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Abstract

We propose representing high-dimensional data in 2-
dimensions using cliques mapped onto several planes. Cur-
rently, Multidimensional Scaling (MDS) projects every point
onto an R-space medium. However, this may not produce the
most ideal result some relations between points may exhibit
higher stress than others. We propose utilizing cliques to ex-
tract a complete subset of points into separate facets in order
to convey the most accurate distance representation as possi-
ble therefore achieving low stress in each instance.

Introduction

One aspect in machine learning/data mining that is often
overlooked is the presentation of the results. While advances
in the field have led to new models for knowledge, present-
ing them in an understandable and effective manner is cru-
cial for them to gain wide acceptance and usefulness.

For instance, topic modeling methods such as Latent
Dirichlet allocation (LDA) (Biel and Lafferty 2009) have
emerged as an important analytical tool for text mining and
analysis. LDA discover a set of topics from a large corpus of
documents. Each document is represented as a probability
distribution of the words in the corpus. This capture the idea
of different topics are described via different sets of words.
LDA is an effective and automated method to make sense of
the various themes from a non-annotated corpus. However,
one problem is how to present the topics to the user. One can
show the list of words and their probabilities, but that may
not appeal to many potential users without a strong sense of
probability distributions.

One natural way of visualizing the topics is to make use
of the statistical distance measures defined for probability
distributions such as Bhattacharyya distance and Hellinger
distance. Given that, one can then apply multidimensional
scaling (MDS) to map the topics into points in a (2 or 3)-
dimensional Euclidean space, which can be visualized in a
very intuitive fashion. This also allows us to get around the
problem of high dimensionality, as each topic is a proba-
bility distribution of a large number of words. Examples of
applying MDS to topic visualization are found in (Fortuna,
Grobelnik, and Mladenic 2005; Sievert and Shirley 2014).
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In this paper, we propose improvements of applying MDS
to topic visualization. One observation is that no matter how
good the mapping is, there are bound to be pairs of points
which distance in the Euclidean space is very different from
the actual distance of their corresponding topics. That means
very often the mapped points in the MDS convey a false
sense of relationship about the actual data. This is a recurring
problem for MDS regardless of whether the objects mapped
are topics or not. To overcome this, we propose using mul-
tiple mappings for visualization. Instead of mapping all the
points into a single space, we partition the data into groups,
and visualize each group individually. The goal is that each
group is mapped to a space such that distances between ev-
ery pair of points within the group are well preserved.

Our proposed method is iterative. At each iteration, we
first run MDS on the current group to map the topics to
points. Then we create a graph linking pairs of points in
which the mapped distance is close to the actual distance.
Each group that we are looking for corresponds to cliques in
such graph. Once we find a clique we remove them from the
set and form a group. We then repeat the process until we
either run out of points, or the number of groups generated
becomes too large. This process enable us to generate multi-
ple mapping that are highly reliable and minimize potential
misleading information.

Subsequent sections will describe the method in more de-
tail, as well as present initial experimental results to provide
a sense of how our method performs.

Our approach
Multi-dimensional Scaling (MDS)

Multidimensional scaling was originally introduced as a
mathematical technique in the field of psychology and po-
litical science to aid researchers to uncover the hidden struc-
ture of databases (Kruskal and Wish 1978). In MDS, the in-
put is a set of objects such that for any pair O;, O;, there
is a measure of dissimilarity p;; between them. MDS maps
the objects into an IR dimensional Euclidean space where
every object becomes a point. Thus each pair of objects has
an Euclidean distance d;;. The mapping is chosen such as to
minimize the stress function:



Stress-1 = 01 = \/E[f(pij) — d;j(X)]? )

ndZ,(X)

Our objective here is to minimize St ress—1 in order to
obtain an ideal spatial configuration X which would accu-
rately represent the proximity as closely as possible. Algo-
rithms such as SMACOF has been developed to minimize
the function above and map the objects into the correspond-
ing points. The interested reader may want to consult (Borg
and Groenen 2005) for more information.

We also want to note that there has been effort in visualize
results of MDS, including those of GGvis/GGobi (Buja et al.
2008), and the work by Chen et. al. (Chen, Hrdle, and Unwin
2008)

Our approach: MDS Clique

As mentioned, our goal is to make the visualization more re-
liable/representative. We accept the fact that MDS cannot
perfectly match the objects into the Euclidean space per-
fectly (with no stress). However, we assume there is a level
of tolerance, k, such that the algorithm will accept a map-
ping such that for any pair of objects ¢ and j, the difference
d;; and p;; must be < k.

To achieve this, we start out by running MDS to map all
the objects into a Eucliedan space. After that we construct a
graph M such that every object is a vertex, and an edge ex-
ists between a pair of vertices if the difference ind;; and p;;
between them is less than some constant k. Then we run a
maximal clique algorithm on M. This clique found from the
algorithm corresponds to the set of points that satisfies the
requirement above. Note that we are not simply removing
edges that are far apart from each other in Euclidean space.
Rather, we are removing edges that corresponds to pairs of
objects that the mapped points does not match the original
objects in terms of distance.

After that we take the remaining items to repeat the pro-
cess. Notice that we have to map those points into a new
multi-dimensional space, as the space generated in the last
iteration does not provide a completely faithful representa-
tion of them. We repeat the same process above, until all the
points are in one of the groups. This is summarized as 1

Algorithm 1: MDS Clique Algorithm

Result: Separate cliques given k
1 Let T be the set of all points
2 do
3 Run MDS on 7', generate graph M with edges
representing stress between points
4 Generate graph M’ from graph M by removing
edges with stress > k (k represents a
particular threshold)
Find the maximum clique C'
Record clique C'
Consider all vertices V that is in M but not in C
T := all points corresponding to V'
while 7" is not empty;
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MDS Result
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Figure 1: Single MDS map for the 100 topics on the Reuters-
27158 data set
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Figure 2: MDS-Clique map for the 100 topics on the
Reuters-27158 data set

There are multiple ways of specifying k. If one have
knowledge about distance values, one can set k to be a ratio
between the difference between p;; and d;; and d;; . On the
other hand, one can set k to be the mean of the difference be-
tween p;; and d;;, and if a tighter bound is needed, substract
a number of the standard deviation from it.

We illustrate our algorithm with an example. We applied
LDA on the standard Reuters-21758 data set, generating 100
topics. We then apply MDS to map every topic to a single
space, as well as applying our algorithm. Figure 1 shows the
result of mapping all 100 topics in a single space. Figure
2 shows the 4 cliques that are generated by running our al-
gorithm. In this case we set the threshold to be the (mean
- standard deviation) of the difference between the distance
of each pair of topics and the distance of the corresponding
mapped points.

Most of the data resides on the first 2 cliques. While there
are similarity between the two mappings (e.g. clique-1 is the
exact mapping to the original mapping), there are also some
differences. For instance, figure 3 shows the second clique
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Figure 3: Compare cliques on the Reuters-27158 data set

(right hand side) and the corresponds points in the original
mapping (left hand side). While the general grouping of the
points are similar in both cases, there are some significant
difference in relative location of the points. For example,
topic 48, 9, 89 and 96’s relative position and distance are
quite different between the two mappings.

Experiments
Overview

We test our implementation of MDS-clique to evaluate its
performance. We want to observe how much do our algo-
rithm improve on the mapping. We also want to observe if
the number of cliques generated is reasonable, as well as
how the points are distributed.

Data sets Two types of data sets are used. The first (de-
noted as MATRIX) is defined by generating a random dis-
similarity matrix of objects with a specified number of clus-
ters, each with the same number of elements). Intra-cluster
distance of objects is set to a small value (between 0.01 and
0.1) while the inter-cluster distance set to a large value (be-
tween 1.75 and 2.0).

The second dataset (denoted as 3D) is formed by gener-
ating points in a 3-dimensional space where their dissimi-
larities are measured by the Kullback—Leibler dissimilarity
function (so to ensure the MDS mapping will be different).
We also generate the points such that the lies in separate
(spatial) clusters.

For each type of data we generate 1,067 samples, each
with 100 points. With space limitation, we report the results
only on the MATRIX data as the results of the 3D data shows
similar trends.

Evaluation of results The main criteria for evaluation is
the Kruskal’s stress measure as noted in Equation 1. We
measure the stress of data generated by MDS-clique vs. sin-
gle MDS (control). we are interested in comparing the over-
all mean between the two groups to prove that the test group
has a statistically significant using the t-test (with confidence
level being 95% (o = 0.05) two-tailed) signifying whether a
particular algorithm performs better (or worse) than regular
MDS.

We took two ways to compare the stress. For Overall Con-
tral Stress, measures the global mean of all the stress gath-
ered from all the experiments irrespective of which clique it
originated from. Notice that the MDS-clique generate fewer
pairs of objects for comparison (as objects from different
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I Average | Mean [ oz |
Control Average Stress Per Edge | 2.3364 | £0.1483
Clique Average Stress Per Edge | 0.1313 | +0.0044

Sample Control Stress 6.7546 | £0.8000
Sample Clique Stress 0.9588 | £0.0159
# of Cliques 10.7917 | £0.1097

Table 1: Removing edges by standard deviation for MA-
TRIX

I Average | Mean [ oz |
Control Average Stress Per Edge | 2.5397 | £0.3028
Clique Average Stress Per Edge | 0.0598 | £0.0020

Sample Control Stress 3.8419 | +0.2911
Sample Clique Stress 0.2596 | 4+0.0058
# of Cliques 15.2396 | £0.1050

Table 2: Removing edges by distance measure, N = 100,
C=3k=0.1

clique are not compared) and thus have a big advantage if
we take the overall value. So we average out the stress on a
per edge basis for fair comparison.

The Sample Control Stress first takes the average of the
stress in each clique of the MDS-clique and then reports the
mean of all the concatenated means together along with the
margin of error. In this case we only compares the stress
values between the pairs in each clique with only their re-
spective pairs in the control group for an apples-to-apples
comparison.

Other metrics we report are the number of cliques on
average each sample generates by MDS-Clique. Generally
speaking, these smaller the number of cliques (while keep-
ing the overall stress low), the better for an ever better user
experience. Ideally, we would have only one plane with a
stress of 0 which is the objective of MDS itself.

Experiment: MDS Clique

We first look at the stress value of the data generated by
MDS-clique. We looked at the results for both ways of set-
ting k (mean/standard deviation vs. constant). .

In both cases we see a significant decrease in stress, both
on a per edge basis and a per clique basis. The result also
suggest that there are significant discrepancies of the dis-
tances and dissimilarity in the basic MDS (that MDS-clique
is able to exploit). As for the two methods, the distance mea-
sure method provides the better performance, but come as a
price of splitting the data into more cliques.

Object distribution among cliques Most of the points
generated by both the distance measure and the standard de-
viation reveals that most of the points are included in the
initial cliques and gradually tapers off. Figure 4 reveals the
standard deviation measure typically has around 15 points
on average in its first clique and has a steeper drop-off than
the distance measure which is more evenly spread out.

A couple of interesting observations emerge from these
numbers; the first clique (which corresponds to the origi-
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Figure 4: Average number of points per clique generated
from 384 samples with Standard Dev. £ =  — s and Dis-
tance k£ = 0.25

nal MDS) has roughly 15% of the points. This re-emphasize
the fact the there are quite a bit of discrepancies of the dis-
tances between the MDS result with the original dissimilar-
ity. On the other hand, at least via the mean/standard devia-
tion method, most of the points are captured in the first few
cliques. For instance, by clique 6 roughly 80% of the points
are captured. So the user does not have to look at a large
number of cliques to get the full view of the data.

Conclusion and Future Work

Overall, MDS-Clique offers us a viable alternative to display
high-dimensional data easily in a human-readable format.
The primary objective of MDS-Clique is to overcome the
limitation of MDS where not all the points projected onto a
single medium necessarily has a faithful representation. Not
all projections are created equal in this case, so taking a mul-
tifaceted approach where each clique represents a faithful
representation has been proven by the Kruskal stress value
as shown in the experiments above.

Visually optimizing the spatial configuration of the var-
ious cliques which are represented as planes can offer an
ideal representation of the separated data to the end user.
Previous work have focused on a multifaceted view where
the internal and external relations are characterized by the
similarity of the data according to their pre-assigned cluster
group label. In this case, the relations are characterized by
the stress formula and further work can be done in order to
present a better view to the end user by arranging the clique
in a visual space in an optimal manner that reduces the over-
all stress among the cliques.
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