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Abstract

We use reinforcement learning to learn dialogue policies in
a collaborative furniture layout negotiation task. We employ
a variety of methodologies (i.e., learning against a simulated
user versus co-learning) and algorithms. Our policies achieve
the best solution or a good solution to this problem for a vari-
ety of settings and initial conditions, including in the presence
of noise (e.g., due to speech recognition or natural language
understanding errors). Also, our policies perform well even
in situations not observed during training. Policies trained
against a simulated user perform well while interacting with
policies trained through co-learning, and vice versa. Further-
more, policies trained in a two-party setting are successfully
applied to a three-party setting, and vice versa.

Introduction

A dialogue system has a policy which decides on the action
that the system should perform given a particular dialogue
state (i.e., dialogue context). Reinforcement learning (RL)
has become the main approach to automatically learning di-
alogue policies. In most previous work, RL was applied to
slot-filling dialogue domains (e.g., flight reservation).

In this paper, we focus on learning negotiation dialogue
policies. Our domain is a collaborative furniture layout
negotiation task loosely based on the Design-World task
(Walker 1995). Two or more participants have to agree on
which furniture items to put in a room. Furniture items and
their combinations are worth a specific number of points
for each particular negotiator, and this information is only
known to that negotiator (until it is revealed in the nego-
tiation). The goal is to earn as a group as many points as
possible. The initial conditions (i.e., how many points each
furniture item or combinations of items are worth per nego-
tiator) are randomly assigned. Thus the agents need to per-
form well even for unseen initial conditions, which makes
the task very realistic but also very challenging.

We use a variety of RL algorithms, and also vary the num-
ber of participants involved in the negotiation. The negotia-
tion dialogue policies are learned against a hand-crafted sim-
ulated user (SU) i.e., a model that simulates real user behav-
ior in this task, and/or using co-learning (i.e., two or more
agents are trained against one another). Co-learning has the
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advantage of not requiring a SU for training. For negotiation
there is one more reason in favor of co-learning as opposed
to learning against a SU. Unlike slot-filling domains, in ne-
gotiation the behaviors of the system and the user are sym-
metric; thus building a good SU is as difficult as building
a good system policy. However, co-learning is much harder
because each agent is learning against a non-stationary en-
vironment, or, in other words, against a moving target (the
behavior of the agent or agents it learns against constantly
changes because they are also learning at the same time).

We evaluate our policies in a simulation setting (our ulti-
mate goal though is to incorporate the learned policies into
a full dialogue system and test them with human users). Our
policies achieve the best solution (earn as many points as
possible) or a good solution to this negotiation problem for
a variety of settings and initial conditions, including in the
presence of noise e.g., due to automatic speech recognition
(ASR) or natural language understanding (NLU) errors.

Our research contributions are as follows: (1) We compare
a variety of RL methodologies (i.e., learning against a SU
and co-learning) and algorithms (i.e., Q-learning with and
without function approximation, and deep Q-learning) under
the same conditions, which has not been done before. (2) For
three-party dialogue we combine learning against a SU and
co-learning, which has not been done before either. (3) We
do not just test our policies against the SU that was used for
training them. The training and testing conditions are differ-
ent, and we learn policies that perform well even in situa-
tions not observed during training. Policies trained against
a SU perform well while interacting with policies trained
through co-learning, and vice versa. Also, policies trained in
a two-party setting are successfully applied to a three-party
setting, and vice versa. Again, we are not aware of previous
work on learning dialogue policies that can be transferred
from a co-learning setting to a setting with a SU (and vice
versa), or from a two-party setting to a multi-party setting
(and vice versa). (4) Unlike most previous approaches to ne-
gotiation dialogue policy learning, we simulate various lev-
els of noise to account for ASR and NLU errors.

Related Work

Similarly to us, English and Heeman (2005) learned negotia-
tion policies for a furniture layout negotiation domain based
on the Design-World task using co-learning. To make the
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learning problem more tractable, they worked on a summary
state space (an approach that we also use; see below). Hee-
man (2009) experimented with different representations of
the RL state in the same domain (but learning against a hand-
crafted SU). However, they did not account for ASR or NLU
errors, did not compare different methodologies and algo-
rithms, and dealt only with two-party dialogue.

Georgila and Traum (2011) learned argumentation poli-
cies against users of different cultural norms in a single-
issue negotiation scenario. Then Georgila (2013) learned ar-
gumentation policies in a two-issue negotiation scenario. In
(Georgila and Traum 2011; Georgila 2013) the policies were
designed to work only for specific initial conditions. Papan-
gelis and Georgila (2015) extended the work of Georgila
(2013) to four-issue negotiation. They operated on a sum-
mary state space, and their learned policies could perform
well for a variety of initial settings, including situations that
were not observed during training.

Efstathiou and Lemon (2015) used RL to learn negotia-
tion behaviors for a non-cooperative trading game (the Set-
tlers of Catan). The resources of the system were randomly
initialized for each dialogue, but it was assumed that the sys-
tem’s adversary always had all the resources that the system
would try to trade for. Keizer et al. (2017) compared a vari-
ety of trading strategies in the context of the same game. The
trading strategies were trained on a corpus of human players
playing the game (text-based conversations), and thus did
not account for ASR or NLU errors.

Hiraoka et al. (2015) learned trading policies in a multi-
party trading scenario, where the dialogue system (learner)
trades with up to three other agents. The initial conditions of
the traders (except for the learner) were randomly assigned.

Georgila, Nelson, and Traum (2014) used co-learning to
learn negotiation policies in a resource allocation scenario.
The co-learning problem was cast as a stochastic game, and
they focused on comparing single-agent RL versus multi-
agent RL (designed specifically for learning against non-
stationary environments). They did not allow for a variety of
initial conditions. Finally, Lewis et al. (2017) applied end-to-
end learning to a multi-issue bargaining negotiation domain.
Their models were trained on human-human text data first
with supervised learning and then optimized with RL.

Reinforcement Learning
Reinforcement learning (RL) is used for learning the policy
of an agent that takes some action to maximize a usually
delayed reward. In dialogue, the policy is a mapping func-
tion from a dialogue state to a system action. The system’s
actions are on the speech act level i.e., “inform(item:white
table, value:3)” instead of full sentences, to keep the ac-
tion space tractable. Recently end-to-end approaches to di-
alogue system building that operate on full sentences have
emerged but they are mainly restricted to chatbots due to
the difficulty in keeping track of larger dialogue contexts.
In task-based dialogue systems the reward function is user
satisfaction or task completion. There can be single-agent
RL (learning against a stationary environment) and multi-
agent RL (learning against a non-stationary environment).
Here we employ both single-agent RL in the framework of

Markov decision processes (MDPs) and multi-agent RL in
the framework of stochastic games (SGs). SGs are a gen-
eralization of MDPs for multi-agent RL. In SGs there are
multiple interacting agents that select actions, and the next
state and rewards depend on the joint action of all the agents.
The agents can have different reward functions.

RL requires thousands of interactions between the agent
and the environment to learn the optimal policy. In our case,
the environment needs to represent the decisions and ac-
tions of other negotiators. Thus we use a simulated user (SU)
i.e., a model of the user’s behavior which will simulate the
agent’s negotiation partner and help the agent explore the
search space of possible policies. The SU can generate a va-
riety of actions for each state based on a probability distri-
bution. We also explore the idea of co-learning where two
or more agents can learn at the same time without the need
for a SU. For learning against a SU we cast the problem as
an MDP (the behavior of the SU does not change as it is not
learning), and for co-learning we cast the problem as a SG
(the environment of each learning agent is non-stationary).

We experiment with three RL algorithms: simple Q-
learning, Q-learning with linear function approximation, and
deep Q-learning. In simple Q-learning we need to learn Q-
values for all state-action pairs. In Q-learning with linear
function approximation the Q-function is a weighted func-
tion of state-action features, which allows us to explore com-
monalities among states. In deep Q-learning we also use
function approximation and the weights are the parameters
of a neural network. The input to the network are the features
and the output the Q-values for each action. We use feed-
forward neural networks with two layers and prioritized ex-
perience replay. In the future we intend to use algorithms
designed specifically for multi-agent RL.

Experimental Setup
In our collaborative negotiation task, each agent has its own
preferences initially only known to that agent e.g., the red
couch is worth 1 point. As the dialogue progresses, the
agents can reveal their preferences making this information
public knowledge. The goal is to earn as a group as many
points as possible. Apart from simple preferences (e.g., a
red couch is worth 2 points), there are also compound pref-
erences (e.g., a blue couch together with a white table are
worth 3 extra points). At the beginning of each dialogue, the
initial conditions (i.e., simple and compound preferences)
are randomly assigned. Thus the agents need to learn to per-
form well even for unseen initial conditions. In our experi-
ments we assume that there are three furniture items (table,
chair, couch) and three colors (blue, white, red).

To make the learning problem more tractable and learn
generalizable policies than can be applied to any initial con-
ditions, we work on a summary state space rather than the
full state space. The full state space keeps track of the inter-
action in detail e.g., the exact proposals that have been made,
and the summary state space keeps track of more abstract
representations e.g., whether an agent has more information
to reveal or not. So in the summary state (i.e., RL state),
we keep track of the following variables: whether there is
a proposal on the table (true/false), last valid action of the
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Preferences of Agent 1
table: blue 0, white 3, red 0
chair: blue 0, white 0, red 1
couch: blue 1, white 0, red 0
red couch + blue table 1
blue couch + blue chair 3
Preferences of Agent 2
table: blue 0, white 1, red 0
chair: blue 0, white 2, red 0
couch: blue 0, white 0, red 3
white couch + blue table 3
white chair + blue table 3
2 best solutions: [blue table, white chair, red couch],
[white table, white chair, red couch]
Agent 1: propose(item:blue couch, value:1, expected:4)
Agent 1: inform(item:blue couch, value:1)
Agent 1: inform(items:blue couch,blue chair, value:3)
Agent 2: accept
Agent 2: propose(item:white chair, value:2, expected:5)
Agent 2: inform(item:white chair, value:2)
Agent 2: inform(items:white chair,blue table, value:3)
Agent 1: accept
Agent 1: propose(item:white table, value:3, expected:3)
Agent 1: inform(item:white table, value:3)
Agent 2: confirm{inform(item:blue table, value:3)}
Agent 1: confirm-no, correct{inform(item:white table,
value:3)}
Agent 2: accept
Agent 2: replace(item:red couch, expected:3)
Agent 2: inform(item:red couch, value:3)
Agent 1: accept
Accepted: [white table, white chair, red couch]

Figure 1: Example interaction between two agents (each one
of them trained through co-learning with 15% noise). “Re-
lease turn” actions have been omitted for brevity.

agent (see below), whether the current proposal has been
proposed by the agent (true/false), whether the agent has
more information to reveal (true/false), whether the agent
has a furniture item to replace (true/false), type of current
proposal (propose/replace/none), whether there is a furni-
ture type not placed in the room yet (true/false), whether
we are in the terminal state of the dialogue (true/false), and
whether the current proposal will be accepted by the agent
(true/false). Hand-crafted rules are used for moving between
the full state and the RL state.

Each agent can perform the following actions: “propose”
(if there is a proposal on the table, the new proposal is ig-
nored), “accept” current proposal, “reject” current proposal,
“inform” (reveal the agent’s preference; an agent may in-
form multiple times), “replace” a furniture item in the ac-
cepted solution (if there is a proposal on the table, the re-
placement is ignored), and “release turn” and let the other
agent or agents perform actions. We also account for ASR
and NLU errors, so we have additional actions “confirm”,
“correct”, “confirm-yes”, and “confirm-no”. Note that the
actions of the RL agent are simple “propose”, “replace”,

etc. without any arguments. Then these RL actions are
transformed into full actions e.g., “inform(item:blue couch,
value:1)” using hand-crafted rules. The agents deal with one
furniture item at a time. But they can replace items that have
been placed in the room if during the conversation it is re-
vealed that a better solution exists.

For each training configuration (co-learning or against a
SU) we perform 2000 iterations. The learning agents are re-
warded +5 points when they reach a solution. There are also
small rewards when the agent accepts the best item based on
its knowledge (+1.5) and for every “inform” action (+0.5;
this can be omitted though and still learn good policies), and
a small penalty for each agent’s action (-0.2). Slightly vary-
ing these numbers did not seem to affect the learned policies.
We start with very high exploration (almost 100%) and grad-
ually decrease until the policy explores 10% of the time. We
also experimented with varying noise i.e., 15% where mis-
understandings occur 15% of the time, and 30% where mis-
understandings occur 30% of the time. Misunderstandings
are simulated by randomly replacing the correct action or
action value with a wrong one.

The SU is hand-crafted, deals with one furniture item at
a time, and its policy is designed as follows: (1) If the SU
has more information to reveal then “inform”. (2) If there is
no proposal on the table then: (2.1) if there is no accepted
solution for a furniture item then “propose”; (2.2) if the SU
thinks there is a better item than the one in the solution then
“replace”; (2.3) “release turn”. (3) If there is a proposal on
the table then: (3.1) if this proposal has been proposed by the
SU then “release turn”; (3.2) if this proposal has been pro-
posed by other agents then “accept” or “reject” depending
on whether the current proposal is the best possible solution
based on the SU’s knowledge.

An example interaction between two agents is shown in
Figure 1. The agents reach one of the two optimal solutions.

Results
Results are shown in Table 1 for Q-learning and SUs only
(where all negotiators are SUs), and Table 2 for Q-learning,
and for 30% noise which is a quite realistic noise level
(trends were similar for 0% and 15% noise). Results for Q-
learning with function approximation and deep Q-learning
are omitted due to space limitations because they were sim-
ilar to Q-learning. In all configurations the agents interact
for 10000 dialogues. The initial conditions of each dialogue
are randomly initialized but it is guaranteed that there will
always be one or more optimal solutions. The tables show
the percentages of the time that the interacting agents reach
the best solution, or a solution (but not the best one). We can
also see the average number of total actions per dialogue
(including “release turn”). In Table 1 the training and test-
ing conditions are the same e.g., a policy (P1) learned in one
configuration (1LA-1SU i.e., 1 learning agent and 1 SU) is
tested against a policy (P2) learned in the same configura-
tion (1LA-1SU i.e., 1 learning agent and 1 SU). In Table 2
the training and testing conditions differ e.g., a policy (P1)
learned in one configuration (1LA-2SU i.e., 1 learning agent
and 2 SUs) is tested against a policy (P2) learned in a differ-
ent configuration (3LA i.e., 3 learning agents).
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P1 P2 Best Non-best Avg
Solut Solut #Actions
(%) (%)

Q-learning
1LA-1SU 1LA-1SU 85.57 14.43 31.04

2LA 2LA 82.02 17.98 25.86
1LA-2SU 1LA-2SU 69.77 30.23 58.16
2LA-1SU 2LA-1SU 67.69 32.30 53.80

3LA 3LA 67.54 32.37 52.39
SUs only

2SU 2SU 84.82 15.18 30.96
3SU 3SU 69.55 30.45 57.76

Table 1: Percentages of best solutions and non-best solu-
tions, and average number of agents’ actions (including “re-
lease turn”; 30% noise). The training and testing conditions
of Policy 1 (P1) and Policy 2 (P2) are the same.

P1 P2 Best Non-best Avg
Solut Solut #Actions
(%) (%)

1LA-1SU 1LA-2SU 86.03 13.96 31.09
1LA-1SU 2LA-1SU 83.61 16.39 28.31
1LA-1SU 2LA 83.62 16.38 28.26
1LA-1SU 3LA 83.96 16.04 28.34
1LA-2SU 2LA-1SU 84.71 15.29 28.41
1LA-2SU 2LA 84.31 15.69 28.53
1LA-2SU 3LA 83.96 16.02 28.26
2LA-1SU 2LA 82.81 17.19 25.88
2LA-1SU 3LA 82.57 17.43 25.91

2LA 3LA 82.97 17.03 25.91

Table 2: Percentages of best solutions and non-best solu-
tions, and average number of agents’ actions (including “re-
lease turn”; 30% noise) for Q-learning. The training and test-
ing conditions of Policy 1 (P1) and Policy 2 (P2) differ.

The agents reach the best solution most of the time, and
only very rarely is there no solution. Having only SUs in the
negotiation (see Table 1) can serve as a strong baseline for
the performance that can be achieved by rational and col-
laborative agents. As we can see, negotiations that involve
learned policies reach similar (or even better) success rates.
Success percentages drop a bit for co-learning and for three-
party negotiation; both much harder configurations. Table 2
shows that our policies perform well even when they are
tested against policies trained in a very different way. Thus
policies trained against a SU perform well while interact-
ing with policies trained through co-learning, and vice versa.
Also, policies trained in a two-party setting are successfully
applied to a three-party setting, and vice versa.

Conclusion

We used RL to learn dialogue policies in a collaborative
furniture layout negotiation task. We employed a variety
of methodologies (i.e., learning against a SU versus co-
learning) and algorithms. Our policies achieved the best so-

lution or a good solution to this problem for a variety of
settings and initial conditions, including in the presence of
noise (e.g., due to ASR or NLU errors). Our policies per-
formed well even in situations not observed during training.
Policies trained against a SU performed well while inter-
acting with policies trained through co-learning, and vice
versa. Furthermore, policies trained in a two-party setting
were successfully applied to a three-party setting, and vice
versa. For future work, we will incorporate these policies
into a full dialogue system and test them with human users.
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