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Abstract

Sequential pattern mining produces a vast number of frequent
patterns due to the combinatorial nature of the problem and
redundant information in the results. Several pattern min-
ing techniques (e.g., closed-patterns, maximal-patterns, gap
constraints, recency and compactness constraints) have been
studied to reduce the size of the results. However, these ap-
proaches can still generate large result sets often containing
patterns of little use or interestingness to the end users. Even
when many interesting results are returned, finding the most
useful can be difficult. By applying ideas from subgroup dis-
covery to sequential pattern mining, we have developed ex-
act and heuristic-based algorithms for identifying and ranking
the top-k most significant patterns from the complete collec-
tion of frequent patterns.

Introduction

Ever since Agrawal and Srikant first published their re-
search, Mining Sequential Patterns (Agrawal and Srikant
1995), sequential pattern mining has been of broad and cur-
rent interest. In many real world situations, the ordering of
events (i.e., the presence of sequences) is significant and
the detection of frequent subsequences may be useful. Some
examples include the verification and development of clin-
ical pathways (Uragaki et al. 2016), determining product
placement within retail stores (Aloysius and Binu 2013), and
identifying interesting protein-protein interaction sites (Hsu
et al. 2007). Due to the combinatorial nature of the mining
task, many sequential pattern mining algorithms suffer from
pattern explosion, producing large, redundant pattern sets.
Sifting through such results can be difficult and time con-
suming, so many techniques have been developed to address
this.

In their work, Agrawal and Srikant discussed the mining
of max patterns (i.e., maximal-patterns), while Yan et al. first
tackle the problem of mining closed-patterns (Agrawal and
Srikant 1995; Yan, Han, and Afshar 2003). Both approaches
reduce the size of the results by reducing redundancy.
Several constraint-based mining approaches have been ex-
plored over the years, including gap constraints (Antunes
and Oliveira 2003; Li and Wang 2008; Srikant and Agrawal
1996), recency and compactness constraints (Chen and
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Hu 2006), relaxation of itemset/transaction constraints, and
taxonomy-based constraints (Srikant and Agrawal 1996).
While the majority of these were developed to incorporate
domain knowledge or requirements, they also reduce the
number of the results. However, none of these consider the
usefulness or interestingness of the results.

In this paper, we describe our attempt to mine the top-k
most interesting patterns from a sequential database. It is dif-
ficult to find “interesting” results relying solely on frequency
and sequence length, so additional information must be in-
corporated. By assigning class labels to sequences, we are
able to apply the well-developed concept of interestingness
from subgroup discovery to sequential pattern mining and
identify the top-k most interesting patterns. Our approach
can use many different interestingness measures (e.g., con-
fidence, sensitive, specificity, precision measures, etc.).

Using such measures, we can significantly reduce the re-
sult set and present only the most interesting patterns. How-
ever, our exact solution still suffers from the same combi-
natorial time complexity inherent in traditional frequent se-
quence mining. This, we have developed a heuristic-based
approach, relying on the interestingness measure, to reduce
the time of the mining task. Using precision measure Qg

(see Eq. 2 on Interestingness Measures), we have compared
the results of the heuristic-based approach to those of the
exact approach and have found that, while some of the top
patterns are lost, the heuristic-based approach performs rea-
sonably well at identifying the top-k patterns.

Related Work

Fournier–Viger and his colleagues provide an excellent sur-
vey on sequential pattern mining (Fournier-Viger et al.
2017), and it will be assumed that the reader is familiar with
basic definitions, notation, and results from sequential pat-
tern mining, and while there has been considerable research
on reducing the number of results from sequential pattern
mining, there is significantly less work on identifying “best”
patterns. This is most likely due to the difficulty in formally
defining what is meant by a best pattern.

Tzvetkov et al. attempt to reduce the number of sequen-
tial patterns obtained while eliminating the need to specify
a minimum support (Tzvetkov, Yan, and Han 2003). The
problem with specifying a minimum support is that, if the
minimum support is set too high, the mining task will return
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few or no results, but if the minimum support is set too low,
the mining task will take a long time and produce excessive
results. To overcome this, Tzvetkov defined the notion of a
top-k closed sequential pattern: given a minimum sequence
length l and positive integer k, a sequential pattern P is said
to be a top-k closed sequential pattern of minimum length l
if the length of P is at least l and there are no more than k−1
closed sequential patterns of length at least l having a higher
support than P . This work is similar to ours, however, their
notion of a “top pattern” is based on frequency and length
rather than interestingness.

Yin et al., seek to mine high utility patterns as opposed to
highly frequent patterns (Yin, Zheng, and Cao 2012). By as-
signing weights to items in the sequences, a pattern’s utility
value can be calculated. Such values allow the resulta to be
ordered. Because weights can only measure the presence or
absence of an item, however, interestingness based on item
ordering or a property external to the sequence cannot be
represented easily, if at all.

Most related to our work is the research of Ji et al.,
who focus on mining distinguishing patterns (Ji, Bailey, and
Dong 2005). To do this, the user must specify a positive or
negative class label for each sequence and provide two sup-
port values: a minimum support for the positive class and
a maximum support for the negative class(es). The goal is
then to find all patterns that meet the minimum support in
the positive class while not exceeding the maximum support
in the negative class(es).

These thresholds place hard constraints on the results.
One could soften these constraints by mining patterns that
maximize the positive/negative class ratio. Thus, with the
right interesting measure, our approach can be thought of a
generalization of Ji’s work using soft constraints.

Subgroup Discovery in Sequences
Subgroup discovery identifies interesting relationships be-
tween data entities having a common property (Klösgen
1996). Data entities are often attribute-value pairs and the
common property is one or more target attributes. The sub-
groups discovered are usually reported as a rule or collection
of rules that define membership. Numerous quality measures
exist to evaluate the interestingness of a subgroup (or its
defining rule(s)), including support, confidence, coverage,
lift, sensitivity, specificity, and precision measures (Herrera
et al. 2011; Lavrač, Flach, and Zupan 1999). These measures
are often defined in terms of true positives (TP), false posi-
tives (FP), true negatives (TN), and false negatives (FN). In
subgroup discovery, data entities which have the property of
interest are considered positive while all other data entities
are considered negative.

In our work, data entities are sequences, mined patterns
are subgroup definitions, and sequences covered by a defin-
ing pattern are subgroup members. Many existing quality
measures can then be used to rank patterns. However, some
quality measures, like interest (which is defined in terms of
information gain), are ill-suited to subgroups of sequences.
Any quality measure that relies solely on true/false positives
and true/false negatives can be adapted to subgroup discov-
ery in sequences.

If the property of interest is not explicitly within a se-
quence, we say the class label is external. For instance,
consider a database in which the target attribute is buyers
between the ages of 18 and 25 years; purchase history se-
quences associated with buyers in that age range are consid-
ered positive, and sequences associated with buyers outside
of that age range are considered negative. In this example,
the age of the buyer is associated with the sequence but is
not part of the sequence itself. If, however, the property of
interest is the presence or absence of an item within a se-
quence, we say the class label is internal. Due to some com-
plexities with internal labeling that are beyond the scope of
this paper, we only consider sequences with external labels

Interestingness Measures

There are many subgroup quality measures. Here we will
introduce a few in the context of subgroup discovery in se-
quential databases.

One quality measure we could consider is sensitivity can
be useful if one is interested in patterns that describe the
positive class, and is defined by

TP

TP + FN
. (1)

Note that sensitivity ignores the negative sequences cap-
tured by the pattern. If one is interested in patterns that de-
scribe the positive class and not the negative class (i.e., dis-
crimination patterns), precision measure Qg can be used. It
is defined as

TP

FP + g
, (2)

where g is a nonnegative generalization parameter.
Similar to precision measure Qg is specificity, which can

be used to find patterns that focus on excluding the negative
class. It is defined as

TN

TN + FP
. (3)

Problem Definition

Many subgroup quality measures do not take subgroup size
into consideration. Since a high quality measure of a small
subgroup is not very useful in many cases, we require a min-
imum number of positive examples to be in the subgroup be-
fore it is reported. Thus, we define the subgroup discovery
problem in sequences as follows:

Given a sequential database D, minimum support m, in-
teresting measure I, positive integer k, and a class labeling
method, identify the top-k patterns from D, with respect to
measure I, that have a minimum support m within the pos-
itive class. A pattern P is said to be a top-k pattern if it
has minimum support m within the positive class and there
are no more than k − 1 patterns having minimum support
m within the positive class with an interestingness measure
greater than that of P .

Experimental Evaluation
To test beam search, we created a synthetic dataset in which
100,000 sequences containing the numbers 0-9 were gen-
erated using different probability distributions to simulate
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(a) Beam Search using Specialization Extensions
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(b) Beam Search using all Specializations

Figure 1: Beam Search vs. Exact Solution

different population groups. Sequence lengths were random
and between 10 and 20. Each sequence was one of five
equally distributed classes based upon the distribution used
to generate the items in the sequence. We used binomial
distributions with parameters n = 9 and p equal to 1/6,
1/3, 1/2, 2/3, or 5/6. The distributions with p = 1/6 and
p = 1/3 were chosen to represent the positive class.

We then compared the average interestingness of the top-
k patterns against the k patterns returned by our beam search
with width of k. We used precision measure Qg as our inter-
estingness metric. When implementing the beam search, we
considered the use of only sequence extensions as refine-
ments and the use of all possible specializations. Figure 1
shows how the average interestingness of the top-k patterns
varies with support for both the exact solution (dashed lines)
and the heuristic-based results (solid lines).

Full specializations preform only slightly better than ex-
tensions alone. Thus, a beam search that relies only on ex-
tensions can obtain results quicker without sacrificing too
many top patterns. From the plots, it appears that the av-
erage interestingness of the beam search results approaches
the true average interestingness as the minimum support in-
creases and as the number of top patterns increases. Both of
these may be because a large portion of all possible patterns
are being included in the results. In the case of larger sup-
port values, there are fewer patterns that meet the minimum
support. In the case of larger values of k, a larger portion of
all possible patterns are included.

The effect of support and the value of k on the average
interestingness may be better seen in Table 1, which shows
the average interestingness of the beam search as percentage
of the average interestingness of the top-k patterns. Note that
dashes indicate that there are less than k patterns that meet
the given support within the positive class.

Exact and Heuristic-Based Algorithms

Finding the top-k patterns (subgroups) with respect to some
interestingness measure can be reduced to standard sequen-
tial pattern mining; any one of a variety of sequential pat-

tern mining algorithms can be applied, and those patterns
that meet the minimum support within the positive class can
then be evaluated using the interestingness measure. This is
an exact solution to the problem and suffers from the same
combinatorial time complexity as sequential pattern mining.

Near-optimal results are often acceptable if they can be
obtained in a shorter time. Since the search space for our
problem is exponential, an approximate solution can be ben-
eficial. Gamberger et al. use a beam search to reduce the time
required to find subgroups (Gamberger and Lavrac 2002).
The algorithm begins by adding the empty sequence to the
beam. Then for each iteration, while the beam is not empty,
each sequence in the beam is examined and specializations
are created. Each specializations is evaluated using the inter-
estingness measure, and then top beam-width sequences are
retained for the next iteration.

Sequence specialization refers to generating a new (su-
per)sequence from an existing (sub)sequence by adding a
single item. There are many possible ways to specialize a
sequence, as shown in Figure 2. We call a sequence spe-
cialization an extension if the item is added to the end of the
sequence. Itemset sequences can also be specialized, but this
work focuses only on sequences of items.

I = {a, b, c}
(a) Itemset

S = 〈a, a〉
(b) Item Sequence

〈a, a,a〉 〈a, a, b〉 〈a, a, c〉
(c) All Extensions

〈a, a, a〉 〈a,a, a〉 〈a, a,a〉
〈b, a, a〉 〈a, b, a〉 〈a, a, b〉
〈c, a, a〉 〈a, c, a〉 〈a, a, c〉

(d) All Specializations

Figure 2: Extensions to Item Sequences
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Table 1: Average Interestingness of Beam Search
as Percentage of Average interestingness of Exact Results

Support Top 10 Top 20 Top 30 Top 40 Top 50 Top 100 Top 200 Top 300 Top 400 Top 500

10 0.936 0.936 0.965 0.985 1.0 1.0 0.993 0.986 0.995 0.999
20 0.831 0.801 0.849 0.984 0.973 1.0 1.0 1.0 1.0 1.0
30 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 –
40 0.968 0.892 1.0 0.997 1.0 1.0 – – – –
50 1.0 1.0 1.0 1.0 1.0 1.0 – – – –
60 1.0 1.0 1.0 1.0 1.0 – – – – –
70 1.0 1.0 1.0 – – – – – – –
80 1.0 – – – – – – – – –
90 – – – – – – – – – –

100 – – – – – – – – – –

Conclusions and Future Work

We have introduced subgroup discovery in sequential
databases. By viewing a sequential pattern as defining a sub-
group, we are able to rank the results using various subgroup
quality measures. This allows us to reduce the results and
return only the most interesting patterns. To help reduce the
mining time, we have explored the use of a beam search for
extracting patterns while only suffering a small loss in pat-
tern interestingness. In the future, we hope to explore var-
ious event-based labeling methods and develop optimal al-
gorithms for mining interesting patterns based on complex
internal labeling schemes.
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