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Abstract
Drones are a versatile platform for both amateur and profes-
sional photographers, enabling them to capture photos that
are impossible to shoot with ground-based cameras. How-
ever, when guided by inexperienced pilots, they have a high
incidence of collisions, crashes, and poorly framed pho-
tographs. This paper presents an intelligent user interface for
photographing objects that is robust against navigation errors
and reliably collects high quality photographs. By retaining
the human in the loop, our system is faster and more selec-
tive than purely autonomous UAVs that employ simple cov-
erage algorithms. The intelligent user interface operates in
multiple modes, allowing the user to either directly control
the quadcopter or fly in a semi-autonomous mode around a
target object in the environment. To evaluate the interface,
users completed a data set collection task in which they were
asked to photograph objects from multiple views. Our sketch-
based control paradigm facilitated task completion, reduced
crashes, and was favorably reviewed by the participants.

Introduction
Under the supervision of a careful, experienced pilot, quad-
copters can be used to capture amazing photographs; how-
ever, the typical user’s experience is marred by crashes and
poor quality photos.1 The question remains—-how to pro-
vide a rewarding human-robot interaction for inexperienced
users working with hobbyist quadcopters? This paper pro-
poses a sketch-based interface which is designed to hide
certain degrees of freedom from user control and prevent
crashes by monitoring the scale of the targeted object (Fig-
ure 1).

The interface offers the following functionality: 1) three
canvases for manual navigation that capture user sketches
and translate them into control commands in eight direc-
tions; 2) a canvas for displaying the real-time image from
the quadcopter frontal camera that can be used to select an
object of interest for the quadcopter to track autonomously;
3) a dataset collection mode in which the quadcopter au-
tonomously collects images suitable for a variety of appli-
cations, including infrastructure inspection, 3D reconstruc-
tion, and training machine learning classifiers. The system is
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1See the NYTimes article “Santa Delivered the Drone. But Not
the Safety and Skill to Fly Them.”.

implemented as a web-based application that can be run on
a variety of platforms with no installation required. It can
be accessed by multiple clients, allowing several users to
cooperatively direct the quadcopter. Rapid and reliable ob-
ject tracking is achieved through the use of an adaptive cor-
relation filter (MOSSE, Minimum Output Sum of Squared
Error (Bolme et al. 2010)); previous systems have relied
on color-based tracking strategies (Kim and Shim 2013).
This paper compares the performance of our interface vs.
two commercial drone control systems. Based on the par-
ticipants’ performance on indoor image collection tasks, we
believe that our system improves on commercial options and
provides precise control at low cost without additional hard-
ware extensions.

Related Work

The problem of creating autonomous robot photographers
both mobile (Byers et al. 2003; Campbell and Pillai 2005)
and aerial (Srikanth, Bala, and Durand 2014; Coaguila, Suk-
thankar, and Sukthankar 2016)) has been examined by sev-
eral researchers. In some application domains, it is feasible
for a quadcopter to fly completely autonomously, particu-
larly when performing high altitude visual surveillance or
mapping (Huang et al. 2011) tasks. One specific problem,
tracking and photographing humans, is particularly interest-
ing since humans are good subjects for photography and can
be easier to track.

However, there are a variety of visual inspection and sur-
veying tasks that require photographing arbitrary objects;
our interface is specialized for handling those types of prob-
lems. We considered many candidate interface modalities
when designing our system, including gesture, voice, gaze
and EEG, which have been successfully employed in other
quadcopter systems. Unlike many sketch-based robot con-
trol systems (e.g., (Sakamoto et al. 2009; Cummings, Fy-
mat, and Hammond 2012; Richards et al. 2015))) in our sys-
tem the user designates the target on a canvas displaying the
robot’s view rather than on the global map. Our system is
most similar to XPose, a touch-based system for interactive
photo taking (Lan et al. 2017); however unlike XPose, our
user interface does not require global localization as the se-
lected object is used as a position reference.
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Figure 1: The upper part of the interface broadcasts the im-
age stream from the quadcopter frontal camera. The user can
select a target by drawing a bounding box over the camera
view. At any time, the human can directly control the quad-
copter by sketching on the lower control panel.

Method
Figure 2 shows the system architecture. Our experiments
were performed on the commercially available Parrot Aug-
mented Reality (AR) Drone Version 2. This drone has two
cameras: one front-mounted HD camera and a downward
facing QVGA camera. The on board battery provides 15
minutes of continuous flight. The Parrot AR Drone has a 1
GHz ARM Cortex A8 processor and 1 Gbit DDR2 RAM; it
runs GNU/Linux and connects to a laptop over the wireless
LAN (see Piskorski et al. 2012 for the complete list of hard-
ware and software specifications). The back end was con-
structed on top of the Robot Operating System (ROS) which
can handle communication between several entities without
experiencing significant latency. We created a web server us-
ing ROS Web Tools (Alexander et al. 2012) and assigned a
specific HTTP port to emit ROS video streaming messages,
while using network web socket tools to communicate to our
user interface.

Sketch-based User Interface
For the front end of our system, we designed a web-based
interface, which can be simultaneously accessed by multi-
ple users, using a variety of mobile devices. The ARDrone
utilizes User Datagram Protocol (UDP) to communicate
with the ground analysis and command unit (back-end), and

HTTP is used for data transmission between the front-end
and the ground (back-end) unit. There is a dedicated canvas
showing the view from the quadcopter front camera, along
with three areas that control translation, yaw, and altitude. To
enter autonomous object tracking mode, the user can circle
a region in the front view canvas.

The user can assert direct control by sketching in the
lower panel; there are separate controls for stop, go, takeoff,
and landing. The sketches are then translated into linear and
angular velocities in the quadcopter coordinate system and
normalized by the total length of the corresponding canvas.

Autonomous Object Photography Mode
For the vision system, we evaluated several object detec-
tion and tracking approaches before deciding to use an adap-
tive correlation filter (MOSSE) to track the region enclosed
by the user on the front-view canvas. MOSSE (Bolme et
al. 2010) employs convolution to perform the tracking, af-
ter creating an appearance model with adaptive correlation
filters. The simplicity of the procedure allows MOSSE to
track objects in video captured at high frame rates (> 600
frames per second (fps)). The appearance model is trained
in the Fourier domain using a set of random affine transfor-
mations, and the aim is to minimize the sum squared error
between the desired and actual convolution outputs. During
the tracking process, three ROS messages are created for
each t period: 1) the centroid point of the tracked object,
2) a tuple-type message for streaming the bounding box co-
ordinates, and 3) an image-type message containing both the
front camera image and the bounding box to be viewed on
the user interface. xmin, ymin, xmax, and ymax are extracted
from the circle stroke, and that region of the image is used
to initialize the adaptive correlation filter.

After the initial bounding box is drawn, the quadcopter
starts flying autonomously, and the system enters a visual
dataset collection mode, acquiring data at a rate of 1 fps.
The quadcopter modifies its yaw angle and altitude to track
the object designated by the user. The x-axis error between
the object centroid and canvas center is used to estimate the
orientation angle, and the y-axis error is used to estimate the
quadcopter’s altitude.

errorx = (xcentroid − xcenter)/xmax (1)
errory = (ycentroid − ycenter)/ymax (2)

The errors are transmitted to a PD (proportional-derivative)
controller with gains Kp and Kd set to 0.25. The quad-
copter uses its inertial sensors to monitor roll Φ, pitch Θ,
yaw ψ, rotational speed Ψ and the vertical velocity ζ; con-
trols are issued using a series of ROS Twist commands
u = (Φ̄, Θ̄, ζ̄, Ψ̄) ∈ [−1, 1]4 at a frequency of 100Hz. Our
interface is capable of eliminating undesired photos by com-
paring the correlation percentage to a predefined threshold;
as long as this percentage exceeds the specified threshold,
the agent continues photographing the tracked object, else it
stops.

Evaluation
We sought feedback on our user interface design from three
groups of users. First, to evaluate the ease of learning our
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Figure 2: The user interface accepts two categories of user sketches: 1) navigation strokes from the three designated canvases
which specify the direction and velocity of the quadcopter and 2) the boundary strokes on the broadcasting canvas that enclose
the area of interest. During semi-autonomous operation, the MOSSE adaptive correlation filter outputs the object centroid point
and the corresponding bounding box. The broadcasting canvas receives the raw image with embedded tracking results at each
time interval t. If the object is tracked successfully, the navigation agent locks the yaw angle and altitude of the quadcopter and
calculates the measured centroid error to transmit to the PD controller.

sketch-based control paradigm, an observation study was
conducted on a group of elementary/high school lab visitors
who were asked to fly the quadcopter to a target and land
it. In the second study, the performance of the sketch-based
user interface was compared to the performance of joystick
control for piloting the drone. In the third study, the au-
tonomous visual data collection was evaluated vs. AR.Free
Flight image capture. All experiments were performed in an
indoor environment, and users were trained in the usage of
each control paradigm for five minutes before commence-
ment of testing. Pre and post questionnaires were adminis-
tered during the second and third studies. Figure 3 shows
the participants’ ratings of the difficulty of aerial control un-
der each control modality (joystick, AR.Free Flight, and our
smart user interface (SUI)); our interface was rated by ten
users as being significantly easier to use (p < 0.05 on a sin-
gle tailed paired t-test). A video demo of our system can be
viewed at: https://youtu.be/ErA2111xjzMl.

Study 1: Elementary/High School Observation
Our elementary/high school guests included four males and
two females between the ages of 12 and 16 years old. Our
main goal for this study was to observe how younger users
would perform with the sketch-based control. The partic-
ipants were given five minutes of practice and then were
asked to try two flying procedures. The first procedure was
to fly the quadcopter in a circuit by sketching strokes on
the navigation canvases. In the second procedure, they were

Figure 3: Mean and standard deviation obtained from ten
participants’ rating of the difficulty of each control modality
(Study 2 and 3), where 7=most difficult to use and 1=easiest
to use. Our interface (SUI) was rated by the users as being
significantly easier to use according to a single tailed paired
t-test (p < 0.05).

asked to select a target by sketching a bounding box, as part
of flying the circuit. The quadcopter then tries to center the
target using a simple visual servoing algorithm.

Table 1 shows the participants’ performance in achieving
the required tasks for both procedures. The AR.Drone 2.0
elite edition has a maximum speed of about eleven meters
per second, which is quite high when navigating in an indoor
environment. For more safety, we added an option to our
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Study 1
Commands Stroke Bounding Box
Take Off 6/6 6/6
Navigation 4/6 4/6
Reach the Goal 3/6 4/6
Landing 2/6 5/6
Interest 6/6 5/6

Table 1: Performance of elementary/high school children us-
ing the sketch-based interface. Six children participated, and
we tallied how many of the quadcopter control tasks they
were able to perform, as well as their interest in the system.
In the first condition they were asked to just use the stroke
control. Then they were allowed to use a simple bounding
box control system, similar in concept to the vision-based
tracking but without the filtering or the image capture. Since
the children performed well on most of the elements using
the bounding box, we decided to incorporate it into our final
design.

Table 2: Participant information for the second and third
study. None of the users had prior experience flying drones.
Many of them were intermediate or expert game players. All
participants but one felt most comfortable with either con-
sole or touch pad game controllers.

system in which the user can limit the speed by curtailing
the length of drawn strokes. This study enabled us to test
whether using the bounding box to guide the quadcopter was
an intuitive control choice. We determined that the addition
of that control option improved navigation, particularly for
promoting successful landings.

Study 2: Navigation Control
Our second study focused on evaluating navigation perfor-
mance with the user interface. Our participants (Table 2)
were assigned two objectives to reach with the quadcopter.
The first object was a fire-alarm mounted on the wall, and
the second one was a soccer ball placed on a cabinet. They
were asked to fly the AR.Drone, face each target while main-
taining a safe one meter distance, and return to the start
point. For evaluation purposes, we employed a SLAM sys-
tem (Klein and Murray 2007) to estimate the position of the
quadcopter during flight (Figure 4).

Users flew the scenario once using the joystick control
and the other time using our interface (in randomized order).
Two participants rated themselves as expert gamers in the

Figure 4: In study 2, participants were asked to fly to two
target objectives and return to the start point using joystick
control and our sketch-based user interface. We exported the
flight paths that the quadcopter measured using its SLAM
system. An ideal path would be shaped like an isosceles tri-
angle. The red paths are the ones executed under joystick
control, and the blue ones were done with our user interface.
Paths from participants P1, P2, P5, P7, P8 and P10 were not
captured because either they were unable to reach the tar-
gets using a joystick within the specified time or crashed the
drone three times.

Study 2 (Navigation Performance)
User Interface Targets Reached (%)

Joystick 40%
Interface 100%

Table 3: Our user interface makes navigation much more re-
liable for the users. In Study 2, only 40% of the targets were
reached (across all users), whereas 100% of the targets were
reached by participants employing our user interface.

pre-questionnaire. They were able to fly acceptably well us-
ing the joystick, but many of the other users either crashed or
exceeded the allotted time. However, with our interface, all
participants were able to fly the quadcopter without crash-
ing and complete the task in under the three minute time
limit (Figure 5). The PR (percentage of targets reached) was
measured, along the time required, including overtime trials
and crashes (Table 3). Participants using the interface had
higher success rates at reaching the targets, compared to joy-
stick control. Expert users experienced slightly slower flight
times, however when accounting for unsuccessful trials the
overall time required for our user interface was improved.
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Figure 5: Average time required (seconds) for participants
to complete both navigation tasks in study 2. Participants
that crashed the quadcopter were assumed to have taken the
maximum required time (180 seconds). Despite a few fast
joystick runs by the expert users, our user interface led to
a faster average completion time (p < 0.05 according to a
paired single-tailed t-test)

.

Figure 6: Number of images collected by users in study 3.
Our interface supports more prolific image collections which
are useful for training machine learning classifiers.

Study 3: Visual Dataset Collection

For this study, users were asked to collect an image
dataset using our interface vs. capturing images using the
AR.FreeFlight piloting application. The Parrot developer
community has created versions of the AR.FreeFlight user
interface for iOS, Android, and Windows platforms; it is the
official form of software control for the AR.Drone quad-
copter. The piloting section of the AR.FreeFlight UI has a
screen that shows the frontal and downward cameras, along
with takeoff/land buttons, photo/video capture buttons, and
two joysticks (Figure 8). Moving the quadcopter horizon-
tally can be done through using the left joystick or tilting
the tablet/phone. The autonomous image capturing option
offered by our system frees the participants from doing it
manually. This option along with the target tracking fea-
ture ease the operation of image capturing. Figure 6 shows
that users were able to rapidly collect more images using
our interface (significantly more according to a paired sin-
gle tailed t-test at the p < 0.05 level). From Figure 7, we can
see that when participants used our interface they were able
to acquire more diverse image views. This variety in image

characteristics is particularly valuable for training machine
learning classifiers.

After the experiments, we administered a post-
questionnaire. Key questions included:
1. Would you like to have an assistant agent helping you

out with capturing images of the selected object automat-
ically?

2. Would you like to have an assistant agent helping you out
with navigation while capturing the images?

3. Would you use the proposed user interface to collect im-
ages for your own project?

The majority of the participants responded positively to all
these questions, indicating a high level of satisfaction with
the concept of the intelligent user interface.

Conclusion
In this paper we introduced a smart user interface (SUI)
that uses sketch-based control to facilitate drone navigation
and visual dataset collection tasks. Our implementation is
platform-independent and can be accessed from any mobile
device without prior installation. Our experiments demon-
strate that our interface outperforms standard commercial
solutions, such as joystick and AR.Free Flight. A key con-
tribution is the use of adaptive correlation filters for visual
tracking of objects in the semi-autonomous target selection
mode. The MOSSE filter is robust against many appearance
changes and capable of executing at high frame rates. We
tested our platform in three different scenarios with partici-
pants from different age groups. The participants were able
to robustly execute navigation patterns and collect visual
datasets without crashing and expressed satisfaction with the
user experience.
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