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Abstract 
We propose a machine learning approach for detecting 
harmful hand behaviors in autistic children. Our approach 
extracts features from a wearable motion sensor, applies the 
Random Forest algorithm, and uses sequence post-
processing to correct potentially incorrect classifications.  
Our experimental results indicate that our proposed system 
can get a 96% accuracy rate in detecting harmful behavior, 
95% accuracy in distinguishing harmful behaviors from 
normal but similar behaviors. 

 Introduction   
Human activity recognition becomes increasingly popular 
because it has a strong potential for services such as sports 
tracking, health care, special needs, and security.  A faculty 
member at our university helps treat autistic children. One 
of his goals is to design therapies that help autistic children, 
who sometimes perform harmful actions to themselves. To 
evaluate the effectiveness of his therapies, he would like to 
count the number of harmful actions in an automated man-
ner, instead of having someone count manually. This pro-
ject tries to detect harmful hand behaviors from motion 
sensor data, which can be used for counting harmful be-
haviors. Some other studies focus on hand behavior recog-
nition, but our target is detecting some abnormal behaviors 
such as aggressive attacks toward the head or knees. Since 
abnormal behaviors occur much less frequently than nor-
mal behaviors, we need to handle the imbalance data issue.  
     In this paper, the raw sensor data was acquired from a 
single wearable sensor located on the user’s wrist. We first 
use a windowing process to segment the raw data into 
fixed-size windows.  Then, we extract features from each 
window.  A large set of features can lead to large computa-
tional overhead and may potentially decrease the accuracy 
of classification. Therefore, selecting a small and efficient 
set of features plays an important role. We use Random 
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Forest to combine multiple decision trees to improve accu-
racy. We also design a Sequence Post-Processing method 
that tries to correct the potentially incorrect classifications 
from the Random Forest. 
     Our empirical results indicate over 96% in the true posi-
tive rate of the slapping class.  We optimize the results by 
selecting the best combination of forest size and feature 
subset size for Random Forest. Furthermore, our results 
indicate that Sequence Post-Processing helps decrease the 
false positive rate. 

Related Work 
Some of the studies focus on the body movement recogni-
tion. Krause et al. (2003) and Mannini et al. (2010) use the 
Hidden Markov Model (HMM) as their classification algo-
rithm, and they did experiments to prove that a good sam-
pling rate can improve the accuracy. Li et al. (2014) use 
Singular Value Decomposition (SVD) to capture the un-
derling relationship among the features and reduce the 
number of features. Features obtained from SVD are help-
ful for discriminating between the classes. They use the 
Back Propagation Neural Network (BPNN) as their classi-
fication algorithm. Yang et al. (2008) use Principal Com-
ponent Analysis (PCA) to reduce the feature dimensionali-
ty, and design a divide-and-conquer method to separate the 
dynamic and static states. Finally, they use BPNN to per-
form classification. Yang et al. (2010) use Naive Bayes as 
the classification algorithm, which assumes that the fea-
tures are conditionally independent given the class.  
     Some studies focus on the hand behavior recognition. 
Hong et al. (2000) compute features from the input video 
images which are 2D positions of a user and use Finite 
State Machine (FSM) to be the classification algorithm. 
Pylvanaimen (2005) uses HMM. The recognition system 
has a pre-processing step which removes the effect of de-
vice orientation from the data. Wu et al. (2009) use Sup-
port Vector Machine (SVM), which is a margin classifier, 
and compares the performance in two ways: user-
dependent and user-independent. 
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    The data for human activity recognition can also come 
from multiple sensors resources, or other resources instead 
of accelerometer. Nam et al. (2013) acquire data from an 
accelerometer sensor and a single grid-based image sensor. 
The data in different channels are processed by SVM, and 
the results show a great improvement by fusing data from 
the two sensors. Ward et al. (2006) use two sensors: accel-
erometer and microphone. The authors use linear discrimi-
nant analysis to analyze the sound data and HMM to ana-
lyze the acceleration data. Anjo et al. (2012) use a real time 
continuous video stream as data and BPNN for classifica-
tion. 

Approach 
The main problem addressed by this paper is how to detect 
harmful actions from motion sensor data. In this section, 
we introduce the main components of the overall system. 
First, for data pre-processing, we extract features and gen-
erate instances.  Then we use Random Forest to perform 
classification.  Finally, we use Sequence Post-Processing to 
improve the classification from Random Forest by trying to 
correct potentially incorrect classifications. 

Data Pre-processing and Feature Extraction 
To obtain the raw sensor data, an associate of the behavior 
analysis professor simulated slapping and drinking behav-
iors.  The reason for choose slapping and drinking is that 
the two behaviors are very similar and we would like to 
study if we can distinguish them. Besides the sensor data, 
we have an action table that contains the starting/ending 
time for each action. 

 The raw data are measurements from a wearable sensor, 
which includes an accelerometer and a gyroscope. From 
the accelerometer, we use Linear Acceleration, which in-
cludes the object’s acceleration and excludes Earth’s gravi-
tation. For both the accelerator and gyroscope, the senor 
provides measurements in the x, y, z directions every 10 
milliseconds. Which generates 100 samples per second. 
     Since the starting/ending time labels for user actions 
have a precision of 1 second while the sensor has a preci-
sion of 10 ms, we need to refine the precision of the time 
labels for user actions.  We first plot the data and manually 
determine more precise starting/ending time labels up to 
two decimal places for the user actions.  Finally, we label 
each record (sample) as one of three classes: slapping, 
drinking, and “no action.” 
     One single data record does not contain enough infor-
mation for our machine learning system. Therefore, we 
need to window the data, so that we can extract some use-
ful information/features from a group of data records. To 
determine the window size, we set it to be the length of the 
shortest action in our data set. That is, the window size is 
large enough to represent an action, but it is not too large to 
contain irrelevant data.  In our data set, the window size is 

25 (i.e., a duration of 250 ms). For each window, we then 
label it with a class that is associated with more than 50% 
of the data records. 

Since the current behavior might be influenced by the 
previous behavior, we concatenate three previous windows 
to the current window to construct an instance for machine 
learning. The class label for the instance is the class label 
for the current window. 
      In this paper, we use seven features, which are: (1) 
mean value; (2) the absolute value between min and max: 
the difference between min and max is useful in discrimi-
nating whether there is an action happening now or not; (3) 
root mean square value: this feature is to describe the dis-
tribution of the data in one period; (4) standard deviation; 
(5) linear regression: linear regression is to represent the 
trend of a group data; (6) Pearson correlation between axes: 
Pearson correlation can represent the relation in two di-
mensions, either positive related or negative related; (7) 
Pearson correlation between accelerometer and gyroscope 
in the same axis. Overall, each window has 39 features. 

Random Forest and Imbalance Data Set 
Our data set is an imbalance data set, because the number 
of negative class instances (“no action”) is much larger 
than the number of positive class instances (“slapping” or 
“drinking”). Random Forest (Breiman 2001) generally 
achieves higher accuracy and handles a large number of 
features. We generate multiple trees to solve the imbalance 
data set problem. The data set for each tree contains all 
instances from the positive (minority) class and the same 
number of instances from the negative (majority) class.  
That is, we down sample the negative class to create multi-
ple balanced data sets for the trees.   
    As mentioned above, there are two parameters in Ran-
dom Forest: the size of a feature subset for each node and 
the number of trees. According to Breiman (2001), he uses 
100 trees, and the feature subset size is log2M + 1, where M 
is the size of the entire feature set. But we found that, using 
these two values do not obtain a significant improvement 
in our data set. Therefore, we want to find the best combi-
nation of the feature subset size and the forest size. We 
find these two parameters by using a validation set.  
     After a random forest is built, we get the initial classifi-
cations of each instance in the test set. However, according 
to initial experiments, we find that using the majority vot-
ing strategy is not highly accurate. Therefore, we want to 
find a more appropriate vote threshold method to deter-
mine the class for each instance, not just use the class with 
the most votes as in the majority voting�������	�
     To find the voting threshold, we use Random Forest to 
classify instances in the validation set.  For each instance, 
we gather three values: the number of trees that predict the 
instance as the slapping class (S), drinking class (D), or no-
action class (N). Figure 1 illustrates how we choose the 
threshold for the drinking class. The X axis represents the 
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number D – N. The Y axis represents the number of in-
stances. If an instance shows strong characteristics of being 
a drinking class, D will be larger than N and D – N is posi-
tive; otherwise, D – N is negative. That is, we expect the 
blue curve to decrease, while the red curve increases. The 
two curves cross each other with the same number of in-
stances for the drinking class and the no-action class. For 
example, in Figure 1 the crossing point is indicated by the 
green dotted vertical line, the crossing point located at D – 
N is 12. To minimize the error for the validation set, we 
choose the crossing point to be the threshold for D – N for 
classifying an instance to be in the drinking class.  That is, 
if D – N of an instance is larger than the threshold, the in-
stance is labeled as the drinking class; otherwise the in-
stance is labeled as the no-action class.  The threshold for 
the slapping class is determined in a similar way with S - N 
in the X axis. 
 
�

�

Figure 1. Selecting the voting threshold for the drinking class. 

Sequence Post-processing 
The Sequence Post-Processing step is used to potentially 
correct some incorrect classifications by a tree or Random 
Forest. We analyze sequences of classifications and deter-
mine if each sequence is consistent. For example, we as-
sume that a drinking action lasts two seconds, if only one 
drinking instance exists while the previous and next in-
stances belong to the no action class, this drinking instance 
is likely a wrong classification. 
     Based on the training set, we determine several parame-
ters to correct probably incorrect predictions that come 
from Random Forest. First, we determine the minimum 
duration and maximum duration of drinking (or slapping) 
action. Second, we identify the minimum interval between 
any two drinking (or slapping) actions. 
      Due to space limitations, we outline our algorithm-- 
further details are in (Zhang, 2015). We first determine 
drink_gap, drink_min, and drink_max from the training set. 
drink_gap represents the minimum number of instances in 
No_action class which are between one drink action and 

another action; drink_min and drink_max correspond to 
the minimum and maximum number of instances among 
all the drink actions. As long as a drinking class instance 
exists, the algorithm groups the drinking instances to form 
a drinking block. If the previous drink action is too close to 
the current drink action, then the program will merge these 
two drink actions into one action as long as it does not ex-
ceed the maximum length for a drink action (drink_max). 
That is, when appropriate, we merge two drinking actions 
into one, which might be incorrectly separated. Otherwise, 
the previous drink action has an enough interval with the 
current drink action and the program sets the current drink 
action as a legal drink action.  

Experimental Evaluation 
In this paper, we use three data sets to evaluate our algo-
rithm performance. All the data come from a wearable sen-
sor on the user’s wrist. The first data set includes 9 knee-
slapping actions. This data set has 47 seconds of data and 
each second has 33 records. The second data set includes 
10 head-slapping and 5 tea-drinking actions. These actions 
happen randomly. This data set has 1773 seconds of data 
and each second has 100 records. The third data set in-
cludes 29 head-slapping and 29 tea-drinking actions. This 
data set has 310 seconds of data and each second has 100 
records. The head-slapping and knee-slapping motions last 
approximately 0.5 second, and the tea-drinking motion 
lasts around 2 seconds for all data sets mentioned above. 
     Since the data sets are not balanced, using accuracy to 
measure performance is not sufficient. We consider the 
slapping and drinking motions as different positive classes, 
and the remaining instances (“no actions”) to be of the 
negative class. We calculate the true positive rate and the 
false positive rate for the two positive classes.  Also, since 
we select a desirable threshold, we do not report results in 
terms of ROC. 
 

Table 1 Confusion matrix of classification (each cell has number 
of instances) 

 
     
  
    Using the confusion matrix in Table 1, we define the true 
positive rate of slapping as a/(a+b+c), the true positive rate 
of drinking as e/(d+e+f), and the false positive rate of no 
action as (g+h)/(g+h+i). In behavior analysis, we would 
also like to estimate whether the system can correctly iden-
tify each slapping action and drinking action. Therefore, to 
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measure the performance of actions, we use precision and 
recall.  Using the confusion matrix in Table 1, the recall of 
slapping is a/(a+b+c), the precision of slapping is 
a/(a+d+g); the recall of drinking is e/(d+e+f), the precision 
of drinking is e/(b+e+h). 

We extracted the features from the raw data set. We set 
25 records in one window, and we used the continuous 4 
windows to be one instance. 39 features were extracted in 
one window; thus, 39 * 4= 156 features in one instance. 
For evaluation purposes, we divide the data set into a train-
ing set and a test set. We use 1/4 of the whole data set to be 
the test set, and 3/4 of the whole data set to be the training 
set. In the training set, we chose 1/3 data to be the valida-
tion set; the validation set is not involved in the training 
process. The training, testing, and validation sets kept in 
similar class distributions. 
     For each of the three data sets, we used six methods to 
evaluate the performance.  Details are listed in Table 2.  
 
 

Table 2. The different methods with different components 

 
 
 
 In method 1, we evaluate the performance of the Deci-
sion Tree algorithm. In method 2, we want to compare the 
difference between Decision Tree and Random Forest. In 
method 3, we expect that there is some improvement with 
the addition of Sequence Post-Processing to Random For-
est. In method 4, we expect that adding validation thresh-
old could help the system improve the accuracy. In method 
5, we want to test whether using the best combination of 
forest size and feature subset size could improve the per-
formance of Random Forest. In method 6, we add all the 
components, and expect it to have the best performance 
among the six methods. 
     For each method, we conduct ten experiments with dif-
ferent pairs of training and testing sets.  In each experiment, 
we measure two true positive rates (for slapping and drink-
ing) and one false negative rate. We report the average 
value of the ten experiments. 
 
Results from the first data set�
The first data set contains 9 knee-slapping motions. The 
results are shown in Figure 2 and Figure 3. 
   We observe the following points from Figure 2: (1) The 
true positive rate of the slapping class is 100% in all meth-
ods. (2) Method 2 and 3 have the same result because Se-
quence Post-Processing does not affect the slapping class. 
(3) In method 4, we include the validation threshold, but 

the false positive rate increases, and the overall accuracy 
decreases. Because there are only 9 slapping actions in this 
data set, part of the 9 actions will be split to be the valida-
tion set, which makes the threshold less accurate. (4) In 
method 5, we use the combination of 100 trees and 15% 
feature subset rate in Random Forest. Comparing with oth-
er methods, method 5 yields the highest true positive rate in 
the drinking class, and the lowest false positive rate in 
No_action class, which show that the combination of the 
two parameters improves the accuracy for Random Forest. 
(5) As we observe from method 4, adding validation 
threshold affects the false positive rate. Method 6 contains 
all the components in method 4, thus the false positive rate 
in method 6 must be influenced by the validation threshold. 
However, the false positive rate of drinking in method 6 is 
lower than it is in method 4, which shows that the best 
combination of two parameters for Random Forest can 
improve the accuracy of using validation threshold. For the 
recall rate and precision rate, all the methods have 100% 
from Figure 3. One possible reason is that the data set is 
less complicated and each slapping action can be easily 
identified. 
Results from the second data set 
The second data set contains 10 head-slapping and 5 tea-
drinking motions. The results are shown in Figure 4 and 
Figure 5. 
 
 
 

 
Figure 2. True positive rate and false  

positive rate of the first data set 

 

 
Figure 3. Actions recall rate and precision rate of the first data 

set 
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Figure 4. True positive rate and  

false positive rate of the second data set 

 

 
Figure 5. Actions recall rate and  

precision rate of the second data set 

 
According to the results in Figure 4, we yield a good 

true positive rate for the slapping class. In method 1, using 
the normal standard Decision Tree could already enable us 
to obtain high accuracy in both slapping and drinking clas-
ses. In method 2, Random Forest decreases the false posi-
tive rate of no action, but also decreases the true positive 
rate of drinking. In method 3 and method 4, we obtain the 
low false positive rates: 2% and 1.5%; however, the true 
positive rates of drinking class significantly fell to 80% 
and 79.3%. The trade-off of drinking or no action exists in 
methods 3 and 4. As the results indicate in method 5, find-
ing the best combination of forest size and feature subset 
size for Random Forest is a reasonable method. We use 
100 trees and 20% feature subset size for Random Forest in 
this data set. In method 6, since we use the best combina-
tion of the two parameters for Random Forest, the true 
positive rate of drinking becomes better than it is in meth-
ods 3 and 4, but is still lower than it was in methods 1, 2 
and 5. However, the false positive rate in method 6 is much 
lower than it is in methods 1 and 2. Therefore, we observe 
that Sequence Post-Processing and validation threshold 
have a tradeoff between the true positive rate in drinking 
and the false positive rate in No_action in this data set.  
Considering the overall performance, the method 5 is the 
best choice. 

     In the second data set, there are only five drink actions, 
some of them are located in the test set. Therefore, the 
number of actual drink actions in the test set will be just 
one or two. As long as there are some incorrectly classified 
drinking actions, it will rapidly decrease the precision of 
drinking--the results are shown in Figure 5. That is one 
possible reason why in all methods the precision of drink-
ing is low. However, in method 3 after Sequence Post-
processing is added, it prevents predicting the drink actions 
which are too short or the interval with slapping action is 
too short. That is one possible reason the precision rate of 
drink action to increase in method 3. 
Results from the third data set 
The third data set contains 29 head-slapping and 29 tea-
drinking motions. The results are shown in Figure 6 and 
Figure 7. 
 
 

 
Figure 6. True positive rate and  

false positive rate of the third data set 

 

 
Figure 7. Actions recall rate and  

precision rate of the third data set 
 

 From Figure 6, Decision Tree does not achieve 100% 
accuracy. Moreover, the accuracy of the drinking class falls 
to 88.3%, and the false positive rate increases to 20.5%. 
According to the results from Decision Tree, the data set 
might contain noise. After implementing Random Forest in 
method 2, the accuracy of drinking increases, and the false 
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positive rate falls to 11.7%. These results indicate that 
Random Forest has a strong ability to handle the noisy 
data. From method 3 to method 4, there is no improvement 
by implementing the validation threshold or Sequence 
Post-Processing. On the contrary, using validation thresh-
old in method 4 has a bad effect on the accuracy of slap-
ping. One possible reason is that Random Forest is weak in 
finding the threshold of the slapping class. In method 5, we 
use 100 trees and 30% feature subset rate for Random For-
est. As we expect, using the best combination of forest size 
and feature subsets size of Random Forest significantly 
improves the performance. The accuracy of slapping and 
drinking reaches 96.3% and 94.6% respectively, and the 
false positive rate decreases from 13.8% to 10.8%. In 
method 6, we observe that the false positive rate falls to 
8.3%, the true positive rate of drinking increases from 
94.6% to 95.6%, and the true positive rate of slapping re-
mains the same. It shows that using validation threshold 
and Sequence Post-Processing has a good effect on de-
creasing the false positive rate of No_action, and increas-
ing the true positive rate of drinking in this data set. 
     According to Figure 7, Decision Tree has a drink preci-
sion of just 39.3%.  However, Random Forest increases the 
drink precision rate to 50.4%. After adding validation 
threshold and Sequence Post-processing, the drink preci-
sion reaches at 74.8%. As we expect, method 6 obtains the 
best performance in both recall and precision. It shows that 
Sequence Post-processing could correct some of the mis-
takes. Results from the third data set shows that finding the 
best combination of forest size and size of feature subset 
for Random Forest is important. 

Contributions and Limitations  
Our research has a few contributions.  First, we propose an 
algorithm for detecting harmful behaviors among autistic 
children using a wearable motion sensor.  For evaluating 
the effectiveness of therapies, the algorithm can be used to 
automate the process of counting harmful behaviors. 
     Second, according to the experimental results, we ob-
tain an over 96% true positive rate of the slapping class in 
the three data sets. At the same time, we also obtain an 
over 95% true positive rate of the drinking class. These 
achievements give us confidence in detecting the harmful 
hand actions and distinguishing harmful hand actions from 
normal hand actions. 
     Third, our algorithm could find a more effective combi-
nation of forest size and feature subset size for Random 
Forest, which yields a better performance than the parame-
ter values used by Brieman (2001). For different data sets, 
the combination of these two parameters may change, so 
automating the selection of parameter values is necessary. 
     Fourth, we propose the Sequence Post-Processing 
method to correct some of the mistakes. The method finds 
parameters from the training data to decide if an action is 

too short, too long, or too close to another action and tries 
to correct possible mistakes in a sequence of classifications. 
Our experimental results indicate that Sequence Post-
Processing helps decrease the false positive rate. 
 Our study is limited to data sets with two harmful behav-
iors from one person.  Further studies would include more 
harmful behaviors from multiple people. 
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