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Abstract

We examine the effects of inter-agent variation on the ability
of a decentralized multi-agent system (MAS) to self-organize
in response to dynamically changing task demands. In de-
centralized biological systems, inter-agent variation as mi-
nor as noise has been observed to improve a system’s ability
to redistribute agent resources in response to external stim-
uli. We compare the performance of two MAS consisting of
agents with and without noisy sensors on a cooperative track-
ing problem and examine the effects of inter-agent variation
on agent behaviors and how those behaviors affect system
performance. Results show that small variations in how in-
dividual agents respond to stimuli can lead to more accurate
and stable allocation of agent resources.

Introduction

We investigate the effects of inter-agent variation on the
ability of a decentralized multi-agent system (MAS) to self-
organize in response to dynamically changing task demands.
In decentralized systems, the absence of a central controller
means that agents must make decisions on what task to
take on independently. In systems where communication be-
tween agents is minimal or scaling is necessary, achieving
and maintaining an appropriate number of agents on each
task can be challenging. Inter-agent variation refers to small
differences in how individual agents sense and respond to
external stimuli. Biological studies on social insect societies
find that small amounts of inter-agent variation as minor as
noise are, not only sufficient, but also necessary to the ability
of such systems to self-organize. We examine whether inter-
agent variation can be beneficial to self-organization in com-
putational MAS by comparing the ability of a decentralized
MAS with and without inter-agent variation to dynamically
allocate an appropriate number of agents to each task of a
cooperative tracking problem.

In the decentralized task allocation problem, multiple in-
dependent agents must distribute themselves appropriately
among one or more tasks. With no central controller and
each agent deciding independently what task to take on and
when, the challenge is getting the agents to coordinate such
that they do not all do the same thing at the same time, but
rather distribute appropriately to meet all task demands. In
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addition to effectively meeting task demands, such systems
also need to be efficient. Efficiency means avoiding or min-
imizing problems such as extreme responses in which too
many or too few agents respond and excessive and unneces-
sary task switching.

Studies on social insect societies find that “behavioural
variability among the workers of a colony is increasingly
regarded as fundamental for...division of labour” (Jeanson
and Weidenmüller 2014). Genetic noise is the most com-
mon source of behavioral variation in biological systems
and comparisons of genetically diverse versus similar insect
colonies find that genetically diverse colonies can be more
stable and efficient (Jones et al. 2004; Weidenmüller 2004).
Other sources of behavioral variation include size (Spaethe
and Weidenmüller 2002), age (Jeanson and Weidenmüller
2014), and previous experience (Ravary et al. 2007).

The notion that inter-agent variation can affect self-
organization in computational systems is not new. A num-
ber of studies have shown that inter-agent variation can be
helpful for decentralized coordination (Anders et al. 2012;
Krieger and Billeter 2000; Riggs and Wu 2012). Ashby
(1958) explains the underlying dynamic: because inter-agent
variation causes individual agents to respond differently to
the same stimuli, as more of the agents in a system vary
(number of identical agents decrease), the repertoire of re-
sponses that a system as a whole can produce increases. As
a result, inter-agent variation allows an MAS as a whole to
be able to offer tailored responses to a wider range of prob-
lems or scenarios (Ashby 1958; Page 2011).

In this paper, we directly compare the effectiveness and
efficiency of two versions of a decentralized MAS – one
version with inter-agent variation (M-VAR) and one version
without (M-NOVAR) – on solving a dynamic box-pushing
problem in which the agents in an MAS collectively push
a tracker to follow a moving target. Effectiveness refers to
a system’s ability to push the tracker to follow a moving
target. Efficiency refers to a system’s ability to solve the
problem with minimal wasted resources or energy. Based on
the discussion in (Ashby 1958), we expect the system with
inter-agent variation to show gradual entry and departure of
agents from the workforce allowing for more system states.
We expect the system without inter-agent variation to ex-
hibit more extreme responses and fewer system states. We
expect the addition of inter-agent variation result in more
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efficient systems in which thrashing and task switching are
minimized and potentially greater effectiveness at meeting
task demands due to more flexible system responses.

System Description

Our testbed consists of a target and a tracker that move in
two dimensional space. The movement of the target is spec-
ified by one or more user-defined functions. The movement
of the tracker is guided by a decentralized MAS. In each
timestep, each agent in the MAS can act on one of four tasks
in each timestep – PUSH-NORTH, PUSH-EAST, PUSH-
SOUTH, or PUSH-WEST – or remain idle. The MAS as a
whole pushes the tracker in each timestep by generating a
movement vector based on the aggregated actions of all of
its active agents. Aggregating the actions of multiple agents
allows the MAS to push the tracker more precisely than sim-
ply north, east, south, or west. The goal of the MAS is to al-
locate an appropriate number of agents on each task in each
timestep to allow the tracker to accurately follow the target.

In each timestep t, the target has a position, a velocity, and
a heading. The velocity and heading, denoted by the vec-
tor δt, are dynamic and may change from one timestep to
the next depending on the target’s movement function. The
position is an ordered pair that is updated in each timestep
based on the δt for that timestep. We assume that the target
and tracker begin each run at the same initial position and
that the tracker will not move until the target moves first.
Thus, the target will always be at least one step ahead of the
tracker in its movements.

Our MAS consists of an “ensemble” (Goldberg and Chen
2001) of n agents, a0, a1, ..., an. In each timestep, each
agent, ai, in the MAS estimates the target’s movement vec-
tor from the previous timestep δt−1 as δ

′
i,t. Agent ai uses

δ
′
i,t to decide which task, if any, it should take on in the cur-

rent timestep. The estimate, δ
′
i,t, is a vector consisting of

directional components to the north, east, south, and west.
We define a candidate direction as any direction in δ

′
i,t that

has a positive value. Agent ai chooses a task in timestep t

based on the candidate directions available in δ
′
i,t. If δ

′
i,t has

a single candidate direction, agent ai will choose the task
that pushes in that direction. If δ

′
i,t has more than one can-

didate direction, agent ai will choose randomly from among
the tasks of the available directions. If δ

′
i,t has no candidate

directions, agent ai will remain idle. For example, if the tar-
get is moving in the two o’clock direction, an agent will ran-
domly choose between the PUSH-NORTH and PUSH-EAST
tasks. All agents may choose any of the four possible tasks.
Not all agents are required to act in every timestep.

Each agent that chooses to take on a pushing task will
contribute a movement amount of c towards its chosen di-
rection. In each timestep, the c values from all active agents
are summed to form a single movement vector that is ap-
plied to the tracker in that timestep. This movement vec-
tor is then subtracted from the estimated position change in
each direction of the vector. In this way, the estimated posi-
tion change retains information from previous time steps if
previous summed contributions do not accurately match the

previous position changes. In other words, dead reckoning
error can occur. Because agent contributions are summed,
the maximum distance that our control system can move in
a single timestep is Δ = n × c, and this distance can only
be reached if all agents choose the same direction of move-
ment. The MAS can keep up with the target movement only
when Δ ≥ ∑

d∈δt d.
M-VAR and M-NOVAR differ in how δ

′
i,t is estimated

from δt−1. In M-NOVAR, all agents sense target movement
identically and perfectly and, thus, δ

′
i,t = δt−1. In M-VAR,

the difference between the estimated δ
′
i,t and actual δt−1

values of the target movement is the manifestation of inter-
agent variation. Each agent, ai, senses the estimated posi-
tion change in a direction, d ∈ δt−1, with some amount of
error, εi,d. These εi,d values are randomly assigned to each
agent and are distributed with a Gaussian distribution with a
mean of μ = 0 and variance of σ = 0.2. Thus, for each di-
rection d ∈ δt−1 agent ai calcuates an estimate d

′ ∈ δ
′
i,t us-

ing d
′
= d+ εi,d. Agents use the perceived values d

′ ∈ δ
′
i,t,

not the actual values d ∈ δt−1, to determine their direction
preference.

We use a simulation testbed for this study because a sim-
ulation environment provides greater capabilities for moni-
toring and recording the details of when and how agents act
in response to task stimuli. The detailed data that we are able
to capture in simulation allows us to better evaluate the im-
pact and effects of inter-agent variation on the ability of an
MAS to self-organize.

Experimental Methods

We compare the performance of M-VAR and M-NOVAR on
tracking a target using four different movement functions.
The four problems tested are:
• Circular movement: The target starts at the twelve o’clock

position and moves clockwise.
• Figure eight movement: The target starts at the center of

the shape and moves clockwise around the top loop and
counter clockwise around the bottom loop.

• Square movement: The target starts at the center of the top
of the square and moves clockwise.

• Random movement: The target wanders randomly in a
two dimensional space.

The first three paths (circle, figure eight, and square) consist
of 360 timesteps each. The random path experiments run for
500 timesteps. Unless otherwise noted, n = 100 and c =
0.01. For the M-VAR, μ = 0.0 and σ = 0.2. Ten runs are
performed on each movement function.

We evaluate the effectiveness of each system by examin-
ing how accurately the MAS pushes the tracker to follow the
target. This is measured in terms of the average distance be-
tween the tracker and target throughout a run and the relative
distances traveled.

We evaluate the efficiency of each system by looking at
how efficiently the agents, which are the resources of the
MAS, are being used. An efficient system uses resources ju-
diciously and minimizes wasted energy and effort. We will
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Figure 1: Performance with (top row, M-VAR) and without
(bottom row, M-NOVAR) inter-agent variation.

monitor the number of agents assigned to each task; the sys-
tem is efficient if sufficient but not too many agents are as-
signed to each task. We will also examine the number of
times agents switch tasks. For problems where there is a start
up cost when starting new tasks, minimal task switching is
more efficient.

Results

Figure 1 shows example runs of M-VAR (top row) and
M-NOVAR (bottom row) on the circle and random prob-
lems. M-VAR consistently exhibits noticeably better per-
formance than M-NOVAR on all tested problems. The M-
VAR tracker’s paths are smoother and more closely aligned
with the corresponding target’s paths, indicating that the
number of agents allocated to each pushing task varies
over time in response to changing task demands. The M-
NOVAR tracker’s paths are step-like and show more devi-
ations from the corrsponding target’s paths, indicating that
multiple agents are simultaneously choosing to push in the
same direction, and then simultaneously switching to a new
task. As a result, the tracker’s path exhibits noticeable devi-
ations as agents over-react in one direction then over-correct
in another. Table 1 compares the average distance from the
tracker to the target averaged over all timesteps of a run and
the corresponding 95% confidence intervals. M-VAR dis-
tances are significantly shorter than M-NOVAR distances on
all four problems.

An examination of the number of agents acting on each
task in each timestep supports the above conclusions. Fig-
ure 2 shows the number of agents from M-VAR (left) and M-
NOVAR (right) that select PUSH-EAST and PUSH-SOUTH
in each timestep for the circular tracking problem. The target

M-VAR M-NOVAR
Circle 0.601 (0.030) 0.842 (0.037)
Figure 8 0.411 (0.013) 0.538 (0.026)
Square 0.606 (0.013) 0.706 (0.037)
Random 0.585 (0.028) 0.741 (0.031)

Table 1: Distance between target and tracker averaged over
the entire run (and 95% confidence interval) for example
runs from Figure 1.
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Figure 2: Number of agents that act in each timestep for the
circle tracking problem using M-VAR (left column) and M-
NOVAR (right column).

and tracker both start the circle problem at twelve o’clock.
At timestep zero, the majority of agents in M-VAR select to
PUSH-EAST. As the target moves around the first quadrant
of the circle to three o’clock, M-VAR agents gradually stop
choosing the PUSH-EAST task and gradually start choosing
the PUSH-SOUTH task. This gradual departure and entry
continues until the target and tracker return to twelve o’clock
and the majority of the agents are once again on the PUSH-
EAST task. M-NOVAR is far less flexible than M-VAR. Al-
though the agents in M-NOVAR are choosing the correct
tasks for each period of the run, M-NOVAR agents mostly
act in concert and are unable to distribute themselves among
tasks based on task demand. Instead, the entire team appears
to jump back and forth between tasks, over-responding to
one task then another, behavior that explains the stair step
trajectories in Figure 1.

In order to compare the efficiency of M-VAR and M-
NOVAR, we monitor the number of times agents switch
tasks during a run. In many problems, switching from one
task to another can entail energy, time, and other start-up
costs. In addition, if agents can learn from experience, keep-
ing agents on tasks for which they have previous experi-
ence can result in better system performance. As a result,
it is often desirable to minimize task switching in MAS. Ta-
ble 2 gives the average number of task switches that a sin-
gle agent undergoes over an entire run for each of the four
problems and the corresponding 95% confidence intervals.
M-VAR agents undergo significantly fewer (up to 5 times
less) task switches than M-NOVAR agents. Interestingly, the
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M-VAR M-NOVAR
Circle 47.72 ( 7.235) 271.19 (0.260)
Figure 8 60.36 ( 6.780) 263.23 (0.271)
Square 145.75 (15.151) 357.00 (0.000)
Random 157.44 ( 9.789) 377.35 (0.547)

Table 2: Average number of task switches that an agent un-
dergoes during a single run (and 95% confidence interval).

Target M-VAR M-NOVAR
Length Length (Excess) Length (Excess)

Circle 125.31 127.23 ( 1.53%) 153.80 (22.73%)
Figure 8 121.45 124.20 ( 2.27%) 154.22 (26.98%)
Square 179.50 179.33 (-0.10%) 179.00 (-0.28%)
Random 195.76 187.69 (-3.66%) 234.67 (19.87%)

Table 3: Length of target and tracker paths for the example
runs from Figure 1 and the percent excess of each tracker
path over the corresponding target path.

confidence interval for M-NOVAR is significantly less than
the confidence interval for M-VAR. We believe this is due to
the fact that most agents in M-NOVAR are making the same
decisions and switching to the same tasks at the same time.

The last performance metric that we compare is the actual
distances travelled by the target and tracker. Table 3 gives the
length of the target and tracker paths for the example runs
shown in Figure 1. In general, trackers guided by M-VAR
travel paths with lengths that are shorter and closer to the
target path length than trackers guided M-NOVAR. The one
exception in which M-NOVAR travels a shorter path than
M-VAR is the square trajectory which is a very simple tra-
jectory that only travels in one direction at a time and, hence,
should be easy for a system like M-NOVAR where agents
tend to act in concert. Interestingly, in that problem, both
trackers actually travel slightly shorter distances than the tar-
get. Similarly, M-VAR’s tracker also travels a shorter path
than the target in the random movement problem. We specu-
late that, because M-VAR’s tracker is trailing the target and
because of the haphazard movements of the random func-
tion, there may be timesteps in which the target moves to-
ward the tracker. On the other hand, M-NOVAR’s tendency
to allocate all agents to the same task at the same time am-
plifies the difficulty of following a target making random
abrupt movements.

Conclusions

In this paper, we compare the performance of a decentralized
MAS with and without inter-agent variation, respectively
called M-VAR and M-NOVAR, on allocating agents to solve
a cooperative tracking problem. We test both systems on a
simulation problem in which the agents in a decentralized
MAV cooperatively guide a tracker to follow a moving tar-
get by individually selecting one of four directions to push.
The actions of all agents are aggregated in each timestep to
generate tracker movement. Inter-agent variation is added to
M-VAR in the form of sensor noise.

Although both systems are able to track a moving target,
our data indicate that M-VAR is significantly more effec-
tive and efficient than M-NOVAR at solving the problem.
M-VAR pushes the tracker along a path that is more accu-
rately aligned with the target’s path because M-VAR is better
able to distribute agents among the four pushing tasks appro-
priately to address changing task demands. M-VAR follows
the target more closely than M-NOVAR and typically travels
a shorter path than M-NOVAR. M-VAR is also more stable
than M-NOVAR, with agents switching tasks more than five
times less often in M-VAR than M-NOVAR.

The idea that noise manifested as inter-agent variation
can improve system wide behavior in decentralized sys-
tems potentially very interesting. Physical components of
autonomous multi-agent systems are commonly subject to
noise, e.g. calibration errors, wear and tear, dead reckoning
errors, general physical imperfections, etc. A great deal of
energy and research is often dedicated to minimizing and
overcoming such noise. Imagine if, instead, these natural
physical occurrences may be harnessed to improve multi-
agent system coordination and behavior.
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