

Using A Personalized Anomaly Detection Approach with
Machine Learning to Detect Stolen Phones

Huizhong Hu, Philip K. Chan
Florida Institute of Technology, Melbourne, FL 32901

hhu2013@my.fit.edu , pkc@cs.fit.edu

Abstract
We devise an anomaly detection system that detects stolen
phones. In this system, we use a mining algorithm to extract
sequential patterns from a user’s past behavior to construct a
personalized model. We then put forward scoring functions
and threshold setting strategies to detect stealing events. We
evaluate our approach with a data set from the MIT Reality
Mining project. Experimental results indicate that our ap-
proach can detect 87% of simulated stealing events with an
average false positive rate of 0.9%.

 Introduction
Smartphones have become ever more functional and users
are more dependent on their smartphones. If your phone is
lost or stolen, a nightmare will soon begin. One will worry
about not only losing the phone hardware, but also losing
personal information, which might lead to identity theft or
worse consequences. With the global growth in the usage
of smartphones, phone theft has become an increasingly
significant problem. In the United States, 113 phones are
lost or stolen every minute. According to the U.S. Federal
Communications Commission, nearly one third of rob-
beries involve smartphones. In 2012, smartphone crimes
cost 1.6 million Americans about 30 billion dollars. The
figure almost doubled in 2013—3 million Americans be-
came victims of smartphone crimes. (US-FCC).
 “How to detect a stolen phone?” has become a difficult
but urgent issue. To solve this problem, the U.S. govern-
ment and the Mexican government have developed some
countermeasures. In 2012, a number of communication
companies including AT&T collaborated and built a central
database of stolen smartphones. Every time a mobile phone
is reported to be missing and registered in the database, its
unique serial number will be recorded. Then the mobile
operator can block any connection to that number. Apple
and Samsung use a different way to handle this issue. They

Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

provide a service that sends back the phone’s location to
the owner or restores factory settings of the phone.
 Solutions above require the phone owner’s awareness of
losing the phone. Is there a way to alert the owner more
promptly as soon as the stealing happens? We resort to
machine learning to realize self detection. Based on loca-
tion data collected from the phone sensors, we use a pattern
mining approach to construct a personalized model of cus-
tomary behaviors. Comparing patterns of the model with
those of the current behavior, we can generate a score for
detecting anomalies. Our achievements include:

• Building a personal profile of the user’s mobility
with a pattern mining algorithm,

• Methods for calculating anomaly scores and
thresholds for detecting anomalies, and

• Experimental results indicating that our approach
can detect 87% of the anomalous behavior with
only 0.9% false positive rate��

Related Work
To detect suspicious behavior under WLAN connections,
(Tandon and Chan 2009) applied an algorithm for temporal
location anomaly detection to learn the distributions of
location probability, specifically by using a combination of
sequence of time and location. To discern anomalies, a
modified Markov model was employed to calculate
anomalous scores that represent differences and similarities
of summarized location probability distributions.
 To track lost phones, (Zhang et al 2010) used a one-
hour record of Cell Tower ID as location data and generat-
ed Cell ID Entropy, which represented how fast or how far
the cell phone moves within a certain period of time. A
Feed Forward Neural Network used hourly call counts to
detect whether the phone is statically lost (e.g. left it in a
library), dynamically lost (e.g. left it in a moving taxi), or
being normally used. Farrahi et al. (2010) presented an
approach for large-scale unsupervised learning and predict-
ing people’s routines through the joint modeling of human

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

410

locations and proximity interactions by using the Latent
Dirichlet Allocation probabilistic topic model.

Lu et al. (2014) used GPS data and application data to
predict which applications will be used next. First, they
preprocessed location data and transformed the GPS geo-
graphic locations into semantic locations. Then Lu et al
utilized a density-based clustering algorithm to find the
motion path and then built a Mobile App Sequential Pat-
tern Tree to represent the correlations between locations
and applications with path data. Liao et al. (2012) com-
bined the launch time and previous application data to pre-
dict and advise applications. The App Usage Predictor
component, based on Chebyshev’s inequality, provides a
probability-based scoring function. Liao et al (2013) ex-
tracted three features from App Usage Predictor and calcu-
lated the usage probability of each app. The Global Usage
feature gives a probability statistic of the app, derived from
the total number of times that the app is used during the
whole time. The Temporal Usage feature gives another
probability statistic of the app usage within a period of
time. The Periodical Usage feature indicates usage habit,
which measures how frequently the app is in use. At the
end, the Min Entropy Selection counts the entropy of each
feature and selects the best one for prediction. Shin et al.
(2012) used more data from smartphone sensors to perform
a comprehensive analysis of the context related to mobile
app use, and built prediction models to calculate the proba-
bility of an app in different contexts.

In this study, instead of generating only one attribute
that describes phone loss in locational facts (Zhang 2010),
we analyze behavioral patterns that detect phone loss. In-
stead of reacting to loss events three hours later, our ap-
proach aims to predict a loss within an hour.

Approach
Our goal is to use machine learning algorithms to personal-
ize user behavior in order to automatically detect phone
loss and protect owners’ property and privacy. Our ap-
proach contains two parts: behavior learning and anomaly
detection. To learn user behaviors, we use the SPAM pat-
tern mining algorithm (Ayres et al. 2002) to identify a be-
havior pattern set from raw location data, and then we
merge and process them into a personalized model set. This
is different from the work by Farrahi et al. (2010) which
uses unsupervised learning to cluster a user’s past behavior.
To detect anomalies, we associate the input data with the
current behavior. After extracting behavior patterns, we
find correlations between the current pattern and the rec-
orded personalized profile, and derive an anomaly score.
Based on previous data we determine a threshold for the
anomaly score. Patterns with scores above the threshold are
considered anomalous. Due to space limitations, some
details are left out. More details are in (Hu 2015).

Data Preprocessing
The raw data contains time record and location infor-
mation, that is, the area ID and the cell tower ID, which
connect the phone. We remove data that are identified as
non-compliant (such as no signal, only time record, or lo-
cation info with either only area ID or only tower ID). We
categorize these data into a date ordered format to build
seven daily models, from Monday through Sunday. The
underlying reason is that most people schedule weekly and
they usually repeat similar schedules every seven days.
 Furthermore, we use a modified version of the sliding-
window to separate one-day dataset into 24 hourly subsets.
The hourly subsets are used to build individual hourly
models that describe human daily behavior in each time
slot. Moreover, this window covers a two-hour time period,
including one current hour, one half hour before, and one
half hour after the current hour.
 Additionally, the main reason we set one hour as the
basic unit is that we want to detect a stolen phone within
one hour after the phone is stolen. Naturally, the earlier one
detects a stolen phone, the more possible one can recover
it. In this sense, late detection would be meaningless. Sec-
ondly, we use two half-hour shifted datasets because one
cyclical activity may not always occur within exactly that
hour, so we want to relax the data range.

Figure 1 — The whole structure of the Personalized Model.

Behavior Learning�
The structure of our personalized model is shown in Figure
1. We explain each level in bottom-up manner. The first
level is the pattern level, which contains a number of pat-
terns and each pattern contains a sequence and its frequen-
cy, which are identified by the SPAM algorithm (Ayres et
al. 2002). Given sequences of itemsets, the SPAM algo-
rithm identifies frequent sequential itemsets, which might
include gaps as patterns. The second level is the pattern set
level, which we merge patterns in the three one-hour da-
tasets. Hourly model sets are level 3, which has 24 hourly
model sets and each model set is constructed from three
pattern sets from level 2. Furthermore, level 4 is daily
models generated by multiple sets of daily data. The last
level is daily model sets which contain seven model sets
through the whole week from Monday to Sunday. Each
model set contains multiple daily models through the

411

whole data interval. For scoring purposes, we merge all
daily models into one daily model and discuss it specifical-
ly in the next section (We do not merge them in the first
place because we apply the K-Fold Cross Validation ap-
proach in all daily models to set thresholds). Our personal-
ized model is composed of all of these seven models.

Scoring Functions of Behaviors for Anomaly De-
tection�
The previous section explains how a personalized model is
constructed. In this section we demonstrate how the model
is used to detect anomalous behaviors. Given a personal-
ized model, via a scoring function, we calculate how simi-
lar/dissimilar the current behavior is to the model. Here we
suggest two scoring methods as follows.
Scoring Similarity in Behaviors �
One way to score a new behavior is to evaluate the simi-
larity between the new and previous behaviors. More spe-
cifically, we calculate the score of similarity between the
test pattern sets and the corresponding hourly model in the
personalized model.
 Firstly, we merge all corresponding model sets from the
personalized model into one model set. Later we use the
merged personalized model to calculate the score. To use
the Monday model set (level 5) as an example, we merge
all Monday daily models (level 4) into one Monday model.
Additionally, we merge hourly model sets (level 3) corre-
spondingly, and the three pattern sets (level 2) into one
model. On level 1, if two patterns are the same, we sum up
all frequencies; otherwise we simply copy the pattern and
frequency into the merged pattern set and all the frequen-
cies are divided by the number of days in the end.
 To score new data in the one-hour time period, firstly,
we extract a pattern set by applying the SPAM algorithm to
the new data. Then we compare this pattern set with the
merged personalized model. Here we discuss three cases:
Case 1 is when a pattern appears in both the model and the
test pattern set. Case 2 is when a pattern occurs only in the
model (hence absent from the test pattern set). Case 3 is
when a pattern appears in only the test pattern set (hence
absent from the model).
 We define the similarity scoring function SF1 as below:

�� � ����������� ������ (1)

�� � � ��
��������������������������

����
 (2)

��� �

��

��
���

��

��

�
 (3)

 ����� is the frequency of pattern i in the personalized mod-
el and ����� is the frequency of pattern i in the test pattern
set, so �� means the frequency of overlapping pattern i. ��
is the sum of all overlapped pattern frequency values. Cas-
es 2 and 3 are not considered because the overlapped pat-
tern frequency is always zero. �� is the total frequency
value in the personalized model; similarly, �� is the total
frequency value in the test pattern set. Consequently, SF1

represents the percentage of overlapped pattern frequency
in the training and test sets, and then the value is normal-
ized.
Scoring Difference in Behaviors �
Another way to score a new behavior is to evaluate the
difference between the new and previous behaviors. It is
almost the opposite of similarity but calculated by a differ-
ent set of formulas, which we call SF2. We calculate the
score of difference between the test pattern sets and the
corresponding hourly model in the personalized model. We
define SF2 as below:

�� � ������ � ������� (4)

�� � � ��
����������������������������������

����
 (5)

��� �
��

������
 (6)

 �� is the difference in frequency of pattern i between the
personalized model and the test set. We subtract the test
pattern frequency ����� from the training pattern frequency
�����, for pattern i, and then take the absolute value. More-
over, the difference of pattern frequency for Case 2 and 3 is
its frequency subtracted by zero which equals to itself.
����and ���� are defined the same as in the previous section.

Score Thresholds of Anomaly�
After a score for the current behavior is obtained, we need
to mark thresholds to identify if the current behavior is
anomalous or not. This section discusses two scenarios. In
the first scenario, only data from the user (negative exam-
ples) are available for training. In our case, this scenario
proposes an anomaly detection problem. In the second sce-
nario, in addition to data from the user (negative exam-
ples), data from other users (positive examples) are also
available for training.
Anomaly detection (with only user data during train-
ing)
In this scenario, the user’s smartphone can collect the us-
er’s behavioral data, build a personalized model, and detect
anomalous behaviors. That is, user data need not be shared
to any other entities. To identify anomaly, we use K-Fold
Cross Validation to find a threshold. In the personalized
model, one of the daily model sets (level 5) has multiple
daily models (level 4). Additionally, if there are k models,
we merge k-1 models as a training mode by using the scor-
ing strategy that we introduce in the previous section to
score the remaining model. After doing k times of itera-
tions with a different k, we can get k score lists. More spe-
cifically, each score list has 24 scores since each daily
model has 24 models (level 3), which correspond to 24
hours a day. Now we take the 24 lowest scores across all
score lists as our threshold list (the lower score is, the few-
er similarities exist between training and test). We refer to
it as ��� (0 <= i <= 24), which represents each hour’s
threshold. Therefore, when a new behavior comes, we cal-
culate the score by merging all models in the personalized

412

model and using it as a training model. Once the score is
lower than the corresponding threshold, we report it as an
anomalous event. We call this Strategy 1. Furthermore, we
devise a refined strategy that adjusts the threshold to re-
duce false positive rate, and we call it Strategy 2. Instead of
using the fixed threshold, we reduce threshold from ��� � (0
<= i <= 24) to ����� � (0 <= i <= 24) every time it detects a
new normal activity as stolen.
Using behaviors of other users to help determine
thresholds
In this subsection, we explore the scenario when behavior
data from other users are also available. In a real-world
setting, behavior models from participating users can be
uploaded and stored in an external central database/server.
To preserve the privacy of participating users, the central
server determines the score thresholds without sending
behavior models to any user. Since behaviors of other users
(potentially thieves) are not desirable, we would like to
determine another score threshold (���) for behavior of
other users. Figure 2 illustrates the relationship between
the two thresholds. On the left panel of Figure 2, only the
user data are used and ��� is identified. On the right panel
of Figure 2, we also identify ��� from other users’ data.
Behaviors between the two thresholds are in the “gray ar-
ea”, and will be classified as “unknown”--neither the user
(normal) nor others (anomalous).

Figure 2 —Setting thresholds with data from the user, and with
data from both the user and other users in an external database.

More specifically, the external dataset with behavior from
other users must have enough user data and then be used in
a similar way to set����. Firstly, we find the highest score
for other users from the database (behaviors from the other
users are considered anomalous) and then set a threshold
between this and the closest higher user score. Moreover,
as is shown in Figure 2, we set ���� to be not the lowest
user score, but between this user score and the closest low-
er validation score. Then we predict events, of which the
score is over ���, as a normal activity, those of which the

score is between ��� and ���� as unknown behavior, and
those below will be reported as stolen. This is Strategy 3.
Dynamically adjusting the thresholds
 To dynamically adjust the threshold during detection,
similar to Strategy 2, we use the false positives to decrease
���

, rendering Strategy 4.

 Table 1 summarizes our four strategies. They all use user
data only during the training process, but Strategies 1 and 2
only use user data to set the threshold, while Strategies 3
and 4 use both user and other data to set the thresholds.
Moreover, Strategies 1 and 3 use static thresholds during
detection, while Strategies 2 and 4 adjust thresholds dy-
namically during detection to reduce false alarms.

Table 1 —Overview of Strategies on setting
and adjusting the threshold.

�

Experimental Evaluation
The dataset we use is sourced from Reality Mining (Eagle
et al. 2009), a project conducted at the MIT Media Labora-
tory. The data were collected from the smartphones of 94
individuals working or studying at a university from Sep-
tember 2004 to June 2005. We are provided with call logs,
Bluetooth devices’ connection data, cell tower IDs, appli-
cation usage, and status of mobile phones. Of these 94 sub-
jects, 68 were working or studying in the same general
location on the main campus. The other 26 subjects were
new students from the business school in the university.
The dataset contains 90% graduate students and 10% staff.
 For each user, after preprocessing, we have three types
of data: (1) the cell tower transition time and cell tower ID
pair (e.g., 26-Jan-2005 16:42:35, 24127.0011), which rep-
resents location information, (2) log time and application
name pair (e.g., 26-Jan-2005 16:39:51, Menu), and (3) time
and activity pair (e.g., 26-Jan-2005 16:57:30, 1), which
uses 1 and 0 to represent whether the phone is being used
or not. Since Type 2 and 3 are quite sparse in the dataset,
we only use the first type of data in this study. That is, we
focus on the spatio-temporal behavior of the users. To en-
sure sufficient data for building and evaluating our models,
we removed users with fewer than 120 days of data in the
sampling period. Data for 42 users remained valid. How-
ever, some of the users have long periods of no activities.
����To evaluate our system, we use several criteria:
1. True Positive Rate (TPR)

 ��� � ��

�����
 (7)

2. False Positive Rate (TPR)

413

��� �
��

�����
 (8)

3. Area Under the ROC Curve (AUC)

TP is denoted as True Positive and is counted only when
the phone is defined as stolen and the algorithm predicts
correctly. FN means False Negative and is counted when
the algorithm cannot detect stolen status. Similarly, FP
represents False Positive and is counted when the algo-
rithm gives an false alarm, and TN means True Negative
and is counted when the algorithm recognizes the owner’s
identity. A summary is in Figure 3.
 When the incoming user’s behavior score is between ���
and ���� , the behavior is classified as UN (unknown nega-
tive) and when the other users’ behavior score between
these two thresholds is classified as UP (unknown posi-
tive). Since our algorithms can choose not to make predic-
tion, we modify TPR and FPR to include unknown predic-
tions in Equation 9 and 10. Additionally, Equation 11 and
12 calculate the unknown positive and negative rates.
 All modified formulas are shown below:

��� �
��

��������
 (9)

��� �
��

��������
 (10)

Unknown Positive Rate (UPR)
��� �

��

��������
 (11)

Unknown Negative Rate (UNR)
��� �

��

��������
 (12)

AUC is the area under the Receiver Operating Characteris-
tic (ROC) Curve, the X axis of ROC represents FPR, and
the Y axis represents TPR. We use different thresholds to
plot the ROC and calculate the AUC for that curve.

Figure 3 —Classifications table with unknown prediction

Results for Anomaly Detection Algorithms �
For anomaly detection, the training set has only data from
the phone owner (negative class). We first compare the
outputs of our scoring functions SF1 and SF2. We then
compare the outputs of SF1 and SF2 with that of Hidden
Markov Model, which estimates the probability of se-
quence. Finally, we compare the outputs of using Strategy
1 and Strategy 2. To compare the outputs of the scoring
functions with that of HMM, we use AUC, which provides
a single measurement for comparison. Since high false

positive rates could be annoying to users and might cause
the user to ignore the alerts, we measure AUC up to 1%
FPR. That is, we measure the performance of the algo-
rithms with FPR at 1% or below. Table 2 shows the AUC
values for the three algorithms. We observe that SF1 and
SF2 are similar, but both are more than twice as effective
as HMM-R with FPR under 1%.

Table 2 —AUC for SF1, SF2 and HMM (FPR under 1%)

 SF1 SF2 HMM
AUC 0.008005 0.008007 0.003235

 Table 3 shows the average TPR and FPR of Strategy 1 and
2. As we expect, Strategy 2, with an adjustable threshold,
is more effective than Strategy 1 with a fixed threshold.

Table 3 —Average TPR and FPR for all users

Results for Classification �
While anomaly detection algorithms uses a training set that
contains data from only the phone owner (negative class),
classification algorithms uses a training set that contains
data from both the phone owner (negative class) and other
users (positive class). In this section, we evaluate Strategy
3 that uses a fixed threshold and Strategy 4 that uses an
adjustable threshold. Both strategies use two thresholds
and output an unknown prediction when the score is be-
tween the two thresholds. Table 4 shows the results for
each strategy. Comparing Table 4 with Table 3, we observe
that the TPR rates are similar for anomaly detection (Strat-
egies 1 and 2) and classification (Strategies 3 and 4), but
the FPR rates are significantly lower for classification. The
improvement is mainly due to the availability of data from
the positive class (other users), which helps set a second
threshold to detect “thieves”. Strategies 3 and 4 have an
UPR rate of about 9%, which means 9% of the positives
are predicted as unknown.

Table 4 —Strategy 3 versus Strategy 4

Though Strategy 4 achieves a 0.9% FPR which represents
roughly 1 false alarm every five days, we would like to
investigate the best-case scenario when the FPR is 0%.
That is, the phone owner would not experience any false
alerts. We manually find the threshold value, ����, that
achieves a 0% FPR and measure the TPR. Table 5 shows a
TPR of 86.1%, which is only about 1% lower than Strate-

���
��

��� �	 �
� �	
��
	
� �	

414

gies 3 and 4. Moreover, because ���� is the best threshold
we can achieve with respect to FPR, we can compare ����
(best-case scenario) with �� (in Strategy 2) and ��� (in
Strategy 4) to see how close they are to the best of circum-
stances. In Table 5, both strategies find thresholds that are
close to the best threshold—1.6% higher for Strategy 2 and
4.1% higher in Strategy 4.

Table 5 —Performance of using �����

Comparison with Classification Algorithms �
We would like to compare our approach in Strategies 3 and
4 with other machine learning algorithms for classification,
in which positive and negative examples are both available
for training. Particularly, we use Decision Trees (C4.5),
Decision Tree with Rule Post-pruning (C4.5 –P), Random
Forests (RF), Artificial Neural Networks. We extract four
features for each data record. Feature 1 and 2 are number
of patterns that are common to both the user and the other
users. Feature 3 is the number of patterns that occur only to
the user. Feature 4 is the number of patterns that occur only
to the other users.
 Table 6 shows the results of our approach and other
machine learning algorithms. Other learning algorithms
have a higher TPR, but also a higher FPR than our two
algorithms. As we discussed before, we prefer the FPR to
be 1% or lower since a user might get annoyed by frequent
false alerts and disable the system. Also the likelihood of
getting a phone stolen is generally not high. Thus, a low
FPR is more desirable than a high TPR in practice. Our
two algorithms have the two lowest FPRs compared with
the other algorithms, and still achieve more than 87% TPR.

Table 6 —Performance of different classification algs.

Conclusions

In this paper, we propose an approach to detect stolen
phones. First, we preprocess data into hourly subsets. Se-
cond, we apply a modified sequential pattern mining algo-
rithm to extract sequential behavioral patterns from the
data. Third, from those patterns generated from hourly da-
ta, we construct a personalized model with five levels of
abstractions. To analyze the similarities between a current
pattern and a pattern in the model, we propose scoring

functions to calculate how similar a new behavior is to the
past behavior. We use user data and K-Fold Cross valida-
tion to find the threshold and adjust it when alerts are con-
firmed to be false during the detection phase. Alternatively,
we can add external data from other users to find the
threshold and similarly adjust it when alerts are confirmed
to be false. Our experimental results indicate that our ap-
proach achieves 87.9% TPR with 0.9% FPR on detecting
stolen phones. Moreover, because the training time of our
algorithm for one year’s data is less than 20 seconds and
test time is far less than one second, our system can easily
run on mobile phones. Since there is no other existing sto-
len phone self-detection system, this is the most viable
approach up to date.

References
Ayres, J; Flannick, J; Gehrke, J.; Yiu, T 2002. Sequential pattern
mining using a bitmap representation. Proceedings of the eighth
ACM SIGKDD, 429-435.
Eagle, N.; Pentland, A.; and Lazer., D. 2009. Inferring Social
Network Structure using Mobile Phone Data. Proc. National
Academy of Sciences (PNAS), 15274-15278
Farrahi, K.; Gatica-Perez, D. 2010. Probabilistic Mining of Socio-
Geographic Routines from Mobile Phone Data. IEEE Journal of
Selected Topics in Signal Processing. 2010, Pages 745 – 755.
Hu, H. 2015. Using a Personalized Machine Learning Approach
to Detect Stolen Phone. MS Thesis, Florida Tech.
Liao, Z. X.; Rey P; Lei, Shen, T. J.; Li, S. C.; Peng, W. C. 2012,
AppNow: Predicting Usages of Mobile Applications on Smart
Phones. Conference on Technologies and Applications of AI., 300
– 303.
Liao, Z. X.; Pan, Y. C.; Peng, W. C.; Lei, P. R. 2013. On Mining
Mobile Apps Usage Behavior for Predicting Apps Usage in
Smartphones. Proc 22nd ACM intl conf on information &
knowledge management, 609 – 618.
Lu, E.; Lin, Y.; and Ciou, J-B. 2014. Mining mobile application
sequential patterns for usage prediction. IEEE International Con-
ference on Granular Computing, 185 – 190.
Shin, C.; Hong, J. H.; Anind, A D. 2012. Understanding and Pre-
diction of Mobile Application Usage for Smart Phones. Proceed-
ings of ACM Conference on ubiquitous computing, 173 – 182.
Tandon, G.; and Chan, P. 2009. Tracking User Mobility to Detect
Suspicious Behavior. Proc. SIAM Intl. Conf. on Data Mining,
871-882.
Zhang, C.; Fisher, R.; Wei, J 2010. I Want to Go Home: Empow-
ering the Lost Mobile Device. IEEE 6th Intl Conf Wireless and
Mobile Computing, Networking and Communications, 64 - 70.

� � ���

� � ��

�� � ��

415

