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Abstract

In this work, we first attempt to reproduce an earlier study
on gene selection and clustering, and then we extend this
work by applying a different type of hierarchical clustering
to discover interesting subsets of genes from breast cancer
data. Reproduction of such studies is a known challenge and
an active area of research in bioinformatics. The work pre-
sented in this paper is three-fold. First, we reproduce a study
conducted at the University of North Carolina to generate
an initial set of genes. Second, we apply an approach called
Distance Weighted Discrimination to fuse multiple, disparate
breast cancer datasets into a single validation set. Third, we
perform hierarchical clustering and k-means clustering on
this validation set to discover natural groupings and compare
the clusters generated by both methods. While applying the
hierarchical clustering is part of the reproduction step, we ex-
tend the research by trying two different forms of hierarchi-
cal clustering. We also apply k-means clustering for the same
purpose and compare all three methods using Kaplan-Meier
estimation and Cox proportional hazards regression. We dis-
cover that among the three methods, k-means clustering gives
us the best results.

Introduction
For women in the U.S., the death rate due to breast can-
cer is second only to lung cancer. Moreover, breast cancer
is a highly heterogeneous disease with different molecu-
lar subtypes. Precision medicine (Collins and Varmus 2015;
Frey, Bernstam, and Denny 2016) is an approach that takes
into account individual variability in genes, environment,
and lifestyle to better predict which treatment and prevention
strategies for a particular disease will work in which groups
of people. Considering the severe complication, it is imper-
ative that researchers engage precision medicine in breast
cancer diagnosis and treatment, and for that, a clearer idea
about the genomes of breast tumors needs to be realized.

Unfortunately, computational studies, such as those that
identify connections between genetic patterns and cancer
characterization, have often proven to be difficult to re-
produce (Ioannidis 2009), and work is ongoing to improve
the reproducibility (Ioannidis 2009; Sandve et al. 2013;
Nekrutenko and Taylor 2012). Thus, our first objective in
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this work is to reproduce existing research (Hu 2006). Us-
ing the same data and procedures, we obtain similar results
from the conduct of an independent study where our tech-
niques are as closely matched to the original experiments as
possible.

Currently, mankind has the capacity to capture and an-
alyze biological information at the genetic level. However,
due to the expense involved in the collection and processing
of biological samples, most datasets are comprised of very
few samples. This has led some researchers to explore meth-
ods for merging data sets from various studies into a single
set. As with the original work, to generate a validation set
we have merged four publicly available breast cancer ex-
pression datasets using Distance Weighted Discrimination
(DWD) (Benito 2004a).

Finally, we perform both hierarchical clustering and k-
means clustering to seek interesting sub-populations of
genes. Much of the previous analyses of gene expression
data to classify breast tumors uses hierarchical clustering.
However, we will extend the work by trying different forms
of hierarchical clustering and also k-means clustering to dis-
cover distinctive molecular portraits of each tumor. We will
show that we can successfully achieve high reproducibility
in identifying most of the subgroups previously identified
in other studies. Using the Kaplan-Meier survival analysis
and Cox proportional-hazards model, we will compare the
differences in outcomes and associations with other clinical
parameters between each of the groups. While the hierarchi-
cal clustering technique will give us some distinct subgroups
of genes, we show that k-means clustering perform better to
identify the distinct subgroups which are consistently pre-
dictive of a patient’s clinical outcomes as evidenced by the
prediction of Relapse-free survival (RFS) and Overall sur-
vival (OS) of each identified group.

Related Work
Human breast tumors vary in their natural history and treat-
ment responsiveness. It is proposed that the phenotypic di-
versity of breast tumors might be accompanied by a corre-
sponding diversity in gene expression patterns (Perou 2000).
They show that the tumors could be classified into subtypes
that differ widely in their patterns of gene expression. We
used a reference paper (Hu 2006) for our study where we re-
produce some of their work and also used the paper to com-
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pare our results. Hu et. al sought to determine a new breast
tumor intrinsic gene list from a training set. Then this gene
set was used to predict the survival rate. They created a sin-
gle data set from three different datasets using DWD (Benito
2004a) to validate their derived gene list for the prediction
of breast cancer type. Finally, to identify hierarchical clus-
ters, they used the data set to obtain a distinctive molecular
portrait of each tumor type.

In a similar study (Sørlie 2001) the authors found that tu-
mor classification based on gene expression patterns can be
used as a prognostic marker in a subset of patients receiv-
ing uniform therapy with respect to OS and RFS. In another
study (Sørlie 2003), they tried to redefine the previously de-
fined breast tumor subtypes that could be distinguished by
their distinct gene expression patterns. Their results support
the idea that many of these subtypes of breast tumors are
biologically separate disease entities.

Breast cancer is such a complicated disease that even
the strongest metastasis predictors can not precisely clas-
sify breast tumors according to their clinical behavior. In
this paper (Van’t Veer 2002), they used supervised classifi-
cation to identify a short-interval gene expression signature
in patients without tumor cells and hierarchical clustering
to cluster tumors based on their measured similarities over
their significant genes. In their paper (Sotiriou 2003), the
authors used microarray technology to examine thousands
of genes simultaneously for the molecular classification of
human cancers. They carried out unsupervised cluster anal-
ysis to find natural groups in the profiles. Although their
sample size was not large enough to determine the high re-
producibility of smaller subgroups, they could find several
subgroupings previously identified in other studies in their
dendrogram.

Data
Each of the experiments mentioned previously was con-
ducted using the relative gene expression abundance found
in a given tumor sample. Gene expression can be thought
of as gene transcription, in which the DNA is copied in
a gene to produce an RNA transcript called messenger
RNA (mRNA). A simple microarray is comprised of a solid
surface covered in thousands of microscopic divots. Each
divot contains many synthetically produced, single-stranded
DNA, which represent a particular gene. Two groups of
sample mRNA are prepared and then converted to comple-
mentary DNA (cDNA) and then combined and linked to
the microarray slide. When exposed to certain laser lights
and temperatures, the divots will emit levels of fluores-
cence. By measuring the wavelengths of the fluorescence,
one can measure the abundance of experimental vs. control
that bound to a particular gene’s site, thus yielding the rela-
tive abundance.

For our experiments, we will be accessing data from
the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO) (Sørlie 2001), using the
breastCancerNKI package (Schroeder 2011) of Bioconduc-
tor (Gentleman 2004), and comparing our results against
previous work (Hu 2006; Sotiriou 2003). Storing this data so
that it can be easily accessed while not losing fidelity is not

a trivial task. Each new batch of samples has the potential
of coming from a different group of researchers, being pre-
pared with differing protocols, and being analyzed on ever-
changing technology. The designers of GEO have incorpo-
rated several methods for encapsulating all of the data rele-
vant to each study. We chose to use the Matrix format (Sørlie
2001). Matrix is preprocessed format of data, so we did not
need any normalization, summarization, or filtering. These
files can contain up to three main sections of data: pheno-
type, feature, and expression data. Phenotype data contains
information about the origin of the sample genome being
analyzed. For our studies, this included age, survival rate,
tumor size, and several other pieces of clinical information
useful in classifying the tumor. Feature data describes the
microarray platform used in the experiment, the subsequent
data gathered, and identifiers such as gene name and gene
symbol. Expression data is the abundance value assigned
to that particular sample by the microarray analysis, repre-
sented as a matrix of real numbers.

Feature Extraction
As our first step of reproduction, we derived an objective
“intrinsic subtype” classifier that can be used clinically. For
this purpose, first, we collected a breast tumor intrinsic list
from the reference paper (Hu 2006). For developing this
gene set, 9 normal breast samples and 105 breast tumor sam-
ples were taken as the training set. These raw data were fil-
tered to include only features with single intensity 30 units
over background in both Cy5 and Cy3 channels and for
which this signal intensity criteria was met in at least 70% of
the samples. After that, the mean of the non-missing expres-
sion values was computed separately in each batch on a gene
by gene basis (Sørlie 2003). Then for each sample, the batch
mean for that gene was subtracted. For each gene, the aver-
age “within-pair variance” and “between-subject variance”
were computed and the ratio D = (within-pair variance) /
(between-subject variance) was computed. The genes with a
small value of D were declared to be intrinsic. The choice of
a value of D as a cutoff was somewhat arbitrarily set at one
standard deviation below the average. Following this, an in-
trinsic gene set was identified consisting of 1410 microarray
elements representing 1300 genes.

Data Preparation
To evaluate the intrinsic gene set we need an independent
test dataset. In microbiology, if the size of the validation
dataset is too small validation becomes unconvincing. For
this reason and following (Hu 2006), we generated a vali-
dation set by merging four publicly available breast cancer
expression datasets using DWD (Benito 2004a) and used
it to show the clinical significance of our intrinsic classifi-
cations. The datasets that we used were Stanford datasets
(Sørlie 2001; 2003), Rosetta dataset (Van’t Veer 2002) and
Singapore dataset (Sotiriou 2003). While three of these four
datasets were also used in (Hu 2006), they are not the ex-
act same dataset but an extension of those datsets with more
samples.

However, getting the datasets was not a trivial task. For

288



Figure 1: MDS Plot Before Applying DWD Method

Figure 2: MDS Plot After Applying DWD Method

the Stanford (Sørlie 2001; 2003) datasets, we first down-
loaded 8 matrix files of the same series but of different plat-
forms and used the Geoquery R package (Davis and Meltzer
2007) to load the data as expression sets and the inSilicoM-
erging package (Taminau 2012) to merge them into a single
expression set. Then we took the expression data and the
feature data and formed a table. For the Rosetta (Van’t Veer
2002) dataset we loaded the matrix data from the breast-
CancerNKI package (Schroeder 2011) in an expression set
format. We again took the expression data and the feature
data to form a table. Finally, for the Singapore (Sotiriou
2003) dataset, we found the data from the supplementary
resources of the paper directly in the table format.

In each of the datasets, there were missing values for each
tuple. For each dataset, we used the “Gene symbol” as the
primary key, and then we deleted the records with a missing
primary key. For the other missing attributes, we did random
imputation to fill in the missing feature values with appro-
priate values using the KNN method (Hu 2006). However, a
single gene can have multiple gene symbols. To get some-
thing unique, we converted the symbols to “Gene ID” using
a conversion tool (Kim 2015). For some gene samples, we
could not find the corresponding Gene ID. Therefore, after
the ID conversion, we deleted all the rows for which Gene
ID was not found.

Then, we used DWD to combine the datasets together
using the DWD Java tool (Benito 2004b). Systematic dif-
ferences due to experimental features of microarray experi-
ments are present in most large microarray data sets. Many
different experimental features can cause biases including
different sources of RNA or different microarray platforms.
From Figure 1, one will notice that if we simply merge the
data without applying DWD, there would be a very strong
dataset bias. Performing DWD, we first combined the two
Stanford datasets, and then combined this with the Rosetta

(a) Dendrogram

(b) Heatmap

Figure 3: Hierarchical Clustering Using Euclidean Distance

(a) Dendrogram

(b) Heatmap

Figure 4: Hierarchical Clustering Using Pearson Uncentered
Correlation

dataset and finally the Singapore dataset. As shown in Figure
2, after applying DWD, all the datasets are mixed together,
and the biases are removed in the merged dataset. Figures 1
& 2 are generated using the Bioconductor package “limma”
(Ritchie 2015). Finally, we found 288 genes that are present
both in the combined dataset and the intrinsic gene list, and
we will perform our experiments using these 288 genes.
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Figure 5: k-means Clustering

Experimental Setup

We performed both hierarchical clustering and k-means
clustering on our combined test set of 288 genes. Since we
used the combined set, not the 4 sets separately, we believe
a more meaningful result will be realized as any interest-
ing findings would need to be present across all four sets.
To find the tumor subtypes, first, we performed agglomera-
tive hierarchical clustering which was also done in the ref-
erence paper (Hu 2006). For this purpose, we used the soft-
ware Cluster 3.0 (Eisen and de Hoon 1998), which was de-
veloped based on the work in (Eisen 1998). We computed
the distance using two different methods. First, we tried Eu-
clidean Distance (Eisen and de Hoon 1998) and second, we
tried the uncentered correlation based on Pearson correla-
tion. We drew the dendrograms and heatmaps of Figures 3
and 4 using the library called “dendextend” (Galili 2015)
and “heatmap.2” (Warnes 2016) respectively. These figures
help us visualize and compare trees of hierarchical cluster-
ing. We used the dendrogram branching pattern in Figure 3a
and 4a and the knowledge of the reference paper (Hu 2006)
to determine the number of biologically relevant tumor sub-
types within the cluster.

Then we performed k-means clustering. Since in k-means
clustering we need some chosen number of clusters (k), we
used the same number of clusters that we found from our
hierarchical clustering analysis. As our distance measure, we
used Euclidean Distance. We did the ggplot2-based elegant
visualization of the k-means method shown in Figure 5 using
the CRAN- Package “factoextra” (Kassambara 2017).

After finding the groups, we compared the results and as-
sociations with other clinical parameters between each of the
groups. We did Kaplan-Meier survival analysis on the com-
bined set, to find out whether the groups were predictive of
RFS and OS. Here a curve can be considered an estimate
of the survival curve for all people with the same circum-
stances. As shown in Figures 6 and 7, any point on the curve
gives the proportion surviving at a particular time after the
start of the experiment (Rich 2010). Each step goes down in
the curve when they have a measured relapse of the disease.
If the curves are flattened, it suggests that patients have gone
into remission. Finally, we compared these Kaplan-Meier
survival plots using the Co model.

(a) (b)

(c) (d)

(e) (f)

Figure 6: Kaplan-Meier survival curves of breast tumors
subtypes. (a) OS curve classified by Hierarchical Clustering
using Euclidean Distance (b) RFS curve classified by Hier-
archical Clustering using Euclidean Distance (c) OS curve
classified by Hierarchical Clustering using Uncentered Cor-
relation (d) RFS curve classified by Hierarchical Clustering
using Uncentered Correlation (e) OS curve classified by k-
Means Clustering (f) RFS curve classified by k-Means Clus-
tering

Results
Based on the dendrogram branching pattern (Figure 3a and
4a) and our knowledge of the previous classifications made
by Zhiyuan et. al (Hu 2006), we identified 5 potential groups
within the cluster in Figure 3 and 4. From these five biologi-
cally relevant tumor groups (figure 6 and 7), we proceeded to
look for differences in outcomes and associations with other
clinical parameters

In Kaplan-Meier curve analysis, from the “p” value we
can get an overall significance of the model, which in our
case defines whether our identified groups have a significant
influence on survival time. A p-value that is less than 0.05 is
considered to be significant. We can see from Figure 6 that
the Kaplan-Meier curves based on our classified subgroups
shows highly significant differences in OS and RFS between
the subgroups.

In the combined test set, the standard clinical parameters
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Kaplan-Meier survival curves for common clini-
cal parameters. (a) OS curve for ER status (b) OS curve for
Tumor Grade (1= well-differentiated, 2= intermediate, 3=
poor) (c) OS curve for Node Status (d) OS curve for Tumor
Size (1: diameter ≤ 1cm; 2: diameter ≤ 2cm; 3: diameter
≤ 3cm; 4: diameter > 3cm (e) RFS curve for ER status (f)
RFS curve for Tumor Grade (g) RFS curve for Node Status
(h) RFS curve for Tumor Size

of ER status, grade, node status, and tumor size were im-
portant predictors of both OS and RFS using Kaplan-Meier
analysis (Figure 7), demonstrating that the combination of
four different datasets did not destroy these standard mark-
ers’ prognostic abilities. To investigate the ability of each
clustering method to give us new information about breast
cancer types, we performed a comparison of the approaches
and showed differences in the survival models (OS and RFS)

among the approaches using a multivariate Cox proportional
hazards analysis (see Tables 1 and 2). We also put them in
the context of known clinical relevant variables (see Tables
3 and 4).

Though we did not show the survival curve for age, we
included age in the tables 3 and 4, which was a continuous
variable formatted as decade-years. In the tables, the col-
umn marked “z” indicates the Wald statistic value which
evaluates whether the beta (β) coefficient of a given vari-
able is statistically significantly different from 0. Also, as
evident from Tables 1 and 2, the p-values for all three meth-
ods are significant, indicating that the models are signifi-
cant. From the values in the tables, we can conclude that
k-means clustering has highly statistically significant coef-
ficients. Among the two versions of hierarchical clustering,
the one with an uncentered correlation has a more significant
coefficient than the one with Euclidean Distance.

Table 1: Cox proportional hazards analysis of clustering
methods in relation to OS

Clustering Method coef exp(coef) se(coef) z p liklihood ratio test
Hierarchical Clustering Using Euclidean Distance 0.127 1.136 0.060 2.12 0.034 4.24

Hierarchical Clustering Using Uncentered Correlation 0.1583 1.1715 0.0628 2.52 0.012 6.61
k-means Clustering 0.2236 1.2506 0.0644 3.47 0.00052 12

Table 2: Cox proportional hazards analysis of clustering
methods in relation to RFS

Clustering Method coef exp(coef) se(coef) z p liklihood ratio test
Hierarchical Clustering Using Euclidean Distance 0.1155 1.1224 0.0544 2.12 0.034 4.28

Hierarchical Clustering Using Uncentered Correlation 0.1449 1.1559 0.0575 2.52 0.012 6.58
k-means Clustering 0.1908 1.2102 0.0587 3.25 0.0012 10.5

Table 3: Cox proportional hazards analysis of standard clin-
ical factors in relation to OS

standard clinical parameter coef exp(coef) se(coef) z p liklihood ratio test
Age 0.02132 1.02155 0.00698 3.06 0.0022 9.13

ER Status -0.800 0.450 0.184 -4.33 0.000015 17.6
Grade 0.607 1.835 0.146 4.15 0.000033 19.5

Node Status 0.713 2.040 0.185 3.86 0.00011 14.8
Tumor Size 0.611 1.842 0.109 5.61 0.00000021 33.4

Table 4: Cox proportional hazards analysis of standard clin-
ical factors in relation to RFS

standard clinical parameter coef exp(coef) se(coef) z p liklihood ratio test
Age 0.00779 1.00782 0.00686 1.13 0.26 1.27

ER Status -0.714 0.489 0.171 -4.17 0.00003 16.3
Grade 0.682 1.979 0.139 4.92 0.00000084 28.2

Node Status 0.571 1.770 0.168 3.4 0.00068 11.3
Tumor Size 0.5144 1.6726 0.0978 5.26 0.00000014 28.8

Another feature of high importance is the sign of the re-
gression coefficients (coef) in the Cox model results. A pos-
itive sign means that the hazard (risk of death) for subjects
with higher values of this variable is higher and therefore
the prognosis worse. From Tables 3 and 4, we can see that
for ER status we get the best prognosis. The p-value for
ER-status is 0.000015, with a hazard ratio HR= 0.450, in-
dicating a strong relationship between the ER-status of the
patient and a decreased risk of death. The hazard ratios of
covariates can be interpreted as multiplicative effects on the
hazard. For instance, keeping the other covariates constant,
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being ER+ reduces the risk by a factor of 0.45. So being
ER+ is associated with a good prognostic. Similarly, the p-
value for node-status is 0.00011, with a hazard ratio HR =
2.040, indicating a strong relationship between node-status
and increased risk of death. That means that higher values
of node-status is associated with a poor survival, holding the
other covariates constant.

Discussion
We were successfully able to reproduce an experiment and
build our own experiments on top of that baseline. However,
since we do not have enough domain knowledge, we do not
classify the tumor samples as the original paper (Hu 2006)
did. In our experiments, the merged dataset shows signif-
icant predictors of outcome both in Kaplan-Meier survival
analysis and Cox proportional hazards analysis. Moreover,
in spite of reducing the intrinsic set to only 288 genes, our
classification was still able to predict outcomes successfully.
Finally, performing multivariate analysis, we found that tu-
mor classification based on gene expression patterns can be
used as a prognostic marker for OS and RFS in a subset of
uniform therapy patients.

Conclusion
Using this study, we might have a much clearer picture of
the genomes of breast cancer and can generate data about the
intrinsic characteristics of a tumor, thereby providing useful
diagnostic, prognostic, and predictive information. Compar-
isons of the clustering methods give us different perspectives
on the genes involved in breast cancer subtypes. All of this
can lead to clinical research that makes truly personalized
breast cancer medicine possible.

Future Work
Since the main goal of these paper is reproduction, we do not
experiment with the clustering factors. In future we would
like to build a model with both clinical and clustering fac-
tors and analyze the combined model with respect to the
model based only on standard clinical factors. We would
also like to create a lifelong machine learning system that
will learn continuously from gene expression sets and will
adjust to new situations (Liu 2018). We are also interested
in Transfer Learning (West, Ventura, and Warnick 2007;
Torrey and Shavlik 2009), where we will use the knowledge
of this work of breast tumor on a different kind of tumor.
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