
Task-Specific Language Modeling for
Selecting Peer-Written Explanations

Eni Mustafaraj, Khonzoda Umarova, Franklyn Turbak, Sohie Lee
Department of Computer Science
Wellesley College, Wellesley, MA

emustafa, kumarova, fturbak, slee@wellesley.edu

Abstract

Students who are learning to program, often write “buggy”
code, especially when they are solving problems on paper.
Such bugs can be used as a pedagogical device to engage
students in reading and debugging tasks. One can take this a
step further and require students to explain in writing how the
bugs affect the code. Such written explanations can indicate
students’ current level of computational thinking, and concur-
rently be used in intelligent systems that leverage “learner-
sourcing”, the process of generating course material for other
learners. In this paper, we discuss how to combine learn-
ing analytics techniques and artificial intelligence (AI) al-
gorithms to help an intelligent system distinguish between
strong and weak textual explanations.

Introduction: Providing Feedback in

Computer Science Education

In computer science (CS) education, automatic grading has
been present since its beginnings (Hollingsworth 1960). As
enrollments in CS courses keep growing, many universi-
ties have either created their own sophisticated autograders,
or adopted the most successful ones (DeNero et al. 2017).
Such systems can assess whether code submitted by stu-
dents passes the test cases provided by the instructors — that
is, whether it is behaviorally correct. However, writing code
that behaves correctly is not everything that students should
learn. Reading and debugging code are two other important
skills that are often neglected in assessments.

Assessing these skills will typically involve asking stu-
dents to explain in writing (i.e., in plain English) code devel-
oped by others, especially code that might contain mistakes
(knows as bugs). This kind of assessment, however, poses
the familiar scaling problem: what to do with all the written
explanations if there are hundreds of students in a class? If
assigned frequently, this type of formative assessment could
be beneficial to student learning, but expecting personalized,
human feedback for such textual answers is infeasible for
the size of current CS courses. Therefore, in addition to au-
tomated systems to check code quality, we need to build in-
telligent systems that can check the quality of written expla-
nations about how code works or fails.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Evaluating student writing in other domains is extensively
covered by the field of automated essay scoring (Blood
2012). However, essays are a different genre of writing com-
pared to the text of explanatory writing for a CS course. The
latter are much shorter, contain domain and task-specific vo-
cabulary, exhibit pervasive misspelling and informal use of
language, contain snippets of code, and have a high ratio of
ambiguity due to normal English words used as keywords
in programming languages (e.g., for, while, if, else,
etc.). More importantly, in CS writing, correctness matters
as much as clarity and conciseness. Meanwhile, providing a
score or detailed feedback to improve writing is not a high
priority, given the formative nature of the assessment.

The dilemma of how to scale delivery of feedback for stu-
dent work became more pressing in the context of MOOCs
(Balfour 2013). The two big providers, Coursera and edX
chose two competing approaches: student calibrated peer re-
view and automated essay scoring, respectively. Both have
pros and cons and require known examples of good writ-
ing and their scores in advance. For the kind of low-stakes
assessment we envision, they have a high entry bar. This is
why a more recent approach, known as “learnersourcing”
(Kim 2015), might provide a new avenue for providing help-
ful feedback to students in learning scenarios. Learnersourc-
ing is the process of students generating content for other
(future) learners. It has been used in scenarios like generat-
ing hints for design problems in engineering (Glassman et
al. 2016) or creating subgoal labels for how-to videos (Weir
et al. 2015). Closely related to our context, the system AXIS
(Williams et al. 2016) collects explanations of math prob-
lems written by some confident learners and then displays
the best ones to other users of the system. The selection
of the best explanations is modeled as a multi-armed bandit
problem which makes the system dynamic and adaptable.

Our vision for providing feedback to CS students for their
writing involves leveraging correct explanations written by
their peers. A feedback-providing system should be able to
learn correct, good explanations from the pool of all an-
swers, identify students with incorrect or poorly written an-
swers, and display to them some of the best explanations
written by their peers. Our approach toward such a sys-
tem, described in this paper, combines ideas from learn-
ing analytics (Siemens and Long 2011) (e.g. collecting data
from learners) and statistical language modeling (Rosenfeld

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

433

2000). The language models trained for the debugging tasks
assign the best score to concise and correct textual explana-
tions.

This paper is organized as follows: we initially describe
the task that leads to generating textual explanations: code
debugging, followed by the structure of the system that al-
lows us to collect different kinds of data about the task. The
analysis of the collected data sheds light into the kind of de-
cisions we need to make for training the language model,
and we show the results of this process. Finally, we dis-
cuss the costs and benefits of this approach and provide a
roadmap for future work.

The Task: Finding and Explaining Bugs in

Code

When students are learning to program a computer, they usu-
ally make many mistakes. Initially, these mistakes are syn-
tactic, since it takes some time to learn the syntax rules of
a language. Given that code containing syntax errors cannot
be executed, students are confronted frequently with their
mistakes and learn to fix them. Good integrated develop-
ment environments (IDEs) provide explanations for syntax
errors, pointing in the general area of the error and incor-
porating some explanation of it, albeit in a language that is
often too cryptic for novices. Once students have learned
the syntax of a language and have started solving more am-
bitious problems, they start making semantic errors, errors
that reveal their misunderstanding of how a programming
language operates. That is to be expected. High-level pro-
gramming languages, such as Python or Javascript, present
a level of abstraction that hides the details of how these lan-
guages perform certain actions. It is normal for a learner to
require some time to absorb the behavior of different build-
ing blocks of a language.

Students’ insufficient understanding becomes clear when
they are asked to write code on paper, where they don’t have
the opportunity to try multiple versions of code (trial-and-
error) and have to use their initial understanding (or make
a guess) about how their code will be executed to solve a
given problem. Here is a concrete example for illustration.
A programming language like Python allows comparing
two strings lexicographically with the relational operators
greater than (>) and less than (<). For example, ’cat’< ’cog’

will be evaluated as True, because the comparison is done
in the dictionary order. That is, in a dictionary we would
find ’cat’ before ’cog’. Although students have seen exam-
ples of how these relational operators act with strings, when
asked to solve a problem that integrates this aspect, but is not
focused on it, many of them don’t think of using the opera-
tors in this way. Instead, they decide to write complex code
that will compare the characters of the string one by one,
trying to also take into account situations where the strings
have different lengths. For example, thinking of a compari-
son such as ’apple’< ’apps’ leads them to code that finds the
minimum length of the two strings, so that the index for ac-
cessing each character will not try to access an element that
doesn’t exist. The mistakes that students make in such oc-
casions are a useful source of knowledge for understanding

students misconceptions about how to write programs.
In our teaching, we try to put this knowledge to good use.

We sometimes create assignment problems that contain so-
called bugs (mistakes that usually cannot be attributed to
wrong syntax) and engage students in debugging, the pro-
cess of recognizing and fixing such bugs. To make things
realistic, instead of coming up with bugs of our own, we
use bugs that students have generated when writing code on
paper, or bugs that are inspired by their code. In a typical
assignment of this nature, we would explain the given prob-
lem, its correct solution, and a series of solutions written by
students that contain trivial or non-trivial bugs. The students
are then asked to find the bugs and also to explain in writing
how each bug affects the code.

While most students might be expected to perform well or
to be able to understand the explanations of the instructors
(which are made available after students submit their work),
a proportion of the students will struggle with the task and
not be able to understand the given explanations, pointing to
the so-called “expert blind spot”: some parts of instructor an-
swers might be inaccessible to students at their current level
of understanding (Nathan, Koedinger, and Alibali 2001).

An AI-enhanced system should be able to recognize good
answers and weak answers and flag them both as such. Stu-
dents with weak answers can then be presented with good
answers from their peers, as a form of peer instruction
(Crouch and Mazur 2001), which is shown to be effective
in alleviating the expert blind spot (Wiggins and McTighe
2005).

Learning Analytics: Collecting Data about

Learning

The data used in this project was generated in a three-part
process: a) a paper exam revealed bugs about a concept; b)
a homework assignment asked students to find the bugs and
explain them in writing; c) a post-assignment survey asked
students to do a self-evaluation of the tasks. The data for
parts b) and c) were captured electronically and combined.
The dataset contains entries by 159 students, though there is
some missing data, because a few students didn’t complete
all the debugging tasks or didn’t fill out the form.

Part A: Revealing Bugs

A good way to reveal students’ misconceptions about com-
putation and programming is to ask them to solve problems
on paper. Lacking an IDE that allows them to test out count-
less variations of code composition, when solving a prob-
lem on paper they have to use their own understanding of
how a program works and how the various building blocks
are combined together. In this project, we chose one exam
problem in which students had demonstrated that they didn’t
understand how comparison of string values works. Given a
standard filtering problem that had a very simple solution
involving a relational operator (as shown in Listing 1), they
had created complex solutions that contained bugs of differ-
ing complexity. One of the authors cataloged these bugs and
created working solutions that typify a bug for pedagogical
purposes. One such buggy solution is provided in Listing 2.

434

Because the bugs revealed other conceptual misunderstand-
ings (e.g., index boundaries, when to break a loop, when to
exit a function), it made this problem perfect for the second
part of the project: explaining bugs in plain English.

Listing 1: Correct solution for the exam problem given to
students to solve on paper.
def check(pivot, wordlist):

result = []

for word in wordlist:

if word < pivot:

result.append(word)

return result

Listing 2: A buggy solution based on solutions written by
students during the exam.
def check(pivot, wordlist):

result = []

for word in wordlist:

minLen = min(len(word), len(pivot))
i=0

while i < minLen and word[i] == pivot[i]:

i += 1

if i < minLen and word[i] < pivot[i]:

result.append(word)

return result

Part B: Collecting Student Explanations

We crafted a homework assignment that contained ten buggy
definitions of the check function of varying difficulty and
asked students to first carefully study the function definitions
and then do two things: (1) define minimal counterexamples
for each case, that is, a particular set of inputs for which
the program will not behave correctly; (2) write brief ex-
planations for why the function is buggy. To prepare them
for this problem, which was very unusual, one instructor
wrote detailed explanations covering counterexamples, de-
bugging strategies, as well as two solved cases. The entire
setup for the assignment amounted to 2500 words including
several code samples. The assignment is accessible at this
link: https://goo.gl/GtgzRS. Students were given the code in
a file, together with variables to store the counterexamples
and explanations. They uploaded these files to our server and
a script automatically collected their answers. We passed
their code through an autograder to check the correctness of
their first part: defining minimal counterexamples that iden-
tified the bugs.

Part C: Student Self-Evaluation

After submitting their solutions, students were asked to fill
out a self-evaluation questionnaire. They were provided with
the solutions for all ten buggy problems written by one of the
instructors and were asked two questions:

1. Compare your solutions to the provided solutions and
then choose the appropriate option, see Figure 1.

2. What debugging strategies did you use for finding the
bugs in this problem? Can you list a few of them, pro-
viding context for how you used them?

Figure 1: The form for capturing students self-evaluation
about how they completed the tasks. The form contains one
row for each of the ten problems.

Figure 2: Summary of student self-evaluation for the ten de-
bugging tasks that they solved. The four first tasks were rel-
atively easy, but the difficulty increased and a proportion of
students weren’t able to solve some of the challenging tasks.

The answers of students for each question are summa-
rized in the bar chart in Figure 2. As previously mentioned,
the problems had a different level of difficulty and the self-
evaluation of the students clearly indicates that. Some of the
problems were challenging for the majority of the class and
overall, 72 students didn’t solve at least one of the tasks.

The difficulty that students encountered in solving the
problems might extend to the difficulty of understanding the
solutions. We didn’t think of asking students how clear the
instructor answers were for them, but one student volun-
teered that information as part of the self-evaluation form
for question two:

I noted a lot of my solutions as correct because they
had satisfactory counterexamples and I think I under-
stood the bugs, but my explanations were almost noth-
ing compared to those in the solutions, so in that re-
spect, maybe they are not right.

The uncertainty expressed by this student (who is a strong
student) points out to the need for providing some kind of
feedback to students, especially to the ones who admitted
that they struggled or that they couldn’t solve the problem at
all. The question is: if the instructor solutions were not sat-
isfactory (because they might suffer from the “expert blind
spot”), and reading circa 1500 answers is costly in time, can
the explanations provided by other students be used instead?
How to find high-quality explanations provided by the stu-
dents?

Learning Analytics: What does the Data

Reveal?

When it comes to assessing writing, the length is often con-
sidered a judging criteria. Too short an answer might be in-
sufficient, a very long one might indicate confusion. Thus,
we initially looked at the distribution of explanation lengths

435

Figure 3: Distribution of explanation lengths as a function of
word count for all student submissions. Mirroring the results
of task difficulty shown in Figure 2, there is more variability
for the explanations of harder questions. The instructor’s so-
lutions in the majority of cases were not far away from the
median.

Figure 4: A different representation of the distribution of
lengths that colors points by the perceived level of difficulty
for the task. No regularity can be seen in the data.

as measured by the count of words. A graphical represen-
tation that combines boxplots and scatterplots is shown in
Figure 3. We have also included the instructor answer for
comparison. As expected, problems that students perceived
as simple (the first four ones) show less variability in the
explanation lengths, meanwhile, the more challenging ques-
tions display higher length variability. That is the first indi-
cation that for task-specific writing, the difficulty of the task
matters. Any judgment about an individual answer needs to
be made in the context of the group of answers for the same
task.

Given the variability in the answers length, we were in-
terested in knowing whether the perceived difficulty of the
task (according to the self-evaluation) influenced the amount
of writing for each student. The graphical representation in
Figure 4 colors points by the student’s self-reported diffi-
culty level. In terms of length, especially for the challeng-
ing tasks, there doesn’t appear to be any correlation between
perceived difficulty and length of explanations. Even the stu-
dents who admit of solving the problems wrongly, appear to
have written lengthy explanations. Given that the analysis of
length variations didn’t bring further insights, we decided to
look into the word choice and what that might reveal about
the answers.

Figure 5: The relationship between the total perceived score
of tasks’ difficulty and the average answer length. The filled
circles show the students who used the word “prefix” in their
answers. The size of such circles is proportional to the fre-
quency of using the word “prefix.”

Vocabulary Gap Reveals Gaps in Performance

Students in our case study were provided with a 2500-word
document (including code) that explained the homework as-
signment. An entirely new concept featured in this document
was that of the “prefix”. It was defined in this way: A string
p is said to be a prefix of string s if there is some (possibly
empty) string q such that p+q == s. For example, if pivot is
’dog’, then the words ’d’, ’do’ and ’dog’ are prefixes of the
pivot, and pivot is a prefix of the words ’dog’, ’dogs’, and
’doggy’. Overall, the word “prefix” was mentioned 14 times
in the document, including the comments for the code that
students had to debug. However, despite this, when exam-
ining the word distribution of students’ answers, we discov-
ered that while a few students used the word prefix up to 10
times in their explanations, 78 students didn’t use the word
at all. Even when they understood that this concept was im-
portant in explaining a bug (six of the solutions involved the
special treatment of prefixes), students would try to explain
it in a round-about way, for example:

... the word is shorter than the pivot and has the same
letters as pivot until it ends.

Did the lack of awareness about this important concept,
“prefix”, affect students’ performance? We tested this em-
pirically. We divided students into two groups based on their
use of the word “prefix” in their explanations across all ten
tasks: 78 didn’t use it, 81 used it. Then, we converted the
answers for the self-evaluation question shown in Figure 2
into numerical values: 0 - easy, 1 - challenging, 2 - incorrect
solution. Each student was assigned a total score between
0-20 based on how they had answered the ten questions.
0 would mean that they had done everything correctly and
found the questions easy, 20 that they did everything wrong.
We show the relationship between the distribution of these
scores and the average length of the explanation across ten
tasks in Figure 5. The respective means for the two groups
were 4.6 and 6.1 and a t-test for two independent samples
rejected the null hypothesis that there is no difference be-
tween the two groups with p=0.002. This finding indicates
how a single highly-relevant, task-related word can partition
a dataset into two groups of students with a different level of

436

understanding and performance.
In summary of this section, the takeaways from the learn-

ing analytics point out to the need to consider the tasks in-
dependently of each other, as well as to take into account
students’ self-reported difficulty.

Statistical Language Modeling
As instructors, our criteria for considering an explanation as
high-quality will include several aspects: is the explanation
correct? Does it use appropriately the terminology learned
in the course? Does it indicate that the student really under-
stood the problem? Then, in addition to these aspects, we
may also consider the clarity of the sentences and whether
they are well-structured and self-contained.

Human Manual Labeling

In automatic essay scoring, the problem of human subjectiv-
ity is well known (Wang and Brown 2007). Thus, we decided
to test whether subjectivity plays a role in assessing the short
explanations for our debugging tasks. We instructed three
raters, one instructor and two teaching assistants, to read
110 explanations and rate them on correctness, clarity/un-
derstanding, and to select the best explanation for each task.
The answers were randomly chosen from the three groups
of students with different levels of self-confidence as well
as to contain varying length. The dataset comprised 10 an-
swers by students for each of the 10 tasks and one answer
per task written by yet another instructor of the course. The
three raters were not aware that the answers contained these
previously unseen instructor solutions.

As established in the essay scoring literature, We were
also able to confirm that human raters are subjective. We cal-
culated the inter-rater agreement coefficient, Fleiss’ Kappa,
for the two variables correctness and clarity, and the coef-
ficients were respectively 0.376 and 0.278 (the coefficients
are in a scale 0 to 1 with 1 being full agreement). The choice
of the best answer also yielded surprising results: the two
teaching assistants (TAs) agreed 4 out of 10 times with one
another, while the instructor agreed only 2 times with one of
the TAs. The instructor and one of the TAs choose 3 times
the instructor answer as the best one, the second TA only
once.

Why wasn’t there much agreement between the raters?
We hypothesize that it depends on the apparent similarity of
the answers, because they describe the same problems. In
fact, several phrases that make up the sentences are almost
identical. However, this repetitiveness that “annoys” human
graders, is what will make statistical language modeling fea-
sible.

Preparing the Corpus

The text of the explanations written by students differs from
normally occurring text in several key ways: a) it contains
many characters that are considered punctuation and usually
removed from text. However, in the context of programming,
all these characters need to be retained, e.g., >=, ==, [],
etc.; b) it contains snippets of code and/or references to vari-
able and function names, which are English words and in-
troduce ambiguity; c) the so-called functional words (or stop

words) are also content words, because they appear as key-
words in a programming language. Because of these special
characteristics, one cannot simply use out-of-the-box natural
language processing tools to prepare the data. This is a cost
associated with task-specific text, it has to be handled with
tailored tools that take into account its special characteris-
tics. To provide an example, we have included below one
explanation written by a student (spelling mistakes left in-
tact), with the only change the font emphasis for task-related
words.

In this case, the bug comes from line 196, the one
within the first IF statement within the second FOR

loop. allLess, despite given "TRUE" before the func-
tion is later given "FALSE" within the function, there-
fore screwing everything and making it so nothing is
added. If changed to allLess == True, then the word
’birb’ would be appended into the return list.

Estimating the Language Model

Statistical n-gram language modeling is a widely used tech-
nique in natural language processing that assesses the flu-
ency of utterances (Madnani 2009). It is used commonly
in applications such as machine translation and automatic
speech recognition to identify the degree of goodness for
produced sentences: are they likely to occur in everyday lan-
guage? Concretely, the sentence “She went to the store” is
very likely, but the sentence “The store went to her” is un-
likely to be uttered. Given the specificity of the task that con-
straints the students’ writing in our scenario, it is possible
to get highly likely phrases that indicate consensus, while
meaningless phrases will be less common. For example, the
trigrams “out of range”, “an index error”, “is a prefix” occur
very frequently in the corpus, because are part of the correct
explanations that most students identified, while phrases like
“elif will ever” or “the pivot do” occur only once, indicating
lack of either correctness or clarity in the explanation.

To estimate the language models (one for each of the ten
tasks), we used the package KenLM (Heafield et al. 2013).
The combined texts of all student explanations, after the tai-
lored preprocessing to keep as much content as possible,
were fed to the KenML package, which outputs the model.
We then pass every sentence from each explanation to get
its score (the log of the probability value of the sentence).
We assigned to every student explanation the average score
across all its sentences. In Figure 6, we display the rela-
tionship between the length of explanations (x-axis) and the
model score averaged by the number of sentences in the ex-
planation (y-axis). As expected, short text will have better
scores. When we inspected these short texts, we found that
they contained the essence of the solution in a very concise
way, for example: “Will not append prefixes to results be-
cause allLess will be false if the letters are the same” or “’a’
should be appended to the results, but it wouldn’t because
allLess= False”

What is encouraging from the relationship shown in the
graph is that longer explanations have also a good model
score, allowing us the to choose answers of different lengths
to show to students who might have gotten the solution

437

Figure 6: The relation between the length of an explanation
and the language model score. This graph represents one
task, buggy6. Smaller negative scores indicate more likely
sentences than the ones with larger negative scores.

wrong. Finally, let’s address the positions of colored dots.
It appears that many “incorrect” solutions are shown as very
likely. Given that we have access to the counterexamples that
the students generated, we calculated the “real” correctness
of the task, as opposed to the perceived correctness that stu-
dents reported. It turns out that only 10 solutions are wrong
or missing, with another 27 having chosen a non-minimal
instead of a minimal counterexample. Thus, the information
provided by the students is somewhat misleading and we are
in the process of designing better learning analytics to take
into account student’s uncertainty about their solutions.

Discussion and Future Work

Assessing students’ writing in computer science education is
a novel research problem that creates opportunities for com-
bining methods from learning analytics and artificial intelli-
gence. The work presented in this paper shows a promising
start for such a combined approach. The language models
trained from task-specific written text accurately score the
correct solutions as the most likely ones. The fact that the
students themselves are more uncertain about their perfor-
mance than warranted points to the necessity of providing
them with results that compare their solutions to those of
their peers, together with varying explanations.

We have several ideas for how to continue this work.
Initially, we will train models that in addition to the text
provided by the students also contain materials from the
course, such as homework descriptions or lab explanations.
This will bias the model toward more correct formulations.
Additionally, we want to introduce more bias to favor cer-
tain task-specific concepts, for example, “prefix”, in order
to rank higher the explanations that use them. Finally, we
would like to test the outcome of the system with users and
get feedback about the usefulness of providing alternative
explanations generated by peers.

References

Balfour, S. P. 2013. Assessing writing in moocs: Automated
essay scoring and calibrated peer review (tm). Research &
Practice in Assessment 8.
Blood, I. 2012. Automated essay scoring: a literature review.
Teachers College, Columbia University Working Papers in
TESOL & Applied Linguistics 11(2):40–64.

Crouch, C. H., and Mazur, E. 2001. Peer instruction: Ten
years of experience and results. American journal of physics
69(9):970–977.
DeNero, J.; Sridhara, S.; Pérez-Quiñones, M.; Nayak, A.;
and Leong, B. 2017. Beyond autograding: Advances in stu-
dent feedback platforms. In Proceedings of the 2017 ACM
SIGCSE, 651–652. ACM.
Glassman, E. L.; Lin, A.; Cai, C. J.; and Miller, R. C. 2016.
Learnersourcing personalized hints. In Proceedings of the
19th ACM CSCW, 1626–1636.
Heafield, K.; Pouzyrevsky, I.; Clark, J. H.; and Koehn, P.
2013. Scalable modified Kneser-Ney language model esti-
mation. In Proceedings of the 51st ACL, 690–696.
Hollingsworth, J. 1960. Automatic graders for programming
classes. Communications of the ACM 3(10):528–529.
Kim, J. 2015. Learnersourcing: improving learning
with collective learner activity. Ph.D. Dissertation, Mas-
sachusetts Institute of Technology.
Madnani, N. 2009. Querying and serving n-gram language
models with python. The Python Papers 4(2):2009.
Nathan, M. J.; Koedinger, K. R.; and Alibali, M. W. 2001.
Expert blind spot: When content knowledge eclipses ped-
agogical content knowledge. In Proceedings of the Third
International Conference on Cognitive Science, 644–648.
Rosenfeld, R. 2000. Two decades of statistical language
modeling: Where do we go from here? Proceedings of the
IEEE 88(8):1270–1278.
Siemens, G., and Long, P. 2011. Penetrating the fog: Analyt-
ics in learning and education. EDUCAUSE review 46(5):30.
Wang, J., and Brown, M. S. 2007. Automated essay scoring
versus human scoring: A comparative study. The Journal of
Technology, Learning and Assessment 6(2).
Weir, S.; Kim, J.; Gajos, K. Z.; and Miller, R. C. 2015.
Learnersourcing subgoal labels for how-to videos. In Pro-
ceedings of the 18th ACM CSCW, 405–416.
Wiggins, G. P., and McTighe, J. 2005. Understanding by
design. Pearson Education.
Williams, J. J.; Kim, J.; Rafferty, A.; Maldonado, S.; Gajos,
K. Z.; Lasecki, W. S.; and Heffernan, N. 2016. Axis: Gener-
ating explanations at scale with learnersourcing and machine
learning. In Proceedings of the 3rd L@S, 379–388. ACM.

438

