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Abstract

The task of semantic parsing is to map natural-language sen-
tences to logical forms representing the underlying meanings
of those sentences. Typically, resolving semantic ambiguity is
considered to be a side effect of semantic parsing. However
a large number of errors in parsing can be attributed to in-
correct sense disambiguation in the first place. This can arise
from the selection of an incorrect semantic role or seman-
tic type by the parser. This paper applies a knowledge-based
algorithm to guide a semantic parser to simultaneously se-
lect better semantic types and roles. The algorithm takes into
account semantic roles and ontology types to reduce restric-
tion violations arising from incorrect semantic role or type
choices, hence increasing the total accuracy of the semantic
parser.

Introduction

A first approximation of a semantic parse could be attained
by performing the tasks of Semantic Role Labeling (SRL)
and Word Sense Disambiguation (WSD). Naturally, these
tasks are closely related as the semantic roles a particular
word may take are necessarily dependent on their types. A
significant portion of errors in semantic parsing can be at-
tributed primarily to incorrect sense assignments. By im-
proving WSD at the constituent level we can guide the se-
mantic parser toward global maxima.

A single incorrect type can result in incorrect roles being
assigned to arguments, cascading into further errors. Addi-
tionally, arguments to individual predicates often have inter-
dependent sense restrictions. Words with similar meanings
naturally share similar argument structures. A particular in-
stance of a sense and its arguments in a semantic parse is a
realization of the argument structure of the target sense. We
shall call these structures instance predicates. Specifically,
instance predicates consist of a single root sense and a set
of argument senses associated to the root sense by semantic
roles. A single instance predicate acts as a potential template
for the argument structure of the target sense and also for the
target sense of a particular set of arguments. For any mod-
erately frequent sense there will be many possible instance
predicates spanning several argument structures and sense
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combinations. The tasks of semantic role labeling and word
sense disambiguation, while distinct, are interdependent.

In this paper we present a method to use instance predi-
cates extracted from a small number of gold annotated se-
mantic parses to guide the TRIPS parser (Allen, Swift, and
de Beaumont 2008; Allen and Teng 2017) to better sense
decisions. We adopt an instance based approach to ranking
predicates by likelihood based on gold annotated data. Us-
ing abstraction along the TRIPS ontology, we are able to
elicit an improvement in the TRIPS parser from just a small
number of gold predicates.

Motivation

Let us consider statements with two distinct mean-
ings of the word bass: The man played the
bass[instrument] and The man ate the
bass[fish]. Both are valid sentences, with mean-
ings which are easily disambiguated with just a little bit
of common sense knowledge. Rather than attempting to
derive the correct meanings of each word through reasoning
and a large knowledge base, we would like to capture the
essence of whether an interpretation ‘sounds plausible’ or
not. Our abstraction technique allows for statements such
as: A person may use a machine and A person
may eat grain to correctly identify the required senses
by associating bass with machine or grain respectively.
Additionally, the same pair of statements can be used to
disambiguate bass in the sentence “The bass ate the frog”
by partially aligning bass with person.

Therefore, having an example even in the general vicin-
ity of a correct predicate can produce accurate orderings of
interpretations for a statement. The score produced for each
interpretation is an estimation of whether the elements in the
instance predicate could possibly share the set of relations
encoded, based on what has already been seen.

While identifying the precise level and bounds to which
a statement can be generalized is a difficult task, collecting
instances of such restrictions is not. Every instance of a verb
and its arguments represents such a restriction.

The TRIPS Ontology

The TRIPS Ontology is a single inheritance hierarchy orga-
nized by a combination of syntactic and semantic attributes.
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Each type in the hierarchy contains role restrictions and fea-
ture templates. A role restriction for a particular ontology
type consist of a semantic role, an abstract ontology type and
whether the role described is required or not. These restric-
tions are hand coded and do not take into account additional
preferences induced by combinations of roles. The feature
templates indicate various semantic features that an instance
of an ontology type may take in a logical form. Since the
types are arranged hierarchically, an ontology type may be
underspecified, in which case it inherits properties from its
parent type.1

The TRIPS Parser

The approach presented in this paper relies heavily on the
hierarchical structure of the TRIPS ontology. As such, the
approach is only directly applicable to the TRIPS parser.

The TRIPS parser is a best-first bottom-up chart parser.
The core grammar is a hand-built, lexicalized context-free
grammar, augmented with feature structures and feature uni-
fication, and driven by a semantic lexicon and ontology.
Constituents are produced bottom up and scored using sev-
eral heuristics to order the constituents by likelihood. At
each step, the parser attempts to expand on the most likely
constituents on the chart until a single constituent covers the
entire input sentence, resulting in a complete parse.2

The skeleton-score system refines the ordering of low
level constituents in the chart based on the plausibility of
the sense structures of each predicate. This in turn leads to
an improvement in the final selected parse.

Semantic Skeleton Annotation

The gold annotated logical forms are hand annotated by ex-
perts using the procedure described in (Allen et al. 2018).
Each sentence is first parsed by the TRIPS parser. The re-
sulting parses are corrected by two experts independently.
Finally, the correct parses are reconciled through discussion
with a group of experts until a consensus is reached. The
process also serves to correct and expand the semantic an-
notation scheme used by the TRIPS parser as well as identify
and correct gaps and errors in the TRIPS ontology.

Related Work

Gildea and Jurafsky (2002) presents a statistical model for
semantic role labeling trained on 50,000 hand annotated
sentences. However, they find that the task of generalizing
the model to unseen predicates remains difficult. Other ap-
proaches (Johansson and Nugues 2008; Erk and Pado 2006;
Kshirsagar et al. 2015) learn models from FrameNet (Baker,
Fillmore, and Lowe 1998) or PropBank (Palmer, Gildea, and
Kingsbury 2005). Each resource presents a frame lexicon
and sentences annotated to map to those same frames.

Mihalcea and Faruque 2004 describes a minimally super-
vised sense tagger aimed at using as little annotated data as
possible and abstracts word senses up the WordNet (Miller
1995) hypernym hierarchy to compensate for unobserved
words.

1http://trips.ihmc.us/stripswiki/
2http://trips.ihmc.us/parser/cgi/parse

Banarescu et al. 2013 presented Abstract Meaning Rep-
resentations (AMR) which are rooted, labeled graphs, com-
patible with the output of the TRIPS parser. Similarity be-
tween AMRs has been computed using the SMatch algo-
rithm (Cai and Knight 2013) which calculates the alignment
of nodes between source and target graphs which maximizes
the amount of semantic information which is preserved.

Skeleton Score System

The Skeleton Score system takes as an input a predicate
and outputs a likelihood score. In this context, a predicate
is a subtree of a TRIPS parse with depth 1, consisting of a
root type and semantic arguments to that type. Each candi-
date predicate is compared against a library of gold standard
predicates. For this study, the likelihood score is a measure
of similarity between the candidate predicate and the most
similar gold predicate.

Predicate Similarity

We measure the similarity between two predicates as the av-
erage of the element-wise similarity. A valid alignment be-
tween two predicates is one that matches each role in the
source predicate either to a unique role in the target predi-
cate or a null element.

For two predicates P and Q, φ : P → Q ∪ {s} is a
valid mapping if it satisfies condition φ(pi) = qj only if
role(pi) = role(qj) and φ is one-to-one except at some ex-
tra symbol, s. Then,

skel(P,Q) = max
φ∈Φ(P,Q)

∑
simf (type(pi), type(φ(pi)))

max(|P |, |Q|)
(1)

for some similarity measure where simf (x, s) = 0.

Node Scoring Functions

A node scoring function should return 1 if the two nodes are
identical and 0 if they are entirely unrelated. In this study we
use three similarity measures: Exact Match, Wu-Palmer sim-
ilarity and a formulation of cosine similarity. These metrics
have desirable property of being distribution agnostic, com-
puting similarity from the structure of the ontology rather
than distributions over sense tagged corpora.

Exact Match returns 1 if two nodes are identical and 0
otherwise.

Wu-Palmer Similarity (Wu and Palmer 1994) computes
the similarity of two nodes as a ratio of the depth of their
least common subsumer and the sum of their depths. For any
pair of nodes a given path length apart, the deeper the pair is
in the ontology the higher the similarity score is, while node
pairs higher up in the ontology with the same path distance
receive a lower score. The metric is computed as follows:

wup(a, b) =
2× d(lcs(a, b))

d(a) + d(b)
(2)

Where lcs(a, b) is the lowest common subsumer of the
nodes a and b and d is the depth function.
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Cosine Similarity is the go-to similarity metric for vector-
based NLP applications. However, in the context of a dis-
crete structure, such as an ontology, it is harder to define. In
order to compute the cosine of the angle between two nodes
in the ontology, we first need to embed the ontology into a
vector space. We can embed any tree with k nodes into R

k−1

using a function ρ : Vk → R
k−1 as follows:

ρ(vi)j =

{
wanc(vj),vj if vj ∈ path(v0, vi)

0 otherwise
(3)

That is, the vector representing vi has in the jth entry the
weight of the edge between vj and its parent if and only if
vj falls on the path between vi and the root of the tree. It
is easy to see how this embedding naturally preserves the
L1 metric. A proof can be found in Bourgain (1985). In this
case all edge weights are 1, resulting in a · b = d(lcs(a, b))
and

∑
a2i = d(a). Thus, we have

cosine(a, b) =
d(lcs(a, b))√

d(a)d(b)
(4)

Other considerations

Non-standard values Certain ontology types (e.g.
ELLIPSIS, REFERENTIAL-SEM) do not have direct
semantic content. The parser outputs non-ontology types for
constructions such as conjunctions and sequences. These
types are scored as exact matches. Additionally, the parser
may temporarily assign a type as UNK to indicate that it will
be filled later. These instances receive a score of 0.

Thresholding Since this system only takes positive exam-
ples as training examples, it is only possible to find support
for candidate predicates. A predicate with a poor score may
in fact be a poor candidate or alternatively may have fallen
victim to a lack of information. For any node score less than
the threshold, we set it to 0 instead. This helps by elimi-
nating mediocre matches and creating a sharper delineation
between good and bad matches.

Evaluation

Parser Integration

We integrated the skeleton scoring mechanism into the
TRIPS parser in order to perform in-vivo evaluations. On
producing a new potential constituent, the parser requests an
adjustment factor from the scoring system to modify its in-
ternal weight table. The parser continues to pursue the top
ranked predicates until a complete parse is found. Hence,
the purpose of the skeleton score system is to improve the
order in which predicates are expanded. Not every positive
adjustment score will result in an actual change to the or-
dering of the internal weight table, and even when such a
change is caused, it may not always result in a change to the
final parse.

Given an adjustment range of m the adjustment factor is
a value in the range [1−m, 1 +m] calculated by

adjm(P ) = 1−m+
skel(P )

2m
(5)

Figure 1: The number of parses either improved or damaged
by the Skeleton Score system for the three best performing
systems.

Experiments

The dataset consists of a set of 409 sentences and their gold
annotated parses. There are a total of 1887 unique gold an-
notated predicates. Each sentence is parsed with the unmod-
ified “pure” parser for a baseline. The pure parser fails to
find a spanning parse for 71 sentences. These sentences are
ignored for evaluation purposes. For each sentence, we com-
pare the SMatch score between pure and gold parses to the
SMatch score between the skeleton and gold parses.

We use leave-one-out cross-validation. For each sentence
we use all predicates occurring in the gold parses of the rest
of the corpus as the gold library. For each node scoring func-
tion, we vary the adjustment range. We also vary the thresh-
old values for Wu-Palmer and Cosine similarities.

Results

Table 1 shows the relative improvement in SMatch score
for each of the experiments. The best improvement is 5.6%
over all sentences whose parses are affected by the Skele-
ton Score system, achieved using Wu-Palmer similarity with
the smallest adjustment range of 0.025. In particular, we
see relative improvement as the element-wise threshold in-
creases. However, we also see a competing decrease as the
adjustment range increases. This is to be expected as the ad-
justment range dictates the maximum impact the Skeleton
Score system can have on the parser. The threshold does not
change the maximum magnitude of the impact but does af-
fect the purity of the predicates which create an impact.

Adjustment Range
0.025 0.05 0.1 Threshold

ExactMatch 3.9 2.2 2.1
2.9 2.7 1.6 0.85
5.6 3.9 1.8 0.9WuPalmer
3.6 3.7 2.9 0.95
3.1 2.7 1.6 0.85
3.5 3.8 2.6 0.9Cosine
3.6 3.6 3.0 0.95

Table 1: The percentage improvement in average SMatch
score from the “pure” parser over sentences that are altered
by the Skeleton Score system.

We also measure the total impact ratio of each Skeleton
Score variant on the final results. We compute this as the
ratio of the total number of parses that are altered by the
system and the total number of input sentences. This is dis-
tinguished over the traditional measure of recall since not
every parse needs to be altered by the system and not ever
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Adjustment Range
0.025 0.05 0.1 Threshold

ExactMatch 0.257 0.305 0.365
0.210 0.188 0.251 0.85
0.188 0.216 0.285 0.9WuPalmer
0.162 0.203 0.245 0.95
0.225 0.258 0.292 0.85
0.190 0.213 0.267 0.9Cosine
0.168 0.195 0.238 0.95

Table 2: The impact ratio for each variant of the system

alteration impacts the performance of the system. In table
2 we see a similar pair of tendencies over the impact ratio,
where increasing the adjustment range increases impact and
increasing threshold decreases it. At the smallest adjustment
range, we find that varying the threshold causes more dis-
tinct change in the impact ratio than at the highest adjust-
ment range.

Figure 1 shows the number of sentences improved and
damaged by each variant of the Skeleton Score system. We
note in particular that increasing the size of the adjustment
factor increases the total magnitude of the change while in-
creasing the threshold improves the relative quality of the
system.

Future Work

The variation in impact ratio and performance suggests that
the system does suffer from a lack of annotated data. How-
ever, the system is also overall able to avoid negatively im-
pacting the parser by not responding in situations where ev-
idence is too sparse. Hence, future work should first focus
on increasing the number of predicates used by the system.
The time commitment to annotators and cost of annotation
is a barrier which needs to be overcome. To this end, semi-
supervised induction of new predicates from resources such
as Lore (Gordon and Schubert 2012) may yield results.

Conclusion

We present a knowledge-based algorithm which is able to
judge the likelihood of semantic predicates based on anno-
tated examples. With a relatively small library of annotated
sentences and predicates we are able to noticeably improve
the performance of the TRIPS semantic parser. Our ap-
proach integrates positive evidence from an example based
approach to the heuristics used in the TRIPS parser to guide
parser to better results.
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