceutical
codes, yielding a large total vocabulary size (|procedures|+
|diagnosis|+|pharmacy| > 360k). We reduced the overall
vocabulary size by grouping diagnosis and procedure codes
using the Clinical Classifications Software (CCS), a catego-
rization scheme owned by the Agency for Healthcare Re-
search and Quality (AHRQ). CCS categories for diagnosis
are generated based on the International Classification of
Diseases (ICD-9 and ICD-10), and Current Procedural Ter-
minology codes (CPT) for procedures (CPT is a registered
trademark of the American Medical Association, All Rights
Reserved), which are widely used as standard grouping tech-
nique in medical applications. We also grouped pharmaceu-
tical codes to eliminate duplication (i.e. many NDC codes
used for the same medication), and further reduce the vo-
cabulary to a manageable size. This step helped decrease
complexity and improve generalization of the models.

Furthermore, we filtered out patients who had event se-
quences that exceeded two standard deviation from the
mean, or that had less than 15 events in their claims history.
That is, if a patient had a very high, or very low number of
events in their claims history, with respect to the population
as a whole, they were excluded from the training set.

The final step in our preprocessing was generating fixed
length sequences from each patients claims history, along
with the corresponding ”next medical event” target. To do
this, we specify a sequence length, 25 in our case, and scan
along each patients history generating fixed length sequence,
and ”next event” target pairs along the way. That is, if a pa-
tient has a history of codes that exceeds the fixed sequence
length + 1 (for the target) we would collect the first fixed
length sequence and corresponding target, and then move
one step to the right and repeat until the end of the sequence
has been reached. If a patient had a sequence that was less
than the specified sequence size + 1, the sequence would be
left-padded with zeros, and the last event in the sequence
would be used as the target. The preprocessed data was then
split randomly into a training set (80%), a validation set
(10%) used for hyperparameter optimization, and a test set
(10%) used for final model evaluation.

General Embedding
General purpose embeddings have several use-cases in
health care. First, we can learn semantic relationships be-
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tween clinical events both within, as well as across do-
mains. For example, take the general class of drugs known as
”gastrointestinal stimulants.” Represented by a collection of
NDC codes alone, a human without clinical expertise in this
area would not see any inherent relationship between this
class of drugs and other drug classes, diagnosis and or pro-
cedures. However, learning these relationships using neural
network language modeling techniques such as Word2Vec
allows us to infer relationships to diagnosis such as ulcers
and Gastroparesis, as well as other pharmaceuticals such as
bowel evacuants, and 5-HT3 Receptor Antagonists (a drug
used for treating nausea). Taking this further, we can use
these aggregations of medical code embeddings to represent
an individual based on their clinical history. These patient
level representations can then be used to group individu-
als, and uncover similarity between patients without the time
consuming, manual review of a patient’s medical history by
a subject matter expert. Moreover, we can use these general-
purpose embeddings as features for predictive models. For
example, we can represent an individual patient by the ag-
gregated code embeddings that are present in their claims
history (e.g. the last 6 or 12 months). These aggregated fea-
ture representations can then be feed into a predictive model.
Empirical results suggest that learning such embeddings can
improve the learning process for a predictive model, since
the input features, in this case the aggregated feature rep-
resentations, already encompass information about the rela-
tionships between data points.

Task-specific Embedding
In recent years, sequence to sequence models have gained
popularity in language modeling, image captioning, and
speech recognition (Chopra, Auli, and Rush 2016; Xu et al.
2015; Chan et al. 2016). The nature of the sequence to se-
quence framework involves addressing the problem of vari-
able length inputs and outputs (Sutskever, Vinyals, and Le
2014). The learning strategy includes encoding the input
sequences to a fixed-length, dense, vector representation,
followed by a decoder to produce an output (fixed-length
or variable-length). These models can be further improved
significantly by incorporating attention mechanisms, which
serve to assist in the task of predicting the appropriate output
with respect to the given input (Vaswani et al. 2017).

We utilize the RNN architecture with attention for the
purpose of next clinical event prediction. First, the sparse
data representation is passed to an embedding layer. Next,
the resulting dense representation is fed into a bidirectional
LSTM layer which further encodes the data. Then, the at-
tention mechanism calculates scores (coefficients) which are
used to construct a linear combination of the output vectors,
weighted by the normalized attention coefficients. Finally,
we pass the raw output scores through a softmax function
to normalize them into probabilities, and use the events with
highest normalized scores as our final output.

Super Embedding
We combined the general embeddings learned from the ini-
tial Word2Vec model with a new, untrained embedding layer
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Figure 1: Select examples from the general-purpose embed-
dings.
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Figure 2: Select examples from the task-specific embed-
dings.

as part of a sequence to sequence model for next event pre-
diction. The goal being to further explore the new embed-
ding layer that would be learned as part of this model, as
well as the performance shift from the previous models. For
simplicity, we used the same architecture as the task-specific
model, but replaced the embedding layer with two concate-
nated embeddings. One of which was the frozen embeddings
learned by the general-purpose model, and the other was left
free to be learned as part of the current model. Figure 4 rep-
resents the network architecture using the super embedding
layer.

The following figures serve to visualize the learned repre-
sentations.

4 Results and Discussion
In this paper, we applied various techniques for learning
general-purpose embeddings, as well as task-specific em-
beddings using sequences of codes extracted from medical
claims. We further combined these two approaches into a
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Figure 3: Select examples from the super embedding rep-
resentation. The distance between Arthroplasty top features
and other two conditions, shows that this model learned a
better relationship between the targets
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Figure 4: The network architecture takes sparse medical
codes as input, followed by a super embedding layer: pre-
trained general embeddings and task-specific embeddings.
The encoder is a bidirectional LSTM with attention. The
output layer is passed through a softmax function to nor-
malize the scores into probabilities.

new model which can benefit from both of the before men-
tioned approaches. Empirical validation of the results with
respect to each of the learned representations was done by a
clinical subject matter expert. All of the final learned repre-
sentations captured relationships between procedures, diag-
nosis, and medications.

Next Event Prediction Results
In Natural Language Processing, the performance of a se-
quence model tasked with next event (or next token) predic-
tion is typically evaluated based on whether the true target
exists in the top n most probable outputs, as specified by the
model. This is done primarily due to the high dimensionality
of the vocabulary being used. That is, if we have a vocabu-
lary consisting of 10k tokens, the output of the model will be
a probability distribution over 10k positions, each of which
corresponding to a token in the vocabulary. We would then
assign the winner to the token corresponding to the highest
output probability. The issue is that with a high dimensional
input (vocabulary), the distribution is spread very thin over
the many potential tokens. Assigning a winner in the top n
allows for a range of tokens to be considered, as opposed to

a single token. This is certainly the case with medical data,
which is sparse, high dimension, and therefore challenging
to predict precisely down to the individual code. As a result,
we report on top 5, top 10, and top 20 accuracy for each
model. All evaluation metrics shown below are with respect
to the test set, which was not used in hyperparameter tuning.
Hyperparameters such as initial learning rate and regulariza-
tion coefficients, as well as network architecture were tuned
via grid search, using the the validation set for intermediate
evaluation.

Table 1 shows evaluation of the task-specific model,
which is a ”next clinical event” prediction model using Bidi-
rectional LSTM with attention.

Top N Accuracy (Task-specific)
N Accuracy(%)
5 61.31
10 72.12
20 81.09

Table 1: Top N accuracy for task-specific model

Table 2 illustrates the performance of the ”next clinical
event” prediction model using super embeddings. The re-
sults show that combining the general and task-specific em-
beddings helped the overall performance.

Top N Accuracy (Super embedding)
N Accuracy(%)
5 62.33
10 73.22
20 82.20

Table 2: Top N accuracy for super embedding model.

Lastly, table 3 represents the performance of a clinical
predictive model trained with hand engineered features ver-
sus aggregated general embeddings. We see that the per-
formance is comparable, even in this simple example. We
could take this concept much further in the future to fully
investigate the strengths, weaknesses, and specific situations
in which general embedding could make superior features
when compared to hand engineered features. This result is
especially valuable in lieu of a subject matter expert to aid
in the features engineering process.

Feature Comparison
Features ROC (AUC)
hand engineered 0.7427
embeddings 0.7531

Table 3: Hand engineered features versus general embed-
dings for predicting the target of ”Non-Urgent ER Visit”

Embedding Analysis
Empirical evaluation of each embedding method was per-
formed with the help of a clinical subject matter expert. To
better assess the results, we picked one example code from

308



Arthroplasty Procedure
General Task-Specific Super
Hip Replacement Hip Replacement Hip Replacement
Arthroplasty
other than hip or
knee

Arthroplasty
other than hip or
knee

Arthroplasty
other than hip or
knee

Other therapeutic
procedures on
musculoskeletal
system

Treatment, frac-
ture or disloca-
tion of hip and fe-
mur

Other therapeutic
procedures on
joints

Other therapeutic
procedures on
joints

Arthroscopy
Knee

Arthroscopy
Knee

Arthroscopy
Knee

Other therapeutic
procedures on
joints

Excision of
semilunar carti-
lage of knee

Table 4: ”Top 5 most similar” with respect to an Arthroplasty
procedure (the surgical reconstruction or replacement of a
joint).

Esophgeal Disease
General Task-specific Super
Gasduo Ulcer Other stomach

disease
Gasduo Ulcer

Gastritis Gastritis Anti-ulcer
Proton Pump In-
hibitor

Gasduo ulcer Gastritis

Other stomach
disease

Pancreas disease Other stomach
disease

Esophageal
dilatation

Anti-ulcer Nausea/vomiting

Table 5: ”Top 5 Most Similar” with respect to a diagnosis of
Esophgeal Disease.

each category: diagnosis (Esophgeal Disease), medications
(Human Insulin), and procedure (Anthroplasty).

For each example, we selected the top most similar codes,
measured by cosine similarity. To visualize the results,
we applied Principle Component Analysis (PCA) (Jolliffe
2011) to the top most similar codes to project them in 2 di-
mensional space for plotting. Figure 1, Figure 2, and Figure
3 illustrate the relationships of these codes with respect to
each model, and each example.

As shown in the figures, each of the models learned strong
relationships within, and between domains. One interest-
ing finding is that similar clinical codes in Esophgeal dis-
ease and Human Insulin are closer to each other when com-
pared to Arthriplasty procedures. This makes sense as stud-
ies have shown that diabetes, in many cases, carries the risk
of Esophgeal diseases (Xu et al. 2017). The distinction be-
tween Esophgeal and Human insulin with Arthroplasty in
the super embedding model is more obvious, suggesting that
this model learned a slightly more effective representation of
the data.

Furthermore, the top 5 most similar code descriptions are
shown in table 4, table 5, and table 6 for each embedding
technique and example code respectively. As seen in the out-
put, all three of the learned representations capture valid
relationships with respect to the target example. In other

Human Insulin medication
General Task-specific Super
Needles/Syringes Needles/Syringes Sodium-Glucose

Co-Transporter
Diagnistic Tests Diabetic Other Needles/Syringes
Diabetic Other Diagnostic Tests Biguanides
Incretin Mimetic
Agents

Diabetes Mellitus
with Complica-
tions

Sulfonylureas

Diabetes Mellitus
with Complica-
tions

Sodium-Glucose
Co-Transporter

Antidiabetic

Table 6: ”Top 5 Most Similar” with respect to human insulin
(a medication)

words, we see that each embedding approach learned a dif-
ferent set of dense representations, but that each was effec-
tive at learning semantic relationships.

5 Conclusion and Future work
Learning dense representations from sparse and high dimen-
sional medical information helps with cohort selection, pa-
tient similarity, and clinical applications (an area of active
research).

Most of the related works have focused on general-
purpose embeddings, and considered various ways to vali-
date the results. We took these learned representation fur-
ther in a complex, task specific model (next clinical event
prediction). Moreover, by combining the general and task-
specific embeddings as part of a single predictive model, we
showed that better generalization and representation can be
achieved. Last but not least, we showed that general embed-
dings can be combined into a single representation of an in-
dividual patient, and used input features to a classification
or regression model. To the best of the authors knowledge,
there is no such method or comparison used in the analysis
of embeddings learned from medical data.

We can use a larger data set to train the next event pre-
diction model to achieve a higher performance, and possi-
bly more meaningful distributed representations. Variations
on hyperparameter tuning could also be considered in future
work.

In addition, an issue inherent in medical event data is
that the events are unevenly spaced. For example, successive
events that occur one day apart may be more informative that
the same events that occur several months apart. While we
did not directly address the issue of ”time between events”
in this paper, it is an issue that has been addressed in related
work (Pham et al. 2016), and one that requires careful atten-
tion in future work.
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