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Abstract

While sets of probability measures and imprecise probabil-
ities in general, are widely accepted as a powerful and uni-
fying framework for handling uncertain and incomplete in-
formation, updating such belief sets with new uncertain in-
puts has not received enough attention. In this paper, we pro-
vide an analysis of Jeffrey’s rule of conditioning for updating
sets of probability measures with new information, possibly
uncertain and imprecise, also expressed as sets of probabil-
ity measures. The paper first provides properties for updating
sets of probability measures in the spirit of Jeffrey’s rule, then
provides and analyses extensions of Jeffrey’s rule to three
main imprecise probability representations: i) finite sets of
probability measures and ii) convex set of probability mea-
sures specified by extreme points. The proposed extensions
capture the proposed postulates and recover the standard Jef-
frey’s rule in case where the updated set and the new input
are single probability measures.

Introduction

Imprecise probability theory (Levi 1980; Walley 2000) is
a unifying uncertainty theory particularly suited for encod-
ing and reasoning with imprecise or ill-known information.
This framework is often seen as a probabilistic setting with
relaxed parameters and it is typically used to reason with
multiple expert information (Nau 2002), perform sensitiv-
ity analysis (Bock, de Campos, and Antonucci 2014), de-
cision making with incomplete or scarce information (An-
tonucci, Piatti, and Zaffalon 2007), etc. Imprecise proba-
bilities are often associated with a robust Bayesian inter-
pretation (Berger et al. 1994) assuming that the probabil-
ity measure corresponding to the actual beliefs exists and
it is unique but it is unknown, that’s why it is expressed
in an imprecise way using the concept of sets of probabil-
ity measures, credal sets (Levi 1980; Walley 2000) or us-
ing other representations (such as interval-based probabili-
ties (de Campos, Huete, and Moral 1994) and probabilistic
logic programs (Lukasiewicz 2001)).
Given a set of initial uncertain beliefs, one may have new
information which can be in the form of a hard evidence
or in the form of uncertain or soft evidence (e.g. unreli-
able input) or simply new uncertain information regarding
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some events1. Our focus is on updating a set of proba-
bility measures with new information expressed also as a
set of probability measures. In the standard probabilistic
setting, Jeffrey’s rule (Jeffrey 1965) generalizes the stan-
dard probabilistic conditioning to the case of uncertain in-
puts. This conditioning rule has been adapted and studied
in many uncertainty settings (for instances, see (Dubois and
Prade 1997) for the possibilistic setting, (Ma et al. 2011)
for Dempster-Shafer theory). In (Benferhat et al. 2010), it is
claimed that this rule can successfully recover most of belief
revision rules such as natural and drastic belief revision.
Many works highlighted the necessity of updating proba-
bilistic information with sets of probability measures (Karls-
son, Johansson, and Andler 2011; Skulj 2006; Tang and
Zheng 2006; Rens, Meyer, and Casini 2016). For example,
in (Skulj 2006), the author updates a probability measure
to create some neighborhood of imprecise probabilities for
some events. In (Karlsson, Johansson, and Andler 2011), the
authors study combining multiple evidences provided in the
form of credal sets. There is to the best of our knowledge no
study on an extension of Jeffrey’s rule to sets of probability
measures. The main contributions of the paper are:
i) We provide natural properties that an extension of Jef-
frey’s rule to imprecise probabilistic settings should satisfy.
ii) We provide extensions of Jeffrey’s rule to sets of proba-
bility measures and convex credal sets.
iii) We study the properties of the proposed extensions. In-
terestingly enough, the proposed extensions satisfy the de-
fined postulates and collapse to the standard Jeffrey’s rule in
case where the prior belief set and the new input consist only
in single probability measures.

Imprecise probabilities: Basic concepts

In the following, Ω={ω0, ω1, .., ωm} denotes the universe of
discourse (all possible states of the world) and ωi denotes a
given state (also called interpretation). Sets of interpretations
φ⊆Ω, ψ⊆Ω are called events.

Sets of probability measures and credal sets

Let Δ denote the set of all probability measures over Ω. A
set of probability measures K is a subset of Δ. K denotes

1On the different meanings of hard, soft and uncertain evidence,
see (Ma and Liu 2011).
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a finite2 or inifinite set of classical probability measures p
over Ω. In order to avoid heavy notations, a set of probabil-
ity measures will be denoted K, the same notation used for
credal sets. In this paper, a credal set represents all the proba-
bility measures satisfying some requirements or constraints.
More precisely, a credal set is defined as follows:
Definition 1 (Credal set) A credal set K is a closed convex
set of probability distributions.
Credal sets are generally induced by probabilistic beliefs en-
coded by means of interval-based probabilities (de Campos,
Huete, and Moral 1994) or probabilistic constraints as in
conditional logic programs (Lukasiewicz 2001). Intuitively,
if K is a convex set of probability measures, then linearly
mixing3 any two distributions p1 and p2 from K will re-
sult in a distribution p belonging to K. Given that a credal
set may contain an infinite number of probability measures,
there are three main commonly used ways to encode im-
precise beliefs. i) Vertex-based representation where the un-
certainty is encoded by a finite set of standard probability
distributions representing extreme points of the convex set
K. ii) Interval-based representation where every interpreta-
tion ω∈Ω is associated with upper and lower probabilities.
iii) Constraint-based representation where the uncertainty
is specified by means of constraints as in the comparative
probabilities framework (Miranda and Destercke 2013) or
in probabilistic logic programs (Lukasiewicz 2001). In this
paper, we focus only on the vertex representation.

Vertex-based representation

This representation defines a convex credal set K by a fi-
nite number of probability measures called extreme points.
Such a credal set is called a finitely generated credal set. Any
probability measure of K can be expressed as linear combi-
nation of extreme points.
Definition 2 (Extreme point) An extreme point (also
called vertex) p of a credal set K is a probability measure
such that it is impossible to find two different probability
distributions p1∈K and p2∈K such that p=α*p1+(1-α)*p2
with α∈]0, 1[.
This representation is for instance used in the JavaBayes4

platform for modeling and reasoning with Bayesian and
credal networks (Cozman 2000). In the following, ext(K)
denotes the set of extreme points of the credal set K.
Definition 3 (Convex hull) The convex hull of credal set
K, denoted CH(K) is the closed set of probability mea-
sures whose polytope is characterized by the set of extreme
points ext(K).
Example 1 In Figure 1, a convex credal set K is depicted
using a barycentric representation. Here Ω={ω0, ω1, ω2}
and K is finitely generated by three extreme points
p1=(.45, 0, .55), p2=(.7, .1, .2) and p3=(.1, .6, .3).

2For instance, in case we have 10 experts where each expert i
having his own beliefs in the form of a probability measure pi then
this set is composed by the 10 probability measures p1,..,p10.

3Mixing here means linearly combining a set of distributions p1
.. pk as follows: p=

∑k
i=1(ai ∗ pi) where

∑k
i=1 ai=1.

4http://www.cs.cmu.edu/∼javabayes/Home/

w0(1, 0, 0)

w1(0, 1, 0) w2(0, 0, 1)

p1
p2

p3

Figure 1: Example of extreme points p1, p2 and p3 using a
barycentric representation.

Note that any closed convex set can be encoded by a finite
number of extreme points (Levi 1980; Wallner 2007).

Reasoning with credal sets

Reasoning tasks are performed on sets of probability mea-
sures or credal sets by exploring all the models of that credal
set5. For instance, marginalizing a credal set K(X,Y ) on
two sub-sets of variables X and Y is done as follows:

K(X) = {
∑

Y

p(X,Y ) : p ∈ K(X,Y )} (1)

Conditioning on an event φ⊆Ω is defined as follows:

K(ωi|φ) = {p(ωi|φ) : p ∈ K and p(φ) > 0} (2)

Note that for practical computational reasons, reasoning on
K is done on ext(K) which provides an equivalent rep-
resentation. Indeed, inference on a credal set K is equiva-
lent to inference on its extremes points (de Campos, Huete,
and Moral 1994). For instance, for marginalization, given a
credal set K(X,Y ) on two subsets of variables X and Y .
Then,

K(X) = CH({p(X) : p ∈ ext(K(X,Y )}) (3)

We assume that K is a finitely generated credal set, namely
K is the convex hull of its set of extreme points ext(K). In
the following, we propose extensions of Jeffrey’s rule to sets
of probability measures.

Extending Jeffrey’s rule to sets of probability

measures

This section analyzes a straightforward extension of Jef-
frey’s rule to sets of probability measures.

Motivating example

Let us assume we are dealing with learning probabilities
from a dataset over five boolean variables X1, X2, X3, X4

and X5. Suppose a small dataset D is collected where the
values of some variables are missing. Assume also we are
interested in deriving an imprecise probability distribution
(here an interval-based probability distribution) from this
small dataset. In this case, for each configuration x1..x5 of
the five variables (X1, .., X5), we will have a lower bound

5Alternative approaches consist for instance in selecting the
most informative model (in the sense of information entropy for
example) of K to draw inferences as it is done in (Lukasiewicz
2001).
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l corresponding to the frequency of x1..x5 in D and an up-
per bound u corresponding to the proportion of entries of D
that are either x1..x5 or that can be x1..x5 (for instance, if
the value of variable X5 is missing in a given entry of D
then it can be any value of X5). Let P be the interval-based
probability distribution derived from D.

X1 X2 X3 X4 X5 P (X1X2X3X4X5)

0 0 0 0 0 [.001, .04]

0 0 0 0 1 [.02, .1]

... ... ... ... ... ...

1 1 1 1 1 [.005, .035]

Assume now that we have a latest and bigger dataset D′
but only on a subset of variables X1..X2. D′ also contains
some missing data. Let P ′ be the interval-based probability
distribution computed from D′.

X1 X2 P (X1X2)

0 0 [.025, .059]

0 1 [.2, .35]

... ... ...

1 1 [.5, .7]

It fully makes sense to revise the initial distribution P by
P ′ since this latter is more recent and more representative of
the problem as it concerns a large amount of data. It is im-
portant to note that the information to update is a set of prob-
ablity measues (all probability measures complying with the
intervals of P ) and the new input is also a set of probability
measures. This update task is fully in the spirit of Jeffrey’s
rule but there is to the best of our knowledge no extension
of Jeffrey’s rule to sets of probability measures. Of course,
the need to revise sets of probabilities by new sets of prob-
abilities can be encountered either when dealing with em-
pirical data (typical situations are dealing with missing data
and small datasets) or when dealing with subjective beliefs
of agents.

Jeffrey’s rule

Jeffrey’s rule (Jeffrey 1965) is an extension of the classical
probabilistic conditioning to the case where the new obser-
vation is uncertain. It allows to update an initial probability
distribution p into a posterior one p′ given the uncertainty
bearing on a set of mutually exclusive and exhaustive events
λ1,..,λn. The new input is of the form (λi, αi), i=1..n where
αi denotes the new probability of λi. Jeffrey’s rule lies on
the two following principles:
i) Success principle: After the update operation, the poste-
rior probability of each event λi must be equal to αi, namely
∀λi, p′(λi)=αi.
ii) Probability kinematics principle: This constraint en-
sures a kind of minimal change principle. Jeffrey’s method
assumes that in spite of the disagreement about the events
λi in the initial distribution p and the new one p′, the con-
ditional probability of any event φ⊆Ω given any uncertain
event λi remains the same in the original and the revised
distributions. Namely,

∀λi ⊆ Ω, ∀φ ⊆ Ω, p(φ|λi) = p′(φ|λi). (4)

Given a probability measure p encoding the initial beliefs
and new inputs the form (λi, αi). The updated probability

degree of any event φ⊆Ω, is done as follows:
p′(φ) =

∑

λi

αi ∗ p(φ, λi)

p(λi)
. (5)

The posterior distribution p′ obtained using Jeffrey’s rule
always exists and it is unique (Chan and Darwiche 2005).

Jeffrey’s rule for sets of probability measures

Recall that our focus is not the foundations and justifica-
tions of Jeffrey’s rule in imprecise probabilities. Interested
readers can refer for instance to (Chan and Darwiche 2005;
Grove and Halpern 1998; Skulj 2006; Yue and Liu 2008).
For the sake of simplicity, the input, the belief set to update
is given in the form of a credal set denoted K. The new
information is also given in the form of a credal set Kin

over a partition of Ω. This form for the inputs is general
enough to capture sure observations, uncertain observations
and imprecise ones. Moreover, we assume that K and Kin

are not empty sets. Let K ′ be a the updated set obtained by
updating K with Kin. Let us now see what an extension
of Jeffrey’s rule could aim to satisfy in an imprecise
probabilistic setting.

(P1) K ′(λ1..λn)⊆Kin

(P2) ∀λi⊆Ω, ∀φ⊆Ω, K(φ|λi)=K ′(φ|λi)
(P3) udp(K,Kin)=

⋃
p∈K,pin∈Kin

udp(p, pin).
Postulate P1 corresponds to the success postulate ensur-

ing that the new information should be accepted (the inputs
are seen as constraints to be satisfied). Of course, the suc-
cess postulate may be questionable in some contexts, but it
may be a desired property in some applications such as in
(Skulj 2006). In order to stay in Jeffrey’s rule spirit, we just
rephrase this postulate in the context of sets of probabili-
ties. The converse inclusion Kin⊆K ′(λ1..λn) is strong as
there may exist λi and pin∈Kin such that pin(λi)>0 while
∀p∈K, p(λi)=0 preventing the application of Jeffrey’s rule
on an a priori impossible event as in the standard case.
P2 is the statement of kinematics principle adapted to the
case of sets of probability measures. This postulate aims to
ensure thatK ′ andK preserve the conditional credal sets on
the events λ1,..,λn.
P3 extends the one proposed in (Grove and Halpern 1998)
in order to capture the fact that updating a set of probability
measures by another set of measures should take into ac-
count every measure in the initial set and every measure in
the new input. This makes sense within a robust Bayesian
interpretation of sets of probability measures.
Lemma 1 If |K|=|Kin|=1 then postulates P1 and P2 re-
cover with the success and probability kinematics principles
of Jeffrey’s rule respectively.
Obviously, if the credal sets K and Kin are singletons
(namely, each one composed of only one probability mea-
sure), then P1 will recover the success principle (the input
Kin is fully accepted as in Jeffrey’s rule) while P2 will
recover the probability kinematics principle. Consequently,
the only solution satifying these properties is the one ob-
tained using Jeffrey’s rule and it always exists (Chan and
Darwiche 2005).
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Conditioning sets of probabiliy measures with

uncertain inputs

One direct way to extend Jeffrey’s rule to finite sets of prob-
ability measures is to update every member of the belief set
K by every member of the new input Kin as follows:
Definition 4 Let K be a set of probability measures repre-
senting the current beliefs over the universe of discourse Ω.
Let the new information be Kin.

K
′
= {p′

: p
′
= Jeffrey(p, pin), p ∈ K : ∀λi, p(λi) > 0, pin ∈ Kin}

(6)

where Jeffrey(p, pin) is the update according to Jeffrey’s rule
given in Equation 5 of the probability measure p with the
new input pin=(pin(λ1), ..,pin(λn)).
Updating using Definition 4 in straightforward in case where
the belief sets K and Kin consist of finite sets of probability
measures. It is clear that if both K and Kin contain only
one probability measure then Definition 4 comes down to
Jeffrey’s rule in the standard probabilistic setting.
Example 2 Let us assume that Ω={a1b1, a1b2, a2b1, a2b2}
and that the current beliefs about a given problem over two
binary variables A and B is a set composed of three proba-
bility distributions p1, p2 and p3. Suppose that we receive

A B p1(AB) p2(AB) p3(AB)

a1 b1 .6 .65 .7
a2 b1 .15 .1 .1
a1 b2 .1 .1 .1
a2 b2 .15 .15 .1

Table 1: Example of a belief set K characterized by three
extreme points p1, p2 and p3.

new information (for example new data) saying that the
probability pin(b1)=.9 and pin(b2)=.1. Applying Jeffrey’s
rule to each probability measure p1, p2 and p3 will give three
updated distributions p′1, p′2 and p′3.

A B p′
1(AB) p′

2(AB) p′
3(AB)

a1 b1 .72 .78 .79
a2 b1 .18 .12 .11
a1 b2 .04 .04 .05
a2 b2 .06 .06 .05

Table 2: The posterior set K ′ obtained from K of Table 1.

Proposition 1 Let K be a finite set probability measures
over Ω. Let the new information be Kin which is a set on
an exhaustive and mutually exclusive set of events λ1,..λn.
Let K ′ be the results of updating K ′ with Kin using Defini-
tion 4. Then K ′ satisfies postulates P1, P2 and P3.

Proof 1 (Sketch)

• For P1, to show that K ′(λ1..λn)⊆Kin, let p′∈K ′ and
show that ∀λi, ∃pin∈Kin s.t. p′(λi)=pin(λi). If p′∈K ′
then ∃p∈K and ∃pin∈Kin such that p′=Jeffrey(p, pin).
Since p′ is obtained by updating p with pin with Jeffrey’s
rule, then ∀λi, p′(λi)=pin(λi).

• For P2 and P3, the proof is also straightforward for finite
sets of probability measures since by Definition 4 the up-
date is done using Jeffrey’s rule applied individually on
each member of K and on each member of Kin.

In practice, the credal set K to update may be finite or in-
finite (in case of convex sets). In the following, we extend
Jeffrey’s rule to closed convex credal sets.

Conditioning credal sets with uncertain inputs

In this section, the belief set to update is a closed convex set
K specified by its extreme points ext(K) and the new in-
put Kin is also a closed convex set specified by its extreme
points ext(Kin). One direct way to extend Jeffrey’s rule is
to update only extreme points of K with the ones of Kin,
namely update each p∈ext(K) with each pin∈ext(Kin) us-
ing Jeffrey’s rule.
Definition 5 Let K be the closed convex set to update. Let
the new information be Kin which is a closed convex set on
set of exhaustive and mutually exclusive events λ1,..,λn.

K′ = CH({p′ : p′ = jeffrey(p, pin); p ∈ ext(K) and
pin ∈ ext(Kin), ∀λi, p(λi) > 0}), (7)

Given that it is impossible to update every p∈K, update of
Definition 5 proceeds by updating only the set of extreme
points ofK by the set of extreme points ofKin then recovers
a convex set using the convex hull operator.
Example 3 (Example 1 continued) Let us reuse the credal
set K of Example 1 where Ω={ω0, ω1, ω2} and K is
finitely generated by three extreme points p1=(.45, 0, .55),
p2=(.7, .1, .2) and p3=(.1, .6, .3). Assume now that new
information Kin regarding two events λ1={ω1, ω2} and
λ2={ω3} has become available. Assume also that ext(Kin)
consists of two extreme points {(.7, .3); (.6, .4)}.

w0(1, 0, 0)

w1(0, 1, 0) w2(0, 0, 1)

p′1p′′1p′2

p′′2
p′3

p′′3

Figure 2: Credal set K ′ obtained by updating K of Figure 1
with Kin whose extreme points are {(.7, .3); (.6, .4)}.

As shown in Figure 2, the number of extreme points of K ′
is at most to |ext(K)|*|ext(Kin)|.
Proposition 2 LetK be the closed convex set to update and
Kin be the new input. Let K ′ be the updated set computed
according to Definition 5 thenK ′ satisfies postulates P1-P3.

Proof 2 (Proof sketch)
For P1, in order to show that K ′(λ1..λn)⊆Kin, let p′∈K ′
and show that ∃pin∈Kin s.t. p′(λ1..λn)=pin(λ1..λn).
Since p′∈K ′ then p′∈CH({p′ : p′=Jeffrey(p, pin); p ∈
ext(K), pin ∈ ext(Kin)}). It is clear that in case where
p’=Jeffrey(p, pin) with p∈ext(K) and pin∈ext(Kin)
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then p′(λ1..λn)∈Kin since p′ is obtained by updating p
with pin using Jeffrey’s rule. Now, for any p′∈K ′ that is
not an extreme point of K ′, p′ can be expressed using
the extreme points ext(K ′) as a convex combination of
extreme points of K ′: p′(ω)=

∑
i,j αi,j ∗ p′i,j(ω) where

p′i,j∈ext(K ′) obtained by updating the extreme point
pi∈ext(K) with the extreme point pin j∈ext(Kin) us-
ing Jeffrey’s rule, namely p′i,j(ω)=

pi(ω)∗pin j(λ)
pi(λ)

. Hence,
p′(λ)=

∑
ω∈λ(

∑
i,j αi,j ∗ p′i,j(ω)) with

∑
i,j αi,j=1. The

proof is consists in starting with expressing p′(λ) as a
convex combination of extreme points of ext(K ′) and
ending up with expressing p′(λ) as a convex combination of
ext(Kin).
For P2, it is enough to see that if p′∈ext(K ′)
then necessarily ∃p∈ext(K) and ∃pin∈ext(Kin)
such that p′=Jeffrey(p, pin). Hence, ∀ψ⊆Ω, ∀λi⊆Ω,
p(φ|λi)=p′(φ|λi). Since K and Kin are convex sets, then
∀p′∈K ′, ∃p∈K and ∃pin∈Kin such that p′=Jeffrey(p, pin).
Hence, ∀ψ⊆Ω, ∀λi⊆Ω, p(φ|λi)=p′(φ|λi).
For P3, the idea of the proof is based on the convexity
of K ′ obtained by combining two convex sets K and
Kin. Indeed, K ′ is obtained by the convex hull operator
on a kind of cartesian product of elements of ext(K)
and ext(Kin). Let K ′

pin
be the credal set obtained by

updating K with only one point pin∈Kin. Then ∀p∈K,
∃p′inK ′

pin
s.t. p′in=Jeffrey(p, pin). Now, by updating K by

every member of Kin and taking the convex hull of the
obtained points, it holds that ∀p∈K, ∀pin∈Kin, ∃p′∈K ′
s.t. p′=Jeffrey(p, pin). �
In the following, we study Jeffrey’s rule extension in an-
other widely used representation of imprecise probabilities,
namely interval-based probability distributions.

Updating interval-based probability measures

Let us see now how to uptate interval-based probability dis-
tributions as the ones of the motivating example. Let P be
an interval-based probability distribution (IPD for short) en-
coding the initial beliefs where each interpretation ω∈Ω is
associated with a sub-interval of [0, 1]. Given an IPD P
encoding the current knowledge and new information Pin,
there are basically two possible ways to update P with Pin:
• A credal-based method: This consists in updating the

credal set K underlying P (denoted K(P ) and contain-
ing all the models of P ) by the credal set Kin underly-
ing Pin (denoted Kin(Pin)) using Definition 5. Once K ′
computed, the IPD P ′ can be computed from K ′.

• An interval-based method: The main drawback of up-
dating at the credal level is that it manipulates extremes
points of IPDs while the number of such extreme points
for an IPD with m interpretations can be up to m! (Wall-
ner 2007). The alternative then is to manipulate directly
the intervals of the IPD to accommodate the input Pin.
This method will be addressed in future works.

The credal-based update method is defined as follows:
Definition 6 Let P be IPD to update and Pin be the new
input IPD on set of exhaustive and mutually exclusive events

λ1,..,λn. Let K ′ be the updated credal set computed accord-
ing to Definition 5 on K(P ) and Kin(Pin). P ′ is an IPD on
Ω such that ∀ωi∈Ω,

P ′(ωi) = [infp′∈K′(p′(ωi)), supp′∈K′(p′(ωi))]. (8)

Example 4 Let us assume in this example that the cur-
rent beliefs about a given problem over two binary vari-
ables A and B are given by the IPD P (AB). In Ta-
ble 3, we have the marginal distribution of A (namely,
P (A)), the one of B (namely, P (B)) and the con-
ditional distribution of B given A (namely, P (B|A)).
Let us now assume that we have new uncertain in-

A B P (AB)

a1 b1 [.50, .70]
a2 b1 [.05, .25]
a1 b2 [.10, .10]
a2 b2 [.15, .15]

A P (A)

a1 [.60, .80]
a2 [.20, .40]

B P (B)

b1 [.75, .75]
b2 [.25, .25]

A B P (A|B)

a1 b1 [.67, .93]
a2 b1 [.07, .33]
a1 b2 [.40, .40]
a2 b2 [.60, .60]

Table 3: Example of an initial IPD P and the underlying
marginal and conditional distributions.

puts given in probability distribution Pin(B) such that
Pin(B=b1)=[.7, .8] and Pin(B=b2)=[.2, .3]. In order to up-
date P to accommodate Pin using Definition 6, we up-
date K(P ) with Kin(Pin) using Definition 5. Note that
K(P )) has two extreme points p1=(.70, .05, .1, .15) and
p2=(.50, .25, .1, .15) and Kin(Pin) has also two extreme
points, namely pin1

=(.7, .3) and pin2
=(.8, .2). p1 will be up-

dated into p′1=(.65, .05, .12, .18) and p′′1=(.75, .05, .08, .12)
and p2 will be updated into p′2=(.47, .23, .12, .18) and
p′′2=(.53, .27, .08, .12). Hence K ′=CH({p′1, p′′1 , p′2, p′′2}).

The updated distribution is given by P ′ of Table 4. Ta-

A B P ′(AB)

a1 b1 [.47, .75]
a2 b1 [.05, .27]
a1 b2 [.08, .12]
a2 b2 [.12, .18]

A P ′(A)

a1 [.59, .83]
a2 [.17, .41]

B P ′(B)

b1 [.7, .8]
b2 [.2, .3]

A B P ′(A|B)

a1 b1 [.67, .93]
a2 b1 [.07, .33]
a1 b2 [.40, .40]
a2 b2 [.60, .60]

Table 4: Updated beliefs of the distribution given in Table 3.

ble 3 and 4 show that the input beliefs encoded by P ′(B)
are fully accepted (see the marginal distribution P ′(B) com-
puted from the updated distribution P ′(AB)).

Proposition 3 states that this updating ensures that the pos-
tulates P1-P3 are satisfied.
Proposition 3 Let P be IPD to update. Let the new infor-
mation be the IPD Pin on set of exhaustive and mutually
exclusive events λ1,..,λn. Let K ′ be the updated credal set
computed according to Definition 5 onK(P ) andKin(Pin).
Let P ′ the posterior IPD computed from P and Pin follow-
ing Definition 6. Then P ′ satisfies P1-P3.

Proof 3 (Sketch) The proof directly follows from the fact
that K(P ) is an equivalent representation of models of P
and the fact that updating using Definition 5 satisfies P1-P3.
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Related works and concluding remarks

This paper proposed extensions of Jeffrey’s rule of con-
ditioning to the case where the information is encoded in
an imprecise probabilistic setting. More precisely, the pa-
per rephrases the two postulates of Jeffrey’s rule and added
another one to enforce the update operation to take into ac-
count every member of the initial set of probability measures
and every member of the new input set. The paper extends
Jeffrey’s rule to i) sets of probability measures and ii) con-
vex credal sets in a vertex-based representation. These ex-
tensions are shown to satisfy the proposed postulates and
collapse to standard Jeffrey’s rule when the initial set and
new information are singleton distributions.
Updating sets of probability measures is not a new topic
(Grove and Halpern 1998)(Levi 1980)(Walley 2000). How-
ever, all these works update sets of probability measures
with hard evidence or observations while the focus of the
work is updating sets of probability measures with new in-
puts expressed by means of a set of probability measures.
The existing extensions of Jeffrey’s rule are limited to spe-
cial imprecise probabilistic information such as the exten-
sions proposed in (Ma et al. 2011) for Dempster-Shafer the-
ory or the possibilistic extension of Jeffrey’s rule proposed
in (Dubois and Prade 1997). In (Skulj 2006), the author use
Jeffrey’s rule to update a single probability distribution in
order to obtain the desired neighborhood of events of inter-
est expressed only in terms of interval probabilities. In (Yue
and Liu 2008), the authors dealt with updating imprecise
knowledge in the framework of probabilistic logic program-
ming. In case where the imprecise knowledge is compactly
encoded by means of belief graphical models called credal
networks, there is only one work (J. C. F. da Rocha and de
Campos 2008) dealing with updating with soft evidence.
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