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Abstract 
How the Army conducts rifle marksmanship training is 
undergoing a number of positive changes. Despite this, challenges 
to conducting and coordinating this critical training remain. One 
challenge to assessing training effectiveness is a lack of persistent 
records of soldier performance; too often soldier data are purged 
shortly after training events for convenience and in order to 
ensure privacy. This paper reports on our efforts to research the 
feasibility of collecting, analyzing, and storing data from multiple 
training systems, in order to accelerate and improve 
marksmanship training. We do this through the use of cognitive, 
psychomotor, and affective constructs; and the use of predictive 
modeling techniques in order to forecast marksmanship 
qualification scores. These models successfully predicted scores 
on a 40-point scale with a root mean square error (RMSE) of less 
than three, using models that are robust to changing input 
variables. Future improvements and directions for this research 
are also discussed. 

 Introduction   
The Army’s success relies on the ability to effectively 
apply innovative training solutions that result in adaptable 
and ready soldiers.  To meet this goal, the Army has 
invested in training technology to provide effective 
training while maximizing budget and schedule 
efficiencies.  However, the effectiveness of these training 
platforms is rarely assessed, and too often soldier data are 
purged shortly after training events, for convenience and in 
order to ensure privacy.  Providing improved access to 
soldier data has potential benefits for multiple audiences 
involved in the training process. Instructors can utilize a 
deeper understanding of their learners’ performance to 
improve personalization of training and 
feedback.  Developers and researchers could use these data 
to evaluate the effectiveness of training programs and 
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investigate best practices in training delivery through 
experimentation.  Resource managers could more 
effectively coordinate the manpower and matériel required 
to conduct training events and track schedules and budgets.  
 Thus, the goal of this project was to identify the human 
performance marksmanship measures and metrics relevant 
to training technologies, and to develop a predictive model 
of marksmanship performance to serve as the basis for 
adapting training.  As rifle marksmanship is a complex 
skill comprised of cognitive, psychomotor, and affective 
components (Chung et al. 2006), these collected data can 
be categorized as one of these three types; although 
demographic data are also included.  Cognitive attribute 
data can include measures of general cognitive ability, 
such as with the Armed Forces Qualification Test (AFQT); 
or domain knowledge measures that are specific to 
marksmanship and useful as a metric of learning (Maier 
1993).  Psychomotor data include results from eye 
dominance tests (James and Dyer 2011), and 
handedness.  When considered separately neither eye 
dominance nor handedness show trends in marksmanship 
performance; however, a meta-analysis from the literature 
suggests approximately one-third of the population is 
cross-dominant, meaning the dominant hand (left vs. right) 
is different than the dominant eye (McManus et al. 1999), 
and this has implications for marksmanship training.  For 
affective data a survey was developed during the early 
stages of this project, including questions about attitudes 
and feelings, in order to create constructs of general 
affective states such as resiliency, self-efficacy, initiative, 
and perceived stress, based on previous work in the 
literature (Aude et al. 2014; Bandura 2006; Cohen, 
Kamarck, and Mermelstein 1983; Duckworth, Peterson, 
and Matthews 2007; Frese et al. 1996). 
 As a demonstration of the usefulness of this data, and in 
preparation for future work in creating adaptive and 
personalized marksmanship training systems, we created a 
predictive model of soldier performance on the standard 
marksmanship qualification exam and compared the model 
outputs to actual exam performance.  
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 Background 
By conducting surveys and interviewing subject matter 
experts (SMEs) during our User Needs Analysis we 
determined a wide range of either available or attainable 
data on soldier abilities, experiences, attitudes, and other 
individual measures.  The analysis was conducted from 
September 28, 2015 to October 2, 2015 at Fort Benning, 
GA.  Interviews and focus groups were conducted with 
SMEs from groups involved in Army marksmanship 
training who might benefit from improved access to soldier 
performance data.  These included: Research psychologists 
from the U.S. Army Research Institute (ARI), Engagement 
Skills Trainer (EST) proponent instructors, 194th Armor 
Brigade (AR BDE) instructors, Marksmanship Master 
Trainer Course (MMTC) trainers, Training and task 
developers from the Maneuver Center of Excellence 
(MCoE) Department of Training Development (DOTD), 
Simulation center managers, Range control operations 
personnel, Ammunition resource managers, and Drill 
Sergeants. 
 Our research team identified, through literature review 
and user needs analysis, measures of the knowledge, skills, 
and abilities (KSAs) relevant to successful marksmanship 
performance.  A prototype battery of measures of these 
KSAs was developed, with an eye for easy implementation 
due to the already overburdened schedule during training 
(which necessarily covers much more than marksmanship 
training).  These measures can be used to not only tailor 
the individual soldier’s training, but also to address the 
needs of instructors, researchers, and resource 
managers.  For example, instructors and training 
developers in Army schoolhouses could use the data to 
track student performance, evaluate their instructors, and 
compare courses over time.  Personnel involved in 
simulator maintenance could leverage the data to ensure 
equipment consistency.  Acquisitions personnel could use 
it to calculate return on investment, throughput, and other 
metrics of program success.  Finally, research personnel 
could benefit from having the data available to them for 
experimentation. 
 Another potential means of maximizing training 
effectiveness is the implementation of adaptive training 
technologies.  To investigate the extent to which intelligent 
tutoring can be developed in a highly authorable way, 
Army Research Lab (ARL) is developing GIFT 
(Generalized Intelligent Framework for Tutoring), a 
modular framework that is designed to increase authoring 
efficiency (Sottliare et al. 2012).  Successful adaptation of 
instructional material and formative feedback depends 
upon a robust student model of performance.  Therefore, 
the first step towards this goal is the development of 
predictive models based on the cognitive, psychomotor, 
and affective data for each learner.  Such a predictive 
model will allow us to identify the most important 
attributes for marksmanship skill, and will lead to 

improved methods of integrated training and more efficient 
instruction and feedback, as well as lay the groundwork for 
automated training systems that do more of the basic data 
collection, progress monitoring, and fundamental analyses, 
leaving more time for meaningful one-on-one interactions 
with the expert trainers. 

 Methodology 
The input data are attributes in four general categories: 
demographic, cognitive, psychomotor, and 
affective.  These include survey results, simulation training 
data, self-reported qualification and fitness test results: 
more than 60 data fields in all.  Each trainee also has up to 
five qualification scores.  The highest of these are used to 
calibrate and validate the models, as only one score is 
needed to pass qualification, and the highest is used also 
for soldier ranking.  In summary, there are 84 subjects with 
qualification scores that can range from 0-40, with most 
scores falling between 20 and 40).  Out of this cohort there 
were (based on the highest qualification score) 10 Experts, 
47 Sharpshooters, 26 Marksmen, and 1 UQ (unqualified). 
 In order to test the measurements identified and 
developed, a team of researchers were onsite for one week 
with four platoons of recently commissioned 
officers.  Each platoon cycled through various training 
exercises that included some data collection events.  These 
observations were critical for better understanding the 
methods and training protocols being used in 
marksmanship drills and exercises.  Data assessing hand-
eye coordination through an application on tablets was 
conducted.  Data related to the simulators was collected 
during the course of regular instruction.  Soldiers 
completed a new exercise that included F/N Expert, a tool 
that allows both dry-fire and live-fire training and provide 
immediate feedback to both the shooter and coach, 
including details about rifle movement and location of hit 
and miss.  We also collected data from the range during the 
live-fire practice rounds.  Finally, soldiers completed their 
live-fire marksmanship qualification exam while observers 
were on site. 

 Results 
We used a regression model known as LASSO: Least 
Absolute Shrinkage and Selection Operator. LASSO is a 
regression analysis method that uses both variable 
selection and regularization. In short, LASSO is designed 
to minimize the number of contributing attributes while 
avoiding the problem of overfitting to the extant data. 
Detailing the exact workings of LASSO is outside of the 
scope of this report; however, it should be noted that the 
regression analysis is done through an iterative process 
using randomly assigned subsets of data and coefficient 
values – about 100,000 simulations at each step – in order 
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to determine the best fit coefficients, as well as to reduce to 
zero coefficients for some variables, effectively removing 
them from the model. The effect of this methodology is 
that, for any particular run of the LASSO regression 
technique, the resultant model will have some slight 
variability from subsequent runs; and variables that are 
close to the same value, in terms of their contribution to the 
models, may change slightly in rank order from one 
regression output to the next. (If the regression technique 
instead produced the exact same output each time it was 
computed, this would actually be a sign of overfitting to 
the data.) 

These results can be refined in various ways, depending 
on the requirements of how the model will be used. For 
example, it may be more important to identify all potential 
expert shooters, even though this would err on the side of 
also including some who will not score so high; 
conversely, it may be more important to correctly identify 
these expert shooters, even though doing so will inevitably 
overlook some who are borderline-rated but score very 
high. 

 
Figure 1. Iterations of the LASSO regression algorithm; from left 

to right the number of attributes is reduced (x-axis), with the 
predicted score shown on the y-axis. 

Another way that the score could be calibrated differently, 
based on the end-user needs, would be to consider edge 
cases (very high or very low scores) as being more 
important than currently. The LASSO algorithm is 
conservative, meaning it tries to minimize the predicted 
error in such a way that disproportionately affects outliers 
in the data. This is because outliers, by definition, lie on 
the edges of the potential range of data and have many 
fewer data points. Thus, any algorithm that attempts to 
minimize error for the majority of data points will tend to 
overlook outliers, a process which – mathematically – will 
penalize the model the least. Thus, if edge case accuracy is 
determined to be more important, then the LASSO 
regression can be re-run using an adjusted error 
calculation, and thus giving more import to edge case 
situations. This will have the effect of improving edge case 
predictions (though at the cost of some accuracy in 
differentiating between other, more common 

classifications). It should be noted here that improving 
predictions for UQ scores is difficult, as there is only one 
UQ score in this dataset (out of n=84 cases). More data of 
the relevant scores is the best way to improve predictions 
for those scores. 
 
MAIN Model (n=84) ALT Model (n=84) 
(Intercept) 30.7976 (Intercept) 30.7976 
APFT.Score 0.2458 APFT.Score 0.3681 
Rifle -0.0087 Law.Enforcement 0.0435 
Law.Enforcement 0.0049 Individual.Sports 0.2879 
Individual.Sports 0.2546 Large.Animal.Hunting 0.5786 
Large.Animal.Hunting 0.4819 Mechanical.Work 0.1784 
Mechanical.Work 0.2917 Initiative -0.9614 
Initiative -0.8188 SelfEfficacyBehaviorT

otal 
0.6166 

SelfEfficacyBehaviorT
otal 

0.2402 PerceivedStress 0.4108 

PerceivedStress 0.1635 Conscientiousness -0.1285
Conscientiousness -0.1539 LocusOfControl -0.5392 
LocusOfControl -0.6453 Knowledge 0.5101 
Knowledge 0.0736 ESTPS 0.0679 
Practice 1.6760 MOT.Mean.Latency -0.0222 
RTI.Five.choice.accura
cy.score 

0.2940 RTI.Five.choice.accur
acy.score 

0.1946 

RTI.Mean.five.choice.
movement.time 

-0.0839 RTI.Mean.five.choice.
movement.time 

-0.2213 

RTI.Simple.error.score
..inaccurate. 

0.0338 RTI.Simple.error.score
..inaccurate. 

0.0540 

RTI.Mean.simple.react
ion.time 

-0.3945 RTI.Mean.simple.react
ion.time 

-0.0654 

EducationMastePhD -0.2530 EducationMastePhD -0.3625 

Table 1. List of attributes and their relative contributions for the 
MAIN model and the ALT model (for n=84).  

Models 
For the n=84 case we created two distinct models based on 
the LASSO regression analysis: one that included the 
practice scores and one that did not. (It was determined 
that “practice” might be too good at predicting final scores, 
as this data was recorded in the same way as the live-fire 
qualification test, and immediately preceding. Therefore an 
ALT model with practice data removed was created.) 
 The RMSE (Root Mean Squared Error) for the main 
model is 2.45, and for the alt model it is 2.88, meaning the 
average error for the predicted qualification score for each 
solider is 2.45 (or 2.88). 
 The above tables show the 20 attributes used in the main 
model, and the alt model, as well as the coefficient values 
for each. Each of the coefficients has been standardized 
using each attribute’s mean and standard deviation, for 
easy comparison and ranking. Attributes that are negatively 
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correlated with the final score have a negative coefficient 
value. 

Discussion and Future Work 
The two models created here are general and do not take 
into account end-user refinements, as discussed in previous 
sections; nor do they take into account the cost – in time, 
money, difficulty, level of completeness, or privacy 
concerns – for collecting each of the attributes from the 
trainees.  However, it is possible to repeat this analysis so 
that both the attributes relative contribution to the model as 
well as the cost of collecting that attribute are taken into 
account, instead of just the relative contribution 
alone.  Thus, while the performance of the model may be 
reduced by a modest amount over the “pure,” value-only 
analysis, the usefulness of the end result could be 
substantially enhanced simply by using a value-over-cost 
ratio (instead of value-only) on all applicable attribute data. 
 One way to include attribute cost would be to debrief 
data collection experts, and there are a number of ways to 
do this.  Open-ended discussion might allow for both the 
classification of each attribute into rough classification 
“bins,” as well as inviting these experts to suggest 
additional data streams that might prove useful, and can be 
tested.  Another method would be to simply have the 
experts rank each collected attribute by difficulty level, in 
whatever way the experts would define “difficulty.”  A 
third way would be to assign a number to each attribute, if 
the eventual ranking represents a non-uniform distribution 
(i.e., interval, instead of ordinal, data).  Regardless, further 
analysis that take attribute cost into account can not only 
be more useful from an operational standpoint, but also 
allows for easy recalibration as new data collection 
methods are developed, and provides a context for 
targeting innovation on attributes that are valuable to the 
model, but expensive (currently) to collect. 
 Another important consideration is that these models 
were built using a population of marksmanship trainees 
who have already been selected as officer candidates, and 
therefore these data might not have the range of useful 
analysis that a fuller dataset would have, one that includes 
many types of soldiers.  For example, of these officer 
candidates only one did not produce a minimum qualifying 
score.  And so the model for very-low-scoring trainees is 
not robust against the adverse effects of having too little 
data.  In short, we can't predict classifications that have 
only a limited number of examples for our algorithms. 
 Further, more data – even in the cases for which we do 
have plenty of examples – can often enhance the analysis 
by allowing us to interrogate the data in a wider variety of 
ways.  If we have the ability to ask more questions of the 
data, then we can provide more refined and granular 
analysis of attribute contributions towards the model 
outputs. 
 Finally, how the model and its outputs can be used, both 
during the training and the pre-training processes, is also 

important for shaping future model refinements and 
research directions.  It may be that we can provide more 
value by suggesting insertion points for these model 
outputs, as well as developing an array of model types 
based on hypothetical uses.  For example, a model that 
predicts performance based on training data collected right 
before the live-fire certification process will use a different 
set of attribute weights than a model designed to make 
predictions before training has even commenced.  Also, 
future models might be built directly based on practice data 
that takes into account shot X-Y coordinates, in order to 
produce predictions of failure types and provide formative 
feedback, both to the trainers and the trainees.  Certain 
patterns that manifest in a trainee's specific shot-by-shot 
performance might suggest incorrect posture or weapon 
handling, or might instead display the characteristics of 
eye-dominance misidentification.  Regardless, it is likely 
that X-Y coordinate analysis of the shot pattern can reveal 
additional information that is not accessible by the 
calculated score alone. 
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