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Abstract 

We explore the performance of multiple maxout activation 
variants on the big data text sentiment analysis task using 
convolutional neural networks. Maxout networks have 
gained great success in many computer vision tasks, but 
there is limited work on other classification tasks. Our ex-
periments compare ReLU, LReLU, SeLU and tanh to four 
maxout variants. We evaluate the effectiveness of the acti-
vation functions on five datasets, including two datasets col-
lected from the Amazon product reviews corpus, two da-
tasets collected from the Yelp corpus, and the Sentiment140 
dataset. Throughout the experiments, we found that maxout 
networks are slow to train compared to the traditional acti-
vation functions. We find that on average across all datasets, 
ReLU’s classification performance is better than any max-
out activation if the number of convolutional filters is dou-
bled. Our experiments suggest that adding more filters en-
hances the classification accuracy of ReLU, without affect-
ing its comparatively low training time. 

 Introduction   

An activation function in a neural network is a transfer 

function that transforms the net input of a neuron into an 

output signal. The output signal is then used as an input in 

the next layer in the stack. The activation function intro-

duces nonlinearities to convolutional neural networks 

(CNNs) (LeCun and Bengio 1995), which are desirable for 

multi-layer networks to detect nonlinear features. Popular 

activation functions include sigmoid, hyperbolic tangent 

(tanh) and Rectified Linear Unit (ReLU) (Nair and Hinton  

2010). Deep neural networks (DNNs) are models (net-

works) composed of many layers that transform input data 

to outputs while learning increasingly higher-level fea-

tures. There is a lack of consensus on how to select a good 

activation function for a DNN, and a specific function may 

not be suitable for all applications. Since an activation 

function is generally applied to the outputs of all neurons, 
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its computational complexity will contribute heavily to the 

overall execution time (Liew, Khalil-Hani, and Bakhteri 

2016). DNNs have successfully utilized sigmoid units, but 

sigmoid activation functions suffer from gradient satura-

tion. For this reason, different activation functions have 

been proposed for neural network training. ReLU has be-

come the most commonly used activation for CNNs, yield-

ing significant performance improvements in multiple do-

mains. 

 CNNs were originally intended for computer vision 

tasks, being inspired by connections in the visual cortex; 

however, they have been successfully applied to natural 

language processing tasks (Poria, Cambria, and Gelbukh 

2015). Typically, the first layer of the network converts 

words in sentences to word vectors by table lookup. The 

word vectors are either trained as part of CNN training, or 

fixed to those learned by some other method from an addi-

tional large corpus (Johnson and Zhang 2014). When 

working with sequences of words, convolutions allow the 

extraction of local features around each word. 

 The maxout unit (Goodfellow et al. 2013) selects the 

maximum value within a group of different feature maps 

and is usually combined with dropout (Srivastava et al. 

2014) which is widely used to regularize deep networks to 

prevent overfitting. This technique randomly drops units or 

connections to prevent units from co-adapting; dropout has 

been shown to improve classification accuracy in some 

computer vision tasks (Cai, Shi, and Liu 2013). Maxout 

chooses the max of n copies of each feature in a network. 

The simplest case of maxout is the Max-Feature-Map 

(MFM) (Wu et al. 2015), where n=2. In the past four years, 

variants of maxout have been tested on benchmark da-

tasets, and have been used in face and speech recognition 

tasks. 

 Most of the comparisons between maxout and other ac-

tivation functions only report a single performance metric, 

ignore network size, and only report accuracy on a single 

dataset, with no training time or memory use analysis. Fur-

ther, it is unclear whether marginal performance gains with 
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maxout are due to the activation function or simply an in-

crease (2x) in the number of convolutional filters versus 

ReLU networks. In this work, we evaluated multiple acti-

vation functions for DNNs applied to sentiment analysis. 

The main contributions herein can be summarized as fol-

lows: 

• An evaluation of four maxout functions and comparison 
to popular activation functions like tanh, ReLU, LReLU 
and SeLU. To the best of our knowledge, this is the first 
study to evaluate multiple maxout variants and standard 
activations for big data text sentiment analysis using sta-
tistical tests. 

• A comparison of training time is presented on the evalu-
ated activation functions. 

• An evaluation of whether marginal performance gains 
with maxout are due to the activation function, or simply 
an increase (2x) in the number of convolutional filters 
versus ReLU networks. 

• An evaluation of whether maxout methods tend to con-
verge faster and if there is a significant performance dif-
ference between these methods and standard activations. 

 The remainder of this paper is organized as follows. In 

the second section, we describe the related work on activa-

tion function evaluation for sentiment analysis. The third 

section describes the evaluated activation functions and 

datasets. The experimental methodology is presented in the 

fourth section. Results and analysis are provided in the 

fifth section. Conclusions with some directions for future 

work are provided in the last section. 

Related Work 

Most prior work focuses on proposing new activation func-

tions, but few studies have compared different activation 

functions for big data text sentiment analysis. Also, there 

are few comparisons between maxout and traditional acti-

vation functions. Most of the comparisons do not report the 

details of their network to indicate whether an increased 

number of filters was accounted for in the experiment and 

only report accuracy on a single dataset. 

Maxout is employed as part of deep learning architec-

tures and tested against the Mixed National Institute of 

Standards and Technology (MNIST), the Canadian Insti-

tute for Advanced Research (CIFAR-10) and CIFAR-100 

benchmark datasets, but it is not compared against other 

activation functions using the same deep network architec-

ture and hyperparameters on big data. It is not clear if 

maxout enhances the overall accuracy on the tested da-

tasets, or if any other activation function has the same ef-

fect. 

The maxout activation was shown to be effective in 

speech recognition tasks (Zhang et al. 2014) but it has not 

been widely tested on sentiment analysis. Jebbara and 

Cimiano used the maxout activation in their CNN portion 

of a hybrid architecture consisting of a recurrent neural 

network stacked on top of a CNN (Jebbara and Cimiano 

2017). A maxout layer was also implemented in the Sia-

mese bidirectional Long Short-Term Memory (LSTM) 

network proposed in (Baziotis, Pelekis, and Doulkeridis 

2017). The maxout layer was selected as it amplifies the 

effects of dropout. The output of the maxout layer is con-

nected to a softmax layer which outputs a probability dis-

tribution over all classes. In (Njikam and Zhao 2016), the 

Rectified Hyperbolic Secant (ReSech) activation function 

was proposed and evaluated on MNIST, CIFAR-10, 

CIFAR-100 and the Pang and Lee’s movie review datasets. 

The results suggest that ReSech units are expected to pro-

duce similar or better results compared to ReLU units for 

various sentiment prediction tasks. The maxout network 

accuracy was only compared with the CIFAR-10 and 

MNIST datasets. 

Goodfellow et al. investigated the catastrophic forgetting 

problem, testing four activation functions including max-

out on MNIST and Amazon reviews datasets using two 

hidden layers followed by a softmax classification layer 

(Goodfellow et al. 2013). Their experiments showed that 

training with dropout is beneficial, at least on the relatively 

small datasets used in the paper and that the choice of acti-

vation function should always be cross-validated, if com-

putationally feasible. Maxout in combination with dropout 

showed the lowest test errors on all experiments. 

Activation Functions and Datasets 

In the following subsections, we introduce each evaluated 

activation function in our study. 

Hyperbolic Tangent 
A hyperbolic tangent (tanh) function is a ratio between 

hyperbolic sine and cosine functions of x: 

𝑓(𝑥) = tanh =  
sinh(𝑥)

cosh(𝑥)
=  

𝑒𝑥 −  𝑒−𝑥

𝑒𝑥 +  𝑒−𝑥
=  

1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
  

(1) 

 

Rectified Units 
Rectified Linear Unit (ReLU) (Nair and Hinton 2010) is 

defined as: 

 ℎ(𝑥𝑖) = max(0, 𝑥𝑖) (2) 

where xi is the input and h(xi) is the output. The ReLU ac-

tivation is the identity for positive arguments and zero oth-

erwise. 

Leaky ReLU (LReLU) (Maas, Hannun, and Ng 2013) as-

signs a slope to its negative input. It is defined as: 

 ℎ(𝑥𝑖) = min(0, 𝑎𝑖𝑥𝑖) + max(0, 𝑥𝑖) (3) 

Where ai ϵ (0, 1) is a predefined slope. 

The scaled exponential linear unit (SeLU) (Klambauer et 

al. 2017) is given by: 
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 𝑆𝑒𝐿𝑈(𝑥) =  𝜆 {
𝑥                𝑖𝑓 𝑋 > 0

𝛼𝑒𝑥 − 𝛼   𝑖𝑓 𝑋 ≤ 0
}  (4) 

where x is used to indicate the input to the activation func-

tion. In (Klambauer et al. 2017), it justifies why α and λ 

must have the below values: 

 
∝ =  1.6732632423543772848170429916717
𝜆 =  1.0507009873554804934193349852946

 (5) 

To ensure that the neuron activations converge automati-

cally toward an average of 0 and a variance of 1. 

Maxout Units 
The maxout unit takes as the input the output of multiple 

linear functions and returns the largest: 

 ℎ(𝑥𝑖) =     max     𝑤𝑘 ∙ 𝑥𝑖 + 𝑏𝑘 

                                          𝑘 ∈ {1, … , 𝐾} 
(6) 

In theory, maxout can approximate any convex function 

(Goodfellow et al. 2013), but a large number of extra pa-

rameters introduced by the k linear functions of each hid-

den maxout unit result in large RAM storage memory cost 

and considerable training time, which affect the training 

efficiency of very deep CNNs. For our comparisons we use 

four variants of the maxout activation: an activation with k 

= 2 input neurons for every output (maxout 2-1), an activa-

tion with k = 3 input neurons for every output (maxout 3-

1), an activation with k = 6 input neurons for every output 

(maxout 6-1), and a variant of maxout with k = 3 where the 

two maximum neurons are selected (maxout 3-2). These 

maxout variants have proven to be effective in classifica-

tion tasks such as image classification (Goodfellow et al. 

2013), facial recognition (Wu et al. 2015) and speech 

recognition (Cai, Shi, and Liu 2013). 

The following subsections describe the big data category 

datasets employed in our experiments: 

Amazon Product 
The original Amazon product review dataset was collected 

by (McAuley, Pandey, and Leskovec 2015). It contains 

product reviews and scores from 24 product categories sold 

on Amazon.com, including 142.8 million reviews spanning 

from May 1996 to July 2014. Review scores lie on an inte-

ger scale from 1 to 5. The sentiment dataset constructed 

from the Amazon product review data in (Heredia et al. 

2016) was reused, where 2,000,000 reviews had a score 

greater than or equal to 4 stars and 2,000,000 reviews had a 

score less than or equal to 2 stars. The first group is labeled 

as positive sentiment while the second group is labeled as 

negative sentiment, creating a positive/negative sentiment 

dataset. A second subset here called “Amazon1M” was 

used with one million Amazon product reviews construct-

ed in (Prusa and Khoshgoftaar 2017). The labels were au-

tomatically generated from the star rating of each review 

by assigning a rating below 2.5 as negative and a rating 

above 2.5 as positive. 

Sentiment140 

Sentiment140 (Go, Bhayani, and Huang 2009) contains 1.6 

million positive and negative tweets, collected and anno-

tated by querying positive and negative emotions, with a 

tweet considered positive if it contains a positive emoticon 

like “ :) ” and negative if, it contains a negative emoticon 

like “ :( ”. 

Yelp 
We use the dataset collected in (Prusa and Khoshgoftaar 

2017). It contains 429,061 Yelp reviews from 12 cities in 

the United States (Yelp500K). This is an imbalanced da-

taset with 371,292 positive and 57,769 negative instances. 

Another 500K reviews were scraped to create a second 

dataset with a million reviews (Yelp1M). 

General Methodology  

We adopt the general convolutional network architecture 

demonstrated in recent years to advance the state of the art 

in supervised classification (Krizhevsky and Hinton 2009). 

We evaluate classification performance with a series of 

convolutional layers for feature extraction that are fol-

lowed by two fully-connected layers for classification. 

  

Layer 

Sent140 

Amazon 

Yelp 

Input 

8x140x1 
8x500x1 

8x500x1 

Convolutional f=64 k=[3,3] 

Convolutional f=64 k=[3,3] 

Convolutional f=64 k=[3,3] 

Pool k=[2,2] s=[2,2] 

Convolutional f=64 k=[3,3] 

Convolutional f=64 k=[3,3] 

Convolutional f=64 k=[3,3] 

Pool k=[2,2] s=[2,2] 

Fully Connected n=512 

Drop Out kp=0.5 

Fully Connected n=2 

Table 1: ConvNet Configuration. Convolutional layers indicate 

the number of filters (f=) and the kernel size (k=). Max-pool lay-

ers indicate the kernel size (k=) and the stride (s=). Dropout lay-

ers show the applied keep probability (kp=), and the fully-

connected layers display the number of neurons (n=) 

  
 Max-pooling is used between convolutional layers to 

reduce the dimensionality of the network input, and drop-

out is used before fully-connected layers to prevent overfit-

ting. Our architecture is presented in Table 1. 

 Within each dataset, experiments are carried out using 

the presented CNN architecture, modified only to fit the 

memory specifications of the activation functions. The 

only layer that is not modified according to the activation 
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function is the final classification layer, where a softmax 

activation is applied. The reported results are generated 

with the models trained using a learning rate of 0.01. Ra-

ther than tune each network in our comparison optimally 

with a validation set, we implement a set of uniform stop-

ping criteria during training to maintain a consistent proto-

col so that network performance on a test set is suitable for 

comparison across activations as explained in (Krizhevsky 

and Hinton 2009). Early stopping criteria is the same for 

every dataset, and the slope of the test loss is calculated 

over a running window of the past four epochs. When the 

slope goes positive, testing loss is no longer decreasing, 

and network training is stopped. The optimizer is stochas-

tic gradient descent and the loss function is the categorical 

cross-entropy. Table 2 displays the batch size and number 

of trainable parameters per dataset. 

  

Dataset 
Batch 

Size 

Number Trainable 

Parameters 

Sentiment140 200 2,743,234 

Amazon 200 8,641,474 

Yelp 200 8,641,474 

Table 2: Batch size and number of trainable parameters per da-

taset 

  
 The classification tasks and datasets used to evaluate the 

activation functions are two Amazon product data subsets 

(1 and 4 million reviews), Sentiment140 and two subsets 

from the Yelp text datasets (500,000 and 1,000,000 re-

views). For our sentiment analysis, the text was embedded 

as proposed by (Prusa and Khoshgoftaar 2016). 

 ReLU is also evaluated with 2x the number of filters in 

each convolutional layer. The purpose of including this 

variant is to consider the impact of increased neurons on 

the accuracy, training time and memory usage of neural 

networks independent of the maxout activation. Because 

maxout incorporates both the max operation and the use of 

duplicate neurons with additional memory, it is necessary 

to consider how each component of the activation contrib-

utes to its performance. 

 Maxout is evaluated with the following input feature 

map-output elements combinations: 2-1, 3-1, 3-2 and 6-1. 

We compute maxout for our four activations using the 

equations below, which are suitable for parallelization with 

modern deep learning software and parallel computer 

hardware. In general, we use maximum (max) and mini-

mum (min) operations with two inputs to achieve maxi-

mum computational efficiency during training. 

 𝑚𝑎𝑥𝑜𝑢𝑡 2 − 1 (𝑥1, 𝑥2) = max(𝑥1, 𝑥2) (7) 

 𝑚𝑎𝑥𝑜𝑢𝑡 3 − 1 (𝑥1, 𝑥2, 𝑥3) = max(𝑥1, max (𝑥2, 𝑥3)) (8) 

 𝑚𝑎𝑥𝑜𝑢𝑡 6 − 1 (𝑥1, 𝑥2,𝑥3, 𝑥4𝑥5, 𝑥6) =

max(𝑥1, max (𝑥2, max (𝑥3, max (𝑥4, max (𝑥5, 𝑥6))))) 

 

(9) 

 𝑚𝑎𝑥𝑜𝑢𝑡 3 − 2 (𝑥1, 𝑥2, 𝑥3) = max(𝑥1, max (𝑥2, 𝑥3)), 

min(max(𝑥1, 𝑥2), min(max (𝑥2, 𝑥3) , max (𝑥1, 𝑥3))) 
 

(10) 

 While it would be ideal to record the wall clock time 

needed to train each network, modern high-performance 

computing environments present hardware and software 

challenges which make it difficult to safely compare train-

ing time across runs or activations. Thus, we produce a 

metric which represents the time cost of training with a 

particular activation function. This metric is produced for 

each activation on an isolated desktop computing environ-

ment. We record the wall clock time required to train each 

network in our comparison for 100 batches and average 

that time across 10 runs on a single desktop computer with 

32GB of RAM running Ubuntu 16.04 with an intel i7 7th 

generation CPU and an NVIDIA 1080ti GPU. Those times 

are produced independently for each activation on each 

dataset and are presented in this study as “Avg 100 batches 

time”. 

 A total of 11 activation functions were evaluated, where 

each experiment compared: 

• Classification accuracy 

• Training time (average 100 batches time multiplied by 
number of epochs to converge) 

The training did not converge most of the time with the 

SeLU activation function on the Amazon and Yelp da-

tasets; out of many runs it was only possible to get one 

successful training on Amazon1M and Yelp1M. Similarly, 

maxout 6-1 and maxout 3-2 on Amazon4M failed to con-

verge on large text datasets. Only one run was successful 

using those activations. Table 3 displays the number of 

experiments per activation function and dataset. 

  
Dataset LR M21 M31 M32 M61 R R2X SL T 

Amazon1M 2 2 2 2 2 2 2 1 2 

Amazon4M  2 2 2 1 1 2 2 0 2 

Sent140 2 2 2 2 2 2 2 2 2 

Yelp500K 2 2 2 2 2 2 2 0 2 

Yelp1M 2 2 2 2 2 2 2 1 2 

Table 3: Number of experiments per activation and dataset 

LReLU (LR), Maxout 2-1 (M21), Maxout 3-1 (M31), Maxout 3-2 

(M32), Maxout 6-1 (M61), ReLU (R), ReLU2x (R2X), SeLU 

(SL), Tanh (T) 

   
 In each dataset, we use a train/test split of 90%/10%. 

Because we apply a consistent early stopping criteria, we 

report results of our comparison done directly on a test set, 

without an additional validation set. We implemented our 

tests in PyTorch (Collobert, Kavukcuoglu, and Farabet 

2011). 
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Experimental Results 

Based on preliminary observations, it was evident the sig-

moid activation does not perform well in deep CNNs. For 

this reason, both activation functions are not presented in 

the evaluation results. 

 One-way analysis of variance (ANOVA) is performed to 

statistically examine the various effects on performances of 

the type of activation (maxout vs. traditional activation 

functions) across all the datasets. In this ANOVA test, the 

results from 82 evaluations were considered together, and 

all tests of statistical significance utilized a significance 

level α of 5%. The factor is significant if the p-value is less 

than 0.05. The ANOVA table is presented in Table 4, indi-

cating the activation type does not make a difference in the 

classification accuracy. 

  

Factors 
Sum of 

Squares 

Percentage 

of  
Variation 

Degrees 

of  
Freedom 

Mean 

Square 

F-

Com-

puted 

p-

value 

Activation 

Type 
16.56 1.04 % 1 16.55 0.85 0.36 

Error 1566.34 98.95 % 80 19.57   

Total 1583.9 100 % 81    

Table 4: One-way ANOVA for type of activation function 

  
 The best activation accuracy per dataset, its average 100 

batches and training time are presented in Table 5. The 

training time is number of epochs to converge multiplied 

by the average time in seconds needed to train 100 batches. 

ReLU with 2x filters reported the highest accuracy on Sen-

timent140 and Yelp500K datasets. On Yelp1M, ReLU 

achieved the highest accuracy and maxout 3-2 and 6-1 re-

ported the best accuracies on the Amazon1M and Ama-

zon4M datasets respectively. 

  

Dataset 
Best  

Activation 
Accuracy Epochs 

Avg 100 

Batches 

Time (s) 

Avg 100 

Batches 

Training 

Time (s) 

Amazon1M Maxout 3-2 88.17 % 35 73.27 2124.86 

Amazon4M Maxout 6-1 93.73 % 26 57.32 1490.36 

Sentiment140 ReLU2x 84.57 % 60 5.09 259.79 

Yelp500K ReLU2x 93.17 % 60 18.19 873.33 

Yelp1M ReLU 93.60 % 60 8.65 519.41 

All datasets 

combined 
ReLU2x 90.41 % 40 15.57 594.15 

Table 5: Best activation accuracy, average 100 batches and train-

ing time per dataset 

  
 On average, ReLU2x reported the highest accuracy of 

90.41%. SeLU was difficult to train, with convergence of 

the deep network occurring only for the Sentiment140 da-

taset. Adding a layer of filters was enough for ReLU to 

achieve the higher classification accuracy. This suggests 

that adding more layers could increase the accuracy but 

hyperparameter tuning might be required. 

 We performed Tukey’s Honestly Significant Difference 

(HSD) test to further investigate these results. The HSD is 

a statistical test comparing the mean value of the perfor-

mance measure for the different activation functions. All 

tests of statistical significance use a significance level α of 

5%. Two activation functions with the same block letter 

are not significantly different with 95% statistical confi-

dence (e.g. group a is significantly different than group b). 

In Table 6, the letters in the third column indicate the HSD 

grouping of the activation accuracy. That is, if two activa-

tions have the same letter in the HSD column, their accura-

cies are not significantly different. The HSD test shows six 

activations are statistically indistinguishable from one an-

other (they all have the block letter ‘a’ in the HSD col-

umn). ReLU2x, with the exception of the Yelp1M dataset, 

recorded the highest or second highest accuracy, while 

maxout 3-2 recorded within the top three accuracies except 

on the Sentiment140 and Yelp1M datasets. All maxout and 

ReLU activations are not significantly different from each 

other but they are statistically different from tanh and 

SeLU. 

 Maxout activations had a higher average 100 batches 

training time than ReLU and ReLU2x. The lowest average 

100 batches time was ReLU with 7.412 seconds, which 

surprisingly delivered the third highest average classifica-

tion accuracy. This suggests that a higher training time will 

not always deliver better results. 

  

Activation Accuracy 
Accuracy 

HSD 

Avg 100 

Batches 

Time (s) 

Avg 100 

Batches 

Training 

Time (s) 

ReLU 2x 90.41 % a 15.57 594.15 

Maxout 3-2 90.35 % a 62.67 1485.35 

ReLU 90.26 % ab 7.41 349.52 

Maxout 3-1 90.19 % ab 29.67 972.79 

Maxout 2-1 89.97 % ab 17.50 440.28 

Maxout 6-1 89.89 % ab 48.83 1866.42 

LReLU 89.71 % b 13.86 754.60 

Tanh 87.57 % c 7.45 242.19 

SeLU 83.81 % d 12.20 229.62 

Table 6: Activation HSD test, 100 batches average and training 

time 

Conclusion 

We conducted experiments to assess the effectiveness of 

maxout variants. Doubling the number of convolutional 

filters on ReLU on big data is very conclusive. It suggests 

that given a sentiment analysis task and a CNN architec-

ture, ReLU2x and maxout 3-2 are likely to produce the 

highest classification accuracy results compared to low 

memory usage activation functions and the rest of the 
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maxout variants analyzed in this study. It is important to 

note that the difference between ReLU and ReLU2x is the 

choice of a tunable hyperparameter. In this study due to 

hardware memory constraints, we exclude ReLU3x and 

ReLU6x from comparisons. 

 Maxout variants provided a better average accuracy than 

LReLU, SeLU and tanh as shown in Table 6, but on aver-

age the training time is slower except for maxout 2-1 com-

pared to LReLU. Maxout 3-2 was the only variant that 

outperformed the simple Max-Feature-Map. Results indi-

cate that ReLU, with more filters, was the top performer 

with the tradeoff of high memory usage and big data that is 

difficult to train. A maxout variant performed better than 

the rest of the activation functions with the Amazon da-

tasets. Although ReLU2x provided the best average accu-

racy, the maxout variants were very close to ReLU2x in 

performance. On average, ReLU2x tends to converge 2.5x 

faster than maxout 3-2 but it is 1.7x slower than ReLU. 

There is no relationship between the activation functions 

that use more memory or have a higher training time and 

the classification accuracy performance, but clearly adding 

more convolutional filters enhanced ReLU, which did not 

happen with maxout. ReLU is the recommended activation 

function due to high performance, with both tested number 

of filters (ReLU and ReLU2x), and fast training relative to 

other top performing activations. 

 Future work will involve conducting additional empiri-

cal studies with ReLU3x and ReLU6x on big data and hy-

perparameter tuning recommendations that were outside 

the scope of this work. Also, future work could include 

additional deep network architectures and domains. 
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