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Abstract

A reliable modeling of uncertain evidence in Bayesian net-
works based on a set-valued quantification is proposed. Both
soft and virtual evidences are considered. We show that evi-
dence propagation in this setup can be reduced to standard up-
dating in an augmented credal network, equivalent to a set of
consistent Bayesian networks. A characterization of the com-
putational complexity for this task is derived together with an
efficient exact procedure for a subclass of instances. In the
case of multiple uncertain evidences over the same variable,
the proposed procedure can provide a set-valued version of
the geometric approach to opinion pooling.

Introduction

Knowledge-based systems are used in AI to model relations
among the variables of interest for a particular task, and
provide automatic decision support by inference algorithms.
This can be achieved by joint probability mass functions.
When a subset of variables is observed, belief updating is
a typical inference task that propagates such (fully reliable)
evidence. Whenever the observational process is unable to
clearly report a single state for the observed variable, we
refer to uncertain evidence. This might take the form of a
virtual instance, described by the relative likelihoods for the
possible observation of every state of a considered variable
(Pearl 1988). Also, soft evidence (Valtorta, Kim, and Vomlel
2002) denotes any observational process returning a prob-
abilistic assessment, whose propagation induces a revision
of the original model (Jeffrey 1965). Bayesian networks are
often used to specify joint probability mass functions im-
plementing knowledge-based systems (Koller and Friedman
2009). Full, or hard (Valtorta, Kim, and Vomlel 2002), ob-
servation of a node corresponds to its instantiation in the net-
work, followed by belief updating. Given virtual evidence on
some variable, the observational process can be modeled à
la Pearl in Bayesian networks: an auxiliary binary child of
the variable is introduced, whose conditional mass functions
are proportional to the likelihoods (Pearl 1988). Instantia-
tion of the auxiliary node yields propagation of virtual evi-
dence, and standard inference algorithms for Bayesian net-
works can be used (Koller and Friedman 2009). Something
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similar can be done with soft evidence, but the quantifica-
tion of the auxiliary node should be based on additional in-
ferences in the original network (Chan and Darwiche 2005).

In the above classical setup, sharp probabilistic estimates
are assumed for the parameters modeling an uncertain obser-
vation. We propose instead a generalized set-valued quan-
tification, with interval-valued likelihoods for virtual evi-
dence and sets of marginal mass functions for soft evidence.
This offers a more robust modeling of observational pro-
cesses leading to uncertain evidence. To this purpose, we
extend the transformations defined for the standard case to
the set-valued case. The original Bayesian network is con-
verted into a credal network (Cozman 2000), equivalent to
a set of Bayesian networks consistent with the set-valued
specification. We characterize the computational complex-
ity of the credal modeling of uncertain evidence in Bayesian
networks, and propose an efficient inference scheme for a
special class of instances. The discussion is indeed special-
ized to opinion pooling and our techniques used to general-
ize geometric functionals to support set-valued opinions.

Related Work

Model revision based on uncertain evidence is a classical
topic in AI. Entropy-based techniques for the absorption
of uncertain evidence were proposed in the Bayesian net-
works literature (Valtorta, Kim, and Vomlel 2002; Peng,
Zhang, and Pan 2010), as well as for the pooling of con-
vex sets of probability mass functions (Adamčı́k 2014). Yet,
this approach was proved to fail standard postulates for revi-
sion operators in generalized settings (Grove and Halpern
1997). Uncertain evidence absorption has been also con-
sidered in the framework of generalized knowledge repre-
sentation and reasoning (Dubois 2008). The discussion was
specialized to evidence theory (Zhou, Wang, and Qin 2014;
Ma et al. 2011), although revision based on uncertain in-
stances with graphical models becomes more problematic
and does not give a direct extension of the Bayesian net-
works formalism (Simon, Weber, and Levrat 2007). Finally,
credal networks have been considered in the model revision
framework (da Rocha, Guimaraes, and de Campos 2008).
Yet, these authors consider the effect of a sharp quantifica-
tion of the observation in a previously specified credal net-
work, while we consider the opposite situation of a Bayesian
network for which credal uncertain evidence is provided.
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Background

Bayesian and Credal Networks

Let X be any discrete variable. Notation x and ΩX is used,
respectively, for a generic value and for the finite set of pos-
sible values of X . If X is binary, we set ΩX := {x,¬x}.
We denote as P (X) a probability mass function (PMF) and
as K(X) a credal set (CS), defined as a set of PMFs over
ΩX . We remove inner points from CSs, i.e. those which can
be obtained as convex combinations of other points, and as-
sume the CS finite after this operation. CS K0(X), whose
convex hull includes all PMFs over ΩX is called vacuous.

Given another variable Y , define a collection of con-
ditional PMFs as P (X|Y ) := {P (X|y)}y∈ΩY

. P (X|Y )
is called conditional probability table (CPT). Similarly,
a credal CPT (CCPT) is defined as K(X|Y ) :=
{K(X|y)}y∈ΩY

. An extensive CPT (ECPT) is a finite col-
lection of CPTs. A CCPT can be converted into an equiv-
alent ECPT by considering all the possible combinations
from the elements of the CSs.

Given a joint variable X := {X0, X1, . . . , Xn}, a
Bayesian network (BN) (Pearl 1988) serves as a compact
way to specify a PMF over X . A BN is represented by
a directed acyclic graph G, whose nodes are in one-to-one
correspondence with the variables in X , and a collection of
CPTs {P (Xi|Πi)}ni=0, where Πi is the joint variable of the
parents of Xi according to G. Under the Markov condition,
i.e. each variable is conditionally independent of its non-
descendants non-parents given its parents, the joint PMF
P (X) factorizes as P (x) :=

∏n
i=0 P (xi|πi), where the

values of xi and πi are those consistent with x, for each
x ∈ ΩX = ×n

i=0ΩXi
.

A credal network (CN) (Cozman 2000) is a BN whose
CPTs are replaced by CCPTs (or ECPTs). A CN specifies a
joint CS K(X), obtained by considering all the joint PMFs
induced by the BNs with CPTs in the corresponding CCPTs
(or ECPTs).

The typical inference task in BNs is updating, defined as
the computation of the posterior probabilities for a variable
of interest given hard evidence about some other variables.
Without loss of generality, let the variable of interest and the
observation be, respectively, X0 and Xn = xn. Standard
belief updating corresponds to:

P (x0|xn) =

∑
x1,...,xn−1

∏n
i=0 P (xi|πi)∑

x0,x1,...,xn−1

∏n
i=0 P (xi|πi)

. (1)

Updating is NP-hard in general BNs (Cooper 1990), al-
though efficient computations can be performed in polytrees
(Pearl 1988) by message propagation routines (Koller and
Friedman 2009).

CN updating is similarly intended as the computation of
lower and upper bounds of the updated probability in Eq. (1)
with respect to K(X). Notation P (x0|xn) (P (x0|xn)) is
used to denote lower (upper) bounds. CN updating extends
BN updating and it is therefore NP-hard (de Campos and
Cozman 2005). Contrary to the standard setting, inference
in generic polytrees is still NP-hard (Mauá et al. 2014), with
the notable exception of those networks whose variables are
all binary (Fagiuoli and Zaffalon 1998).

Virtual and Soft Evidence

Eq. (1) gives the updated beliefs about queried variable X0.
The underlying assumption is that Xn has been the subject
of a fully reliable observational process, and its actual value
is known to be xn. This is not always realistic. Evidence
might result from a process which is unreliable and only the
likelihoods for the possible values of the observed variable
may be assessed (e.g., the precision and the false discov-
ery rate for a positive medical test). Virtual evidence (VE)
(Pearl 1988) applies to such type of observation. Notation
λXn

:= {λxn
}xn∈ΩXn

identifies a VE, λxn
being the like-

lihood of the observation provided (Xn = xn). Given VE,
the analogous of Eq. (1) is:

PλXn
(x0) :=

∑
xn

λxn
P (x0, xn)∑

xn
λxnP (xn)

, (2)

where the probabilities in the right-hand side are obtained
by marginalization of the joint PMF of the BN. Eq. (2) can
be equivalently obtained by augmenting the BN with aux-
iliary binary node DXn

as a child of Xn. By specifying
P (dXn

|xn) := λxn
for each xn ∈ ΩXn

, it is easy to check
that P (x0|dXn

) = PλXn
(x0), i.e. Eq. (2) can be reduced to

a standard updating in an augmented BN.
The notion of soft evidence (SE) refers to a different situ-

ation, in which the observational process returns an elicita-
tion P ′(Xn) for the marginal PMF of Xn. See (Ben Mrad
et al. 2015) for a detailed discussion on the possible situa-
tions producing SE. If this is the case, P ′(Xn) is assumed to
replace the original beliefs about Xn by Jeffrey’s updating
(Jeffrey 1965), i.e.

P ′
Xn

(x0) :=
∑
xn

P (x0|xn) · P ′(xn) . (3)

Eq. (3) for SE reduces to Eq. (1) whenever P ′(Xn) as-
signs all the probability mass to a single value in ΩXn

. The
same happens for VE in Eq. (2), when all the likelihoods are
zero apart from the one corresponding to the observed value.
Although SE and VE refer to epistemologically different in-
formational settings, the following result provides means for
a unified approach to their modeling.
Proposition 1 ((Chan and Darwiche 2005)). Absorption of
a SE P ′(Xn) as in Eq. (3) is equivalent to Eq. (2) with a VE
specified as:

λxn
∝ P ′(xn)

P (xn)
, (4)

for each xn ∈ ΩXn
.1

Vice versa, absorption of a VE λXn
as in Eq. (2) is equiv-

alent to Eq. (3) with a SE specified as:

P ′(xn) :=
λxn

P (xn)∑
xn

λxnP (xn)
, (5)

for each xn ∈ ΩXn
.

1VE is defined as a collection of likelihoods, which in turn are
defined up to a multiplicative positive constant. This clearly fol-
lows from Eq. (2). The relation in Eq. (4) is proportionality and not
equality just to make all the likelihoods smaller or equal than one.
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In the above setup for SE, states that are impossible in the
original BN cannot be revised, i.e. if P (xn) = 0 for some
xn ∈ ΩXn

, then also P ′(xn) = 0 and any value can be set
for λxn

. Vice versa, according to Eq. (5), a zero likelihood in
a VE renders impossible the corresponding state of the SE.
Thus, at least a non-zero likelihood should be specified in a
VE. All these issues are shown in the following example.

Example 1. Let X denote the actual color of a traffic light
with ΩX := {g, y, r}. Assume g (green) more probable
than r (red), and y (yellow) impossible. Thus, for instance,
P (X) = [4/5, 0, 1/5]. We eventually revise P (X) by a SE
P ′(X), which keeps yellow impossible and assigns the same
probability to the two other states, i.e. P ′(X) = [1/2, 0, 1/2].
Because of Eq. (4), this can be equivalently achieved by a VE
λX ∝ {1, 1, 4}. Vice versa, because of Eq. (5), a VE λ̃X ∝
{1, 1, 5} induces an updated Pλ̃(X) = [4/9, 0, 5/9]. Such
PMF coincides with P (X|dX) in a two-node BN, with DX

child of X , CPT P (DX |X) with P (dX |X) = [1/10, 1/10, 1/2]
and marginal PMF P (X) as in the original specification.

Credal Uncertain Evidence

Credal Virtual Evidence

We propose credal VE (CVE) as a robust extension of sharp
virtual observations. Notation ΛXn

is used here for the in-
tervals {λxn

, λxn
}xn∈ΩXn

. CVE updating is defined as the
computation of the bounds of Eq. (2) with respect to all
VEs λXn

consistent with the interval constraints in ΛXn
.

Notation PΛXn
(x0) and PΛXn

(x0) is used to denote these
bounds. CVE absorption in BNs is done as follows.

Transformation 1. Given a BN over X and a CVE ΛXn
,

add a binary child DXn
of Xn and quantify its CCPT

K(DXn |Xn) with constraints λxn
≤ P (dXn |xn) ≤ λxn .2

A CN with a single credal node results.

By Tr. 1, CVE updating in a BN is reduced to CN updat-
ing.3

Theorem 1. Given a CVE in a BN, consider the CN returned
by Tr. 1. Then:

P (x0|dXn
) = PΛXn

(x0) , (6)

and analogously for the upper bounds.

Standard VE can be used to model partially reliable sen-
sors or tests, whose quantification is based on sensitiv-
ity and specificity data. Since these data are not always
promptly/easily available (e.g., a pregnancy test whose fail-
ure can be only decided later), a CVE with interval likeli-
hoods can be quantified by the imprecise Dirichlet model4
(Bernard 2005) as in the following example.

2For binary B, constraint l ≤ P (b) ≤ u defines a CS K(B)
with elements P1(B) := [l, 1− l] and P2(B) := [u, 1− u].

3See https://arxiv.org/abs/1802.05639 for the proofs of the the-
orems.

4Given N observations of X , if n(x) of them reports x, the
lower bound of P (x) for to the imprecise Dirichlet model is n(x)

N+s
,

and the upper bound n(x)+s
N+s

, with s effective prior sample size.

Example 2. The reference standard for diagnosis of ante-
rior cruciate legament sprains is arthroscopy. In a trial, 40
patients coming in with acute knee pain are examined us-
ing the Declan test (Cleland 2005). Every patient also has
an arthroscopy procedure for a definitive diagnosis. Results
are TP=17 (Declan positive, arthroscopy positive), FP=3
(Declan positive, arthroscopy negative), FN=6 (Declan neg-
ative, arthroscopy positive) and TN=14 (Declan negative,
arthroscopy negative). Patients visiting a clinic have prior
sprain probability P (x) = 0.2. Given a positive Declan, the
imprecise Dirichlet model (see Footnote 4) with s = 1 cor-
responds to CVE λx = 17/23 + 1, λx = 17 + 1/23 + 1, λ¬x =
3/17 + 1, λ¬x = 3 + 1/17 + 1. The bounds of the updated
sprain probability with respect to the above constraints are
PΛX

(x) = 1/3, PΛX
(x) � 0.53. A VE with frequentist esti-

mates would have produced instead PλX
� 0.51.

Credal Soft Evidence

Analogous to CVE, credal soft evidence (CSE) on Xn can
be specified by any CS K ′(Xn). Accordingly, CSE updat-
ing computes the bounds spanned by the updating of all SEs
based on PMFs consistent with the CS, i.e.

P ′
Xn

(x0) := min
P ′(Xn)∈K′(Xn)

∑
xn

P (x0|xn) · P ′(xn) , (7)

and analogously for the upper bound P
′
Xn

(x0).
The shadow of a CS K(X) is a CS K̂(X) obtained from

all the PMFs P̂ (X) such that, for each x ∈ ΩX :

min
P (X)∈K(X)

P (x) ≤ P̂ (x) ≤ max
P (X)∈K(X)

P (x) . (8)

A CS coinciding with its shadow is called shady. It is a trivial
exercise to check that CSs over binary variables are shady. 5

The following result extends Pr. 1 to the imprecise frame-
work.
Theorem 2. Absorption of a CSE with shady K ′(Xn) is
equivalent to that of CVE ΛXn such that:

λxn
∝ P ′(xn)

P (xn)
, (9)

where P ′(xn) := minP ′(Xn)∈K′(Xn) P
′(xn) and analo-

gously for the upper bound. Vice versa absorption of a CVE
ΛXn is equivalent to that of a CSE such that:

P ′(xn) =
P (xn)λxn

P (xn)λxn
+

∑
x′n �=xn

P (x′
n)λx′n

, (10)

and analogously with a swap between lower and upper like-
lihoods for the upper bound.

By Th. 1 and 2, CSE updating in a BN is reduced to
standard updating in a CN. This represents a generalization
to the credal case of Pr. 1. For CSEs with non-shady CSs,
the procedure is slightly more involved, as detailed by the
following result.

5Following (Campos, Huete, and Moral 1994), a shadow is just
the set of probability intervals induced by a generic CS.
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Proposition 2. Given a CSE K ′(Xn) := {P ′
i (Xn)}ki=1

in a BN, add a binary child DXn of Xn quantified by an
ECPT {Pi(DXn

|Xn)}ki=1 such that Pi(dXn
|xn) ∝ P ′i (xn)

P (xn)

for each i = 1, . . . , k and xn ∈ ΩXn
. Then:

P ′
Xn

(x0) = P (x0|dXn
) . (11)

To clarify these results, consider the following example.

Example 3. Consider the same setup as in Ex. 1. Let us
revise the original PMF P (X) by a CSE based on the
shady CS K ′(X) := {P ′

1(X), P ′
2(X)}, with P ′

1(X) :=
[0.6, 0, 0.4] and P ′

2(X) := [0.4, 0, 0.6]. Th. 2 can be used
to convert such CSE in a CVE ΛX := {2-3 : 1 : 8-12}. Vice
versa, the beliefs induced by CVE Λ̃X := {3-5 : 1 : 8-10}
are P Λ̃X

(g) = 3/5, P Λ̃X
(g) = 2/3, P Λ̃X

(y) = P Λ̃X
(y) =

0, and P Λ̃X
(r) = 1/3, P Λ̃X

(r) = 2/5. These bounds may be
equivalently obtained in a two-node CN with DX child of X
and CCPT K(DX |X) such that P (dX |X = g) ∈ [0.6, 1],
P (dX |X = y) = 1, and P (dX |X = r) ∈ [0.8, 1]. Alterna-
tively, following Pr. 2, absorption of K ′(X) can be achieved
by a ECCPT with two CPTs.

We point out that conservative updating (CU), a credal
updating rule for reliable treatment of missing non-MAR
data (De Cooman and Zaffalon 2004), falls as a special case
in our formalism. CU is defined as:

P ′
Xn

(x0) = min
xn∈ΩXn

P (x0|xn) , (12)

and represents the most conservative approach to belief revi-
sion. A vacuous CCPT is specified, with [0, 1] intervals for
each value, either i) by Tr. 1, given CVE whose likelihoods
take any value between zero and one 6, or ii) by straightfor-
ward application of Th. 2, if a vacuous CSE K ′

0(Xn) is pro-
vided. The resulting ECPT with |ΩX | CPTs7 corresponds to
the CU implementation in (Antonucci and Zaffalon 2008).
Also, Eq. (7) reduces to Eq. (12), given vacuous CSE. We
can similarly proceed in the case of incomplete observations,
i.e. some values of Xn are recognized as impossible, but no
information can be provided about the other ones. If this is
the case, we just replace ΩXn with Ω′

Xn
⊂ ΩXn .

Credal Probability Kinematics

Given two joint PMFs P (X) and P ′(X), we say that the
latter comes from the first by probability kinematics (PK)
on the (coarse) partition of ΩX induced by Xn if and only
if P ′(x|xn) = P (x|xn) for each x ∈ ΩX and xn ∈ ΩXn

(Diaconis and Zabell 1982; Chan and Darwiche 2005).8 This
is the underlying assumption in Eq. (3). If P ′(X) is replaced
by a CS, PK is generalized as follows.

6As VE likelihoods are defined up to a positive multiplicative
constant, we can set any positive λxn provided that λxn

= 0.
7The induced ECPT contains all 2|ΩXn | combinations of zero

and ones in the CPTs. Yet, only those having a single one in the
row associated to dXn remains after the convex hull.

8Full consistency of P ′ with the evidence inducing the revision
process is not explicitly required. A more stringent characterization
of PK was proposed, among others, by (Wagner 2002)

Definition 1. Let P (X) and K ′(X) be, respectively, a joint
PMF and a joint CS. We say that K ′(X) comes from P (X)
by credal probability kinematics (CPK) on the partition of
ΩX induced by Xn if and only if it holds P ′(x|xn) =

P
′
(x|xn) = P (x|xn), for each x ∈ ΩX and xn ∈ ΩXn

.
That is, any revision process based on (generalized) PK

guarantees invariance of the relevance of xn, for each xn ∈
ΩXn

, to any other possible event in the model, say x0. The
following consistency result holds for CSEs.
Theorem 3. Given a BN over X and a shady CSE K ′(Xn),
convert the CSE into a CVE as in Th. 2 and transform
the BN into a CN by Tr. 1. Let K ′(X, DXn) be the joint
CS associated to the CN. Then, K ′(X|dXn) comes from
P (X) by CPK on the partition induced by Xn. Moreover
K ′(Xn|dXn) coincides with the marginal CS in the CN.

Multiple Evidences

So far, we only considered the updating of a single CVE
or CSE. We call uncertain credal updating (UCU) of a BN
the general task of computing updated/revised beliefs in a
BN with an arbitrary number of CSEs, CVEs, and hard evi-
dences as well. Here, UCU is intended as iterated application
of the procedures outlined above. See for instance (Dubois
2008), for a categorization of iterated belief revision prob-
lems and their assumptions. When coping with multiple VEs
in a BN, it is sufficient to add the necessary auxiliary chil-
dren to the observed variables and quantify the CPTs as de-
scribed. We similarly proceed with multiple CVEs.

The procedure becomes less straightforward when coping
with multiple SEs or CSEs, since quantification of each aux-
iliary child by Eq. (4) requires a preliminary inference step.
As a consequence, iterated revision might be not invariant
with respect to the revision process scheme (Wagner 2002).

Additionally, with CSEs, absorption of the first CSE
transforms the BN into a CN, and successive absorption of
other CSEs requires further extension of the procedure in
Th. 2. We leave such an extension as future work, and here
we just consider simultaneous absorption of all evidences. If
this is the case, multiple CSEs can be converted in CVEs and
the inferences required for the quantification of the auxiliary
children is performed in the original BN.

Algorithmic and Complexity Issues

ApproxLP (Antonucci et al. 2014) is an algorithm for general
CN updating based on linear programming. It provides an
inner approximation of the updated intervals with the same
complexity of a BN inference on the same graph. Roughly,
CN updating is reduced by ApproxLP to a sequence of lin-
ear programming tasks. Each is obtained by iteratively fixing
all the local models to single elements of the corresponding
CSs, while leaving a free single variable. It follows the algo-
rithm efficiently produces exact inferences whenever a CN
has all local CSs made of a single element apart from one.
This is the case of belief updating with a single CVE/CSE.

Complexity Issues

Since standard BN updating of polytrees can be performed
efficiently, the same happens with VEs and/or SEs, as Tr. 1
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does not affect the topology (nor the treewidth) of the origi-
nal network. Similarly, with multiply connected models, BN
updating is exponential in the treewidth, and the same hap-
pens with models augmented by VEs and/or SEs.

As already noticed, with CNs, binary polytrees can be up-
dated efficiently, while updating ternary polytrees is already
NP-hard. An important question is therefore whether or not
a similar situation holds for UCU in BNs. The (positive) an-
swer is provided by the two following results.

Proposition 3. UCU of polytree-shaped binary BNs can be
solved in polynomial time.

The proof of this proposition is trivial and simply follows
from the fact that the auxiliary nodes required to model CVE
and/or CSE are binary (remember that CSs over binary vari-
ables are always shady). The CN solving the UCU is there-
fore a binary polytree that can be updated by the exact algo-
rithm proposed in (Fagiuoli and Zaffalon 1998).

Theorem 4. UCU of non-binary polytree-shaped BNs is
NP-hard.

The proof of this theorem is based on a reduction to the
analogous result for CNs (Mauá et al. 2014). This already
concerns models whose variables have no more than three
states and treewidth equal to two. In these cases, approxi-
mate inferences can be efficiently computed by ApproxLP.

Credal Opinion Pooling

Consider the generalized case of m ≥ 1 overlapping prob-
abilistic instances on Xn. For each j = 1, . . . ,m, let
P ′
j(Xn) denote the SE reported by the j-th source. Straight-

forward introduction of m auxiliary nodes as outlined above
would suffer confirmational dynamics, analogous to the
well-known issue with posterior probability estimates in the
naive Bayes classifier (Rish 2001). This might likely yield
inconsistent revised beliefs, i.e. P̃ ′(Xn) falls outside the
convex hull of {P ′

j(Xn)}mj=1.
A most conservative approach to prevent such inconsis-

tency adopts the convex hull of all the opinions (Stewart
and Quintana 2017). In our formalism, this is just the CS
K ′(Xn) := {P ′

j(Xn)}mj=1. Yet, consider any small ε > 0,
and assume P ′

1(xn) = ε, P ′
2(xn) = 1 − ε, and P ′

j(xn) =
p ∈ (ε, 1− ε) for each j = 3, . . . ,m. Despite the consensus
of all remaining sources on sharp value p, the conservative
approach above would yield K ′(Xn) � K0(Xn). To what
extent should this be preferred to the confirmational case is
an open question.

A compromise solution might be offered by the geomet-
ric pooling operator (or LogOp) (Bacharach 1975). Given a
collection of positive weights {αj}mj=1, with

∑m
j=1 αj = 1,

the LogOp functional produces the PMF P̃ ′(Xn) such that:

P̃ ′(xn) ∝
m∏
j=1

P ′
j(x)

αj , (13)

for each xn ∈ ΩXn
. P̃ ′(Xn) belongs to the convex hull of

{P ′
j(Xn)}mj=1 for any specification of the weights (Adamčı́k

2014). The overlapping SEs associated to the PMF in

Eq. (13) can be equivalently modeled by a collection of m
VEs defined as follows.
Transformation 2. Consider a BN over X and a collection
of SEs on Xn, {P ′

j(Xn)}mj=1. For each j = 1, . . . ,m, aug-

ment the BN with binary child D
(j)
Xn

of Xn whose CPT is

such that P (d
(j)
Xn

|xn) ∝
[
P ′(xn)
P (xn)

]αj

, with
∑m

j=1 αj = 1.

The transformation is used for the following result.
Proposition 4. Consider the same inputs as in Tr. 2. Then:

P̃ ′
Xn

(x0) = P (x0|d(1)Xn
, . . . , d

(m)
Xn

) , (14)
where the probability on the left-hand side is obtained by the
direct revision induced by P̃ ′(Xn), while the probability on
the right-hand side of Eq. (14) has been computed in the BN
returned by Tr. 2.

The proof follows from the conditional independence of
the auxiliary nodes given Xn. Also, note how our proposal
simultaneously performs pooling and absorption of overlap-
ping SEs.

Suppose m sources provide generalized CSEs about Xn,
say {K ′

j(Xn)}mj=1. Let K̃ ′(Xn) denote the CS induced by
LogOp as in Eq. (13), for each P ′

j(Xj) ∈ K ′
j(Xn), j =

1, . . . ,m (Adamčı́k 2014). We generalize Tr. 2 as follows:
Transformation 3. Consider a BN over X and the collec-
tion of CSEs {K ′

j(Xn)}mj=1. For each j = 1, . . . ,m, aug-

ment the BN with binary child D
(j)
Xn

of Xn, whose CCPT

is such that P (d
(j)
Xn

|xn) ∝
[
P ′(xn)
P (xn)

]αj

and P (d
(j)
Xn

|xn) ∝[
P
′
(xn)

P (xn)

]αj

.

This transformation returns a CN. A result analogous to
Pr. 4 can be derived.
Theorem 5. Consider the same inputs as in Tr. 3. Then:

P̃
′
Xn

(x0) = P (x0|d(1)Xn
, . . . , d

(m)
Xn

) , (15)
where the lower probability on the left-hand side has been
computed by absorption of the single CSE K̃ ′(Xn) and the
probability on the right-hand side has been computed in the
CN returned by Tr. 3. The same relation also holds for the
corresponding upper probabilities.

Conclusions
Credal, or set-valued, modeling of uncertain evidence has
been proposed within the framework of Bayesian networks.
Such procedure generalizes standard updating. More impor-
tantly, our proposal allows to reduce the task of absorption of
uncertain evidence to standard updating in credal networks.
Complexity results, specific inference schemes, and gener-
alized pooling procedures have been also derived.

As a future work we intend to evaluate the proposed
technique with knowledge-based decision-support systems
based on Bayesian network to model unreliable observa-
tional processes. Moreover the proposed procedure should
be extended to the framework of credal networks, thus rec-
onciling the orthogonal viewpoints considered in this paper
and in (da Rocha, Guimaraes, and de Campos 2008), and
tackling the case of non-simultaneous updating.
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