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Abstract 
Adaptive tutoring is an interesting optimization problem due 
to being a noisy domain with intermittent feedback. Noise in 
the domain hinders efforts to understand past data, and in-
termittent feedback makes it hard to optimize current deci-
sions. In this paper we describe an end-to-end adaptive tu-
toring system that addresses these challenges; it closes the 
loop between data mining, generation of an adaptive tutor-
ing policy, and After Action Review (AAR). The AAR tu-
toring system described in this paper uses a physics tutor, 
called Newton’s Playground, to develop the technology. 
This paper reports on a pilot study of 9 participant-
experienced scenarios where the data was automatically an-
alyzed, then an adaptive training policy was created based 
on the analysis. Furthermore, an AAR was constructed and 
delivered. The end result of this process is an enhanced 
adaptive version of Newton’s Playground, run on a prelimi-
nary set of new subjects. 

 Introduction   
Human-to-human tutoring has the potential for between 
one and two standard deviations of improvement over tra-
ditional learning (Bloom 1984; VanLehn 2011). There are 
many parts to intelligent tutoring such as examination of 
affective state, assessment of learner ability and 
knowledge, and selection of additional content. Among the 
problems of Intelligent Tutoring Systems (ITS) is selection 
of content, referred to as the “outer loop” and the selection 
of feedback, typically referred to as the “inner loop” (Van 
Lehn 2016). 

 Typically, solutions for “outer loop” content selection 
involve the selection of the next part of the content as it 
maps to the learning objectives of the learners. However, 
often in a learning system the learner does not learn the 
material upon the first experience, making remediation 
necessary. The decision of whether to remediate, and the 
selection of remedial content, is a commonly used portion 
of the outer loop selection. The problem is difficult, as 
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each learner is somewhat unique and presents relatively 
sparse data to the system.  

 Testing an individual technology, such as an “outer 
loop” content selection algorithm, requires a significant 
substrate of technology (e.g. the domain of instruction, 
modeling technique for the learner, instructional interven-
tion timing logic, etc.). The Generalized Intelligent 
Framework for Tutoring (GIFT) is an empirically-based, 
service-oriented framework of tools, methods and stand-
ards to make it easier to author computer-based tutoring 
systems (CBTS), manage instruction, and assess the effect 
of CBTS, components and methodologies. GIFT is a “shell 
tutor” – a tutoring system used to make tutoring systems 
(Brawner et al. 2017). GIFT depends on a number of inter-
changeable “Modules” which encapsulate knowledge of 
the Domain, Learner, Pedagogy, Simulation, and Sensors, 
respectively.  In this manner, the system is equipped to tu-
tor on many different subjects with little additional system 
configuration. As an intentional byproduct of this structure, 
software developed for training one domain (e.g. mathe-
matics) can be reused to train a domain which is complete-
ly different (e.g. combat lifesaver policies). As a result, the 
development of improved “outer loop” remedial content 
selection technologies for one domain of instruction can be 
readily applied to many other training domains. Similarly, 
an After Action Review (AAR) technology can be devel-
oped with minimal overlap with other ITS functions. 

 The intelligent AAR selection problem addressed in this 
paper is relatively unique in the area of machine learning.  
Because of the nature of GIFT, the first of the problem as-
pects is that the developed solution must have an instruc-
tional policy decoupled from instructional material. Fur-
ther, the solution must handle sparse data gracefully – each 
student is relatively unique and generates only a small 
amount of data on which to make decisions.  

 The remainder of this paper describes the related work 
with adaptive after action reviews, the Physics Playground 
training environment, the process of creation of AI models, 
initial data collection, and concludes with an evaluation of 
the model and approach. 
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Related Work
The approach in this paper combines information about 

the effectiveness of instructional content with information 
about the learner. The former is grounded in Ericcson’s 
theory of deliberate practice (Ericsson 1993), by targeting 
training scenarios based on learner skill states.  

One approach that can be useful for quantifying the 
learner state is Bayesian Knowledge Tracing (BKT; Cor-
bett and Anderson 1995). The BKT model has 4 parame-
ters, representing the probability that a student has a skill 
(init), the probability that the student acquires the skill after 
content (transit), the probability that the student makes a 
mistake despite having the skill (slip), and the probability 
of guessing correctly (guess) when not having the skill. 
When performance is observed, the model can be repre-
sented as a Hidden Markov Model (HMM).  

Another approach is Item Response Theory (IRT). In 
IRT, the probability of a learner getting an item correct is 
derived by quantifying the learner skill level for some skill 
labeled i (��) and the item difficulty level (�), subtracting 
the former from the latter, and sending the result through a 
logistic function, e.g. the probability of correctness is: 
 

�

� � �������
 

  
The above represents the 2-parameter model, but there 

are other multi-parameter IRT models representing multi-
ple skills (Wirth & Edwards 2007). 

The model in this paper expands upon BKT by using it 
in a prescriptive context. That is, instead of probability of 
improvement and measurement for a single skill (an HMM 
transition probability), we represent multiple actions, 
where each action can pertain to many skills. It also com-
bines BKT with IRT through the measurement function. 
These expansions model learning as a POMDP (Partially 
Observable Markov Decision Process) rather than just an 
HMM. 

There are several previous works in the literature which 
also use a POMDP representation (Sondik 1971). Brunskill 
and Russell (2012) use a POMDP on a smaller algebra 
domain, but they represent skill acquisition as a binary and 
do not combine with IRT. Folsom-Kavarik uses POMDP 
to model observation chains and priorities queues based 
upon help-seeking activities (Folsom-Kovarik 2012). Rowe 
and Lester (2015) model learning as several MDP’s, exam-
ining each skill separately from the others in environments 
where progress can be fully observed.  

 
 

Approach 
Newton’s Playground is a “serious game” – a game de-
signed to teach as well as entertain (Zhao et al. 2015; Kim 
et al. 2016).  During the experience of the game, the learn-
ers/players draw different types of physics items, such as a 
lever, weight, or structural beam.  Each of these items is 
then animated according to the basic laws of physics.   

The goal of each level is to get a red ball from one point 
on the screen to another with a system of drawn objects.  
An example puzzle may intend to teach the concept of 
spring physics by having the learner draw a “diving board” 
type structure consisting of drawn objects (beam, two an-
chor points, a spring). 

This work uses a prototype version of Newton’s Play-
ground built for GIFT, where puzzles are instrumented 
with measures including the completion time for each puz-
zle. 9 puzzles based on three physics concepts (Impulse, 
Conservation of Momentum, Conservation of Energy) 
were constructed using this technology. 

Figure 2 shows the approach taken. One contribution of 
this work is the implementation of a POMDP Policy for se-
lection of training within GIFT. This policy selects feed-
back (more on this in subsequent sections) which is deliv-
ered to the Learner. The data is recorded in GIFT’s Learn-
ing Management System (designated “Data Repository” in 
the figure). A second contribution of this effort is an Edu-
cational Data Mining (EDM) tool to understand this data.  

Figure 1: Sample of the Newton’s Playground environment. 
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Figure 1: Modeling process for policy creation. 

 

The EDM tool models the learning process as a POMDP 
tuple � ��������������� �. 
• � is the set of states. Each � � ��is described as 

��� ���� where each �� represents the learner skill 
level for one skill (we chose a scale from 0-9), and 
��is the number of skills. 

• � is the set of Actions. In this domain, we model the tu-
tor’s selection of each puzzle in Newton’s Playground 
as an action. 

• �������� ��� is the state transition model given the learn-
er state and the selected action. In a simple model, as 
in this work, the transition probability can be de-
scribed as the product of transitionally independent in-
dividual skills; so that ��� ��� �����, where � identifies 
a skill, �� represents current learner state and �

�

� repre-
sents successor learner state. For more complicated 
domains, state is still decomposed into individual 
skills, but the relationship between skills after each ac-
tion is defined using a more complete Dynamic Bayes-
ian Network (DBN) containing skill and action nodes. 

• � is the set of possible observations. For Newton’s 
playground puzzles, this is measurement of whether a 
student passes or fails a lesson given information ac-
quired from GIFT Domain Knowledge Files (DKF). 

• � the observation function that assigns a probability 
� � � � �� �

�  as Equation (1), with �� being the 
learner state   

• ������ is a reward model. We model reward as the sum 
of the skill levels across skills. 

• ��is a discount factor applied to reward that reduces re-
ward on each subsequent step. 

• ��, an initial distribution over ��before the student be-
gins.  

The EDM tool inputs historical student performance da-
ta, and outputs parameters to fill in the above model. 
POMDP’s are typically solved by applying a Bellman up-
date. Defining b as a probability distribution over states, 
the value of that distribution is summarized as:  

 

� � � ����
���

�� ��� � � � � ��� ������

���

 

That is, the value of a distribution of states b is equal to 
the highest-value action, where the value of that action is 
the expected direct reward (� ��� ; overloading the nota-
tion to apply an expected value) plus the discounted ex-
pected reward of the subsequent actions taken on the sub-
sequent belief state (denoted �� and representing the new 
belief state after action � and observation �).  

A property of the formulation in the EDM tool is that the 
observation function corresponds to Item Response Theo-
ry, that is:  

� ������� � �

�

� � � �����������

 

Where each � represents a skill within the state, each �� 
represents the difficulty of the item, each �� represents the 
applicability of the item to the skill. Thus, the task of ma-
chine-learning the POMDP observation function is reduced 
to the task of machine-learning item difficulties. 

On the AAR, following the literature we used principles 
of Focus, Style, Quantity, and Objective (Li 2010; Shute 
2008; Billings 2012). On Focus, AAR systems should offer 
feedback near the level of the task step. On Style, feedback 
should be corrective. On Quantity, feedback should be lim-
ited to failures with greatest impact. On Objective, AAR 
should represent deep knowledge and associate it with task 
steps or cues. 

Data Collection 
The parameters for the model above were found by using 
an EDM tool operating on the results of a data collection 
study.  

The data collection involved presenting 42 participants 
with 10 puzzles from Newton’s Playground. The puzzle set 
contained a tutorial and 3 puzzles on Conservation of En-
ergy, 3 puzzles on Conservation of Momentum, and 3 puz-
zles on Impulse. Contributions of this effort involved cus-
tomized software to extract measures from each partici-
pant, in each puzzle, and storing this information in a 
Learning Management System (LMS).  

There were two types of parameters that were learned 
from the recorded results. The first type was parameters 
that were identified through meta-data in Newton’s Play-
ground. These included the states (which corresponded to 
the names of the measures recorded in the LMS), the ac-
tions (9 actions, 1 for each puzzle), and the observations 
(students were recorded for Pass/Fail of the puzzles, with 
Pass decomposed into AboveExpectation and AtExpecta-
tion). The second type included variables that were approx-
imated through Gibbs sampling of the data. This included 
the transition probabilities and the observation probabili-
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Figure 2: Simulated students for adaptive and non-adaptive puz-
zle selection 

Figure 3:  Remedial AAR. 

ties. The observation function was found by finding a best-
fit of the item difficulty parameter to the results, given the 
set of data and the sampled values for the other variables in 
the POMDP model. 

Simulation Results
After the model parameters were determined, a POMDP 
policy was generated that mapped each state to an action.  
We simulated 10000 students to validate the policy. The 
simulation included 10 steps, before the first step, student 
ability was sampled from a start distribution. Each simulat-
ed student iteratively took a puzzle (selected from a Tuto-
rial or the 9 available puzzles), then an observation was re-
ceived, and then the policy would select the next puzzle. 
Figure 3 shows an aggregate comparison (averaged over 
the 10000 students) of this policy to a Non-adaptive policy 
which selected random puzzles. 

Subsequent Study 
The parameterized model was also used to generate tech-
nology to enhance GIFT so as to improve learning out-
comes. To measure improved outcomes, we selected 3 
puzzles out of the 9 in Newton’s Playground (one from 
each physics topic) and designated those as the “test” puz-
zles. So as to allow discretion for the adaptive strategy to 
select preferred puzzles, we generated 4-step adaptive 
strategies to select 4 puzzles. 

Two enhancements were made for the experimental 
group, to adapt training. The first was an adaptive policy 
based on optimizing POMDP reward.  

To create this, we set and discovered POMDP parame-
ters as follows: 

• State was a 3-tuple where each element corresponded to 
student skill level on Impulse, Conservation of Mo-
mentum, or Conservation of Energy Principles. For 
example, the state of <novice, novice, expert> would 
correspond to a novice with respect to solving the Im-
pulse puzzles, novice on the Conservation of Momen-
tum puzzles, and expert with respect to solving the 
Conservation of Energy principles puzzles. 

• Each of the six available puzzles were designated as an 
action. 

• The transition function was discovered through Gibbs 
sampling the probability distribution based on student 
skill levels at each time step. Each variable represent-
ing student states, the transition function, and the dif-
ficulty level with respect to IRT for the observation 
function was sampled in turn. A Dirichlet hyperprior 
was used to enforce two intuitions: 

o Skills tend to appreciate over time. 
o All other things being equal, small leaps in 

ability are more likely than large leaps. 
• Observations consisted of Above Expectation/At Expec-

tation/Below Expectation for each puzzle, based on 
time taken to solve the puzzle. This was reported by 
Newton’s Playground as instrumented in the associat-
ed Domain Knowledge Files (DKFs) as a threshold 
over time taken to solve the puzzle. 

• The observation function was discovered through Gibbs 
sampling by assuming knowledge of student skill lev-
els at each step, and solving for item difficulty using 
the observation function structure described previous-
ly. 

• Reward was set as the sum of the elements in the State 
tuple. 

The second modification was the existence of an Adap-
tive AAR module, where a post-puzzle screen was shown 
after each of the 4 training puzzles. The Adaptive AAR is 
shown in Figure 4, with the AAR shown dependent on 
whether the student has obtained the skill yet. The con-
struction of the AAR screens was guided by the literature 
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Figure 4: Advanced AAR. 

on AAR construction, including to focus on the task-step 
(Van Lehn 2011), as well as required differences between 
high-achieving and low-achieving learners (Shute 2008). 

For students that have not yet obtained the skill, the upper-
left of Figure 4 contains advice on how to solve the puzzle, 
the upper-right shows a video of expert performance, and 
the bottom shows personal statistics and an ability to re-
play the puzzle or go to the next puzzle selected by the 
POMDP.  

For those who succeeded on the puzzle (Figure 5), the 
upper-left of the Advanced AAR shows more general prin-
ciples, the upper-right shows the user’s own performance 
so they can refine their technique, the lower-left shows the 
user’s performance as compared to the general population, 
and the lower-right prominently allows the user to go to the 
next puzzle while allowing the user to replay the puzzle if 
desired. In general, the goal of the Remedial AAR is to al-
low the user to learn how to pass, while the goal of the Ad-
vanced AAR is to refine performance. 

Table 1 shows the first rows of the resulting policy after 
data mining and solving. Policies are state machines (note: 
“state machine” refers to the concept of executable soft-
ware, not to be confused with “state” as used in the rest of 
this paper within a POMDP model). Each row references a 
particular node/state, and is grouped with the rows contain-
ing the same state. At the node, a puzzle is recommended. 
“Mo 1” stands for the first momentum puzzle. The “LB” 
and “UB” columns represent lower and upper-bound con-
ditions under which the rule in the row is applied, with a 
“0” representing Below Expectation measured perfor-
mance, a “1” representing “At Expectation” and a “2” rep-
resenting Above Expectation. The “Next” column repre-
sents the next node/state to go to, and the AAR text refer-
ences which text is next.  Thus, the first two lines of the ta-
ble say that the puzzle to be given is the tutorial no matter 
what, and the next node to go to is node 2. The lines that 
reference node 2 say that if the student performs Below 
expectation (“0”) the Remedial feedback is given and the 
software goes to Node 3 (where the next puzzle is “Mo-

mentum 3”), if the student performs “At Expectation” 
(“1”) the student still receives Remedial Feedback but goes 
to Node 4, whereas if the student is measured “Above Ex-
pectation” the student receives the Advanced feedback 
while going to Node 4. 
 

����� ��		
�� ��� �� ����� ���������
�� ������	
� �� �� �� �
�� ������	
� �� �� �� �
� ��� � � � �����
� ��� � � � �����
� ��� � � � ���
� ��� � � �� �����
� ��� � � �� �����
� ��� � � �� ���

Table 1:  Adaptive AAR policy executed on GIFT.   

 

 
Figure 5: Mean solution time for Adaptive AAR versus random 
for three test puzzles. 

Results and Evaluation 
After the initial data collection, a new study was run using 
the same pool of 9 Newton’s Playground puzzles. Data was 
collected on 8 participants. Data from the previous collec-
tion was used as a control condition. To provide adequate 
differentiation between the puzzles selected between the 
adaptive and control conditions, three puzzles were select-
ed as test puzzles (“Impulse 3”, “Momentum 2”, and “En-
ergy 3”, in that order), and the remaining six puzzles com-
prised the pool of training puzzles for adaptation. Of these 
six, four were selected for training, in an adaptive sequence 
determined by the policy. Each participant in the adaptive 
condition encountered four puzzles, selected online by the 
adaptive policy, and then was tested on the three test puz-
zles that were withheld from the training pool. The random 
condition in Figure 6 shows the data from the previous col-
lection. For apples-to-apples comparison, result times from 
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the data collection were not used if the puzzle occurred at 
an earlier point in the sequence. For example, the Impulse 
test puzzle in Figure 6 was 5th in the sequence, so we only 
used results from the random condition where this same 
puzzle was encountered as 5th or later in the random se-
quence. As a result, 31, 19, and 17 participant results were 
used for Impulse, Momentum, and Energy puzzles respec-
tively in the random condition. 

Results are reported in Figure 6. To compute mean puz-
zle times, we assigned a value of 120 seconds to solutions 
that took longer than this time (puzzles that were not 
solved in two minutes were likely to take far longer). Dif-
ferences (effect size) in median solve times between 
groups were 36, 39, and 45 seconds respectively, greater 
than the effect for mean solve time, indicating that the se-
lection of a 120 second cutoff was not responsible for the 
effect. Standard deviations were 33, 35, and 39 respective-
ly for the random selection condition puzzles, and 40, 30, 
and 39 respectively for the adaptive AAR condition puz-
zles. Results tended to be bimodal, participants who solved 
the puzzle usually completed it in far less than 120 se-
conds, while those who did not were assigned the 120 se-
cond maximum time. 

Conclusion 
Contributions of this work include: (1) An educational data 
mining tool for GIFT. (2) Generation and implementation 
of a model-based adaptive training policy for GIFT. (3) 
Implementation of After Action Review technology for 
GIFT.  

The process detailed in this paper of modeling student 
progress in a manner independent from the instruction, 
testing this model with simulated learners, applying this 
model in real-time to learners, and observing initial effec-
tiveness portrays a manner in which other systems can seek 
to adapt to learner material.  The approach detailed in this 
paper offers unique benefits to both the GIFT architecture 
and GIFT end users for improving learning through adap-
tive, individualized feedback to the learner.  First, the 
POMDP technique of monitoring and improving state cor-
responds to the theory of deliberate practice.  Second, the 
model dynamically re-parameterizes while leveraging prior 
data to inform actions – the system improves over time 
with relatively few data points.  Finally, utilizing GIFT, the 
solution is applicable to a wide variety of training domains.
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