
Improved Multi-Objective Binary Fish School for Feature Selection

Mariana Macedo, Carmelo Bastos-Filho, Ronaldo Menezes †
Computer Engineering Department, University of Pernambuco, Recife, Brazil

†BioComplex Laboratory, School of Computing, Florida Institute of Technology, Melbourne, USA
mgmm@ecomp.poli.br, carmelofilho@ieee.org, rmenezes@cs.fit.edu

Abstract

The Multi-Objective Binary Fish School Search (MOBFSS)
algorithm was proposed to solve optimization problems with
two or three conflicting objectives and operating on discrete
binary variables. The original proposal revealed good accu-
racy but it also exhibited a high computational cost. Here, we
present strategies to obtain an improved version of MOBFSS
that reaches lower Pareto fronts for minimization problems
at a better computational cost. We also deploy local search
procedures as proposed in BMOPSO-CDRLS to find solu-
tions closer to the optimal solution. The achieved results
outperform the state-of-art algorithms BMOPSO-CDR and
BMOPSO-CDRLS in feature selection problems for hyper-
volume optimization. Hence, this paper contributes to the lit-
erature in Swarm Intelligence by introducing several algo-
rithms that can be applied to improve feature selection in the
context of classification programs.

Introduction

Binary problems have been overlooked by the Swarm Intel-
ligence community; the majority of the techniques are de-
signed for continuous problems. Even though binary opti-
mization problems have the same general issues present in
continuous and discrete optimization, there are also signifi-
cant differences. For instance, changes in one feature in a bi-
nary decision variable may completely change the context,
which means that the selection of an feature can strongly
impact performance. Hence, an optimization algorithm such
as Fish School Search (FSS) needs to carefully select fea-
tures. Furthermore, convergence operators may lead to pop-
ulations of similar individuals. Such situation may happen in
a continuous approach but are not as prominent as in binary
problems. Consequently, new multi-objective binary algo-
rithms should consider the idiosyncrasies of binary problems
to avoid premature stagnation.

This paper proposes variations of Multi-Objective Binary
Fish School Search (MOBFSS) considering the limitations
and goals on binary optimization problems which include
the minimize the number of features used in classification;
we work with three datasets from UCI Machine Learning
Repository (Lichman 2013) and look at feature selection as
a function of classification error. In a nutshell, we present

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

strategies to obtain low computational cost avoiding an in-
crease in the error classification.

Multi-Objective Binary Fish School

The Multi-Objective Binary Fish School (MOBFSS) was
proposed by Macedo et at (Macedo et al. 2017) to optimize
problems with both conflicting objectives and binary deci-
sion variables. It was inspired on the manipulation of binary
variables in BFSS (Sargo 2013; Sargo et al. 2014), the flip of
multiple dimensions in IBFSS (Carneiro and Bastos-Filho
2016), and the operators for multi-objective problems in
MOFSS (Bastos-Filho and Guimaraes 2015). In MOBFSS,
the search process is similar to that of FSS in which a fish
school moves in a limited search space (i.e., an aquarium)
aiming at finding better regions. Each fish is a simple agent
represented by a position vector xi(t) and a weight wi(t)
associated with its performance f(xi(t)) through the itera-
tions t. The movement of the school is described by three op-
erators: individual, collective instinctive, and collective voli-
tive.

In the individual operator, each fish choses a random posi-
tion ni(t) by flipping at most Sind(t) dimensions, each with
probability Flipind, and updates its weight as wi(t + 1) =
wi(t) + Δwi(t)Di(t), where Δwi(t) and Di(t) are deter-
mined by the criteria of dominance as follows (Bastos-Filho
and Guimaraes 2015). If the new solution dominates the cur-
rent solution or it has a higher Crowding Distance (CD)
in the case they are indifferent, Δwi(t) is set to a or b,
respectively, and the fish moves to the new position. Con-
versely, if the new solution is dominated by the current solu-
tion or it has a lower Crowding Distance (CD) in the case
they are indifferent, Δwi(t) is set to −a or −b, respec-
tively, and the fish remains in its current position. The factor
Di(t) quantifies the extent to which a solution i is domi-
nated by other solutions j while accounting for the number
Sj(t) of solutions dominated by j, and it is calculated as
Di(t) = 1 − Ri(t)

max[Ri(t)]
, where Ri(t) =

∑
jεN,j≺i Sj(t).

Next, in the collective instinctive operator, every fish that
successfully found a better position choses Sinst of their di-
mensions to set their values according to the values chosen
by the majority. For instance, a fish will deliberately change
the value of a specific dimension from 0 to 1 if most fish that
improved their fitness also changed the value of that specific

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

189

dimension from 0 to 1.
In the collective volitive movement, each fish randomly

chooses a leader from the External Archive as the guide.
The External Archive is a repository that stores the best non-
dominated solutions obtained through the search process. If
the leader has better weight than the fish, then the dimen-
sions that are different between the fish and the leaders are
flipped. If the opposite happens, the dimensions that have
equal values should be flipped instead. The step volitive Svol

constrains the maximum number of dimensions that can be
flipped for each fish. Therefore, the collective volitive move-
ment provides the expansion or contraction of the swarm.
This operator is essential to the balance of exploration and
exploitation during the optimization process.

The last operator is the turbulence, and its goal is to pre-
vent the External Archive from getting stuck to a local min-
imum. In the turbulence, we perform a random flip into
a copy of a solution randomly chosen within the External
Archive. The original solution is replaced by the flipped one
only if there is an improvement in the quality of the solution.
In this case, an improvement means that the flipped solution
dominates the original solution of the External Archive. The
operator turb restricts how many features can be flipped.

Novel Versions for the MOBFSS

We have introduced several versions of MOBFSS (hence-
forth called M-1) as below. Note that the M-1 version in-
cludes all the operators except for local search (see Table
1).
• MOBFSS-2 (M-2): M-2 was created to minimize the

number of evaluations per iteration. The differences are:
there is no evaluation of an individual movement, individ-
uals always move; in the instinctive motion, the successful
fish are those who improved their solution in the previous
iteration. The hypothesis is that these simplifications can
be done without impacting accuracy.

• MOBFSS-1-LS (M-1-LS) and MOBFSS-2-LS (M-2-
LS): These are the versions of M-1 and M-2, respectively;
they are endowed with local searches instead of turbu-
lence. Given that local search strongly impacted in the im-
provement of BMOPSO-CDR (de Souza, Prudêncio, and
Barros 2014), the hypothesis here is that that MOBFSS
will also benefit.

• MOBFSS-1-WO-T (M-1-WO-T): M-1-WO-T removes
the turbulence from M-1. The hypothesis is that any type
of perturbation is fundamental to achieve good results.

• MOBFSS-3 (M-3): Similar to M-2 but with the individual
operators excluded. As the individual operators mainly
aims at providing diversity, the hypothesis is that the voli-
tive movement is sufficient to provide diversity in binary
problems.

• MOBFSS-3-LS (M-3-LS): Based on M-3 but with local
search being applied instead of the turbulence operator.
The hypothesis is that this operator will optimize the re-
sults.
Table 1 shows the operators utilized in each variation of

the MOBFSS introduced in this paper. These new versions

Table 1: Operators of MOBFSS and their adoption in each
version.

Operator M-1 M-1-LS M-1-WO-T M-2 M-2-LS M-3 M-3-LS

Individual Mov. � � � � �
Instinctive Mov. � � � � � � �
Volitive Mov. � � � � � � �
Individual Eval. � � �
Volitive Eval. � � � � � � �
Turbulence � � �
Local Search � � �

were created aiming at improving the performance of the
original version without the need to apply several operators
and hence minimizing the complexity of the algorithm. Note
that when an operator is removed, the requirements and ini-
tializations of some parameters for the algorithm become
unnecessary.

Experiments & Results

We performed the experiments using 2 computers: a Mac-
Book Pro with a 3 GHz Intel Core i7 and 16 GB 1600 MHz
DDR3, running macOS Sierra version 10.12.6; and a PC In-
tel Xeon 3.1 GHz, 16 GB RAM, arunning Ubuntu 15.10 64
bit. The programming language was Java but with the in-
clusion of the Jmetal library (Durillo and Nebro 2011); this
library provides several techniques and metrics well estab-
lished in the scientific community.

We chose the Support Vector Machine (SVM) as the clas-
sifier in our experiments because of its efficiency and robust-
ness to several datasets and fields, and its results are good
enough especially when combined with other preprocessing
approaches (Hearst et al. 1998). Recall that we are compar-
ing the MOBFSS versions according to their ability for do-
ing feature selection, meaning that the MOBFSS versions
select the features and use the SVM as a classifier using
the features (i.e. the SVM is the de facto fitness function in
our approach). We selected 3 datasets from UCI repository
(Lichman 2013). They are Wine, Ionosphere, and Sonar with
13, 34, and 60 features, respectively. The number of features
makes them more or less complex; the higher the number of
features the more complex is the problem. Each version and
dataset requires a different feature configuration. However,
as those techniques aim to solve a large number of problems,
we performed a parametric analysis for each one of the three
datasets, and we chose the best solution overall.

We executed 30 simulations for each experiment in each
dataset. The stop criterion and the initialized values were
adopted as proposed by Souza et al. (de Souza et al. 2011),
where the maximum number of evaluations of the fitness
function is 200,000. The variations of the MOBFSS we
propose here are compared to the BMOPSO-CDR and
BMOPSO-CDRLS.

Tables 2 and 3 presents the performance of each variation
as well as the two aforementioned PSO versions. The tables
include the mean execution time plus the standard deviation,
maximum, and minimum values for three datasets used.

The Wine dataset is the easiest experiment in this paper.
Because of its simplicity, the utilized configuration rarely

190

Table 2: Execution time (in seconds) for 30 trials of each
dataset.

Dataset Algorithm Mean Standard Deviation Max Min

Wine BMOPSO − CDR 2899.57 149.25 3428.57 2562.58
BMOPSO − CDRLS 2621.05 148.98 3020.96 2246.30
MOBFSS − 1−WO − T 2057.43 362.89 2727.51 1274.05
MOBFSS − 1− LS 2052.50 311.39 2545.47 1279.34
MOBFSS − 1 2502.81 1010.05 7004.17 1286.85
MOBFSS − 2 1739.95 646.60 4122.74 667.47
MOBFSS − 2− LS 1597.49 619.32 3885.47 826.13
MOBFSS − 3 860.17 186.76 1306.56 567.42
MOBFSS − 3− LS 791.13 171.04 1296.22 563.56

Ionosphere BMOPSO − CDR 2226.35 188.65 2857.75 1978.61
BMOPSO − CDRLS 2059.85 160.30 2543.17 1847.74
MOBFSS − 1−WO − T 2890.87 794.07 5997.38 2251.15
MOBFSS − 1− LS 2553.60 388.01 3819.58 2014.57
MOBFSS − 1 2689.21 442.26 4171.33 2283.17
MOBFSS − 2 2580.94 479.56 3923.67 1970.44
MOBFSS − 2− LS 2191.95 546.98 4566.73 1907.93
MOBFSS − 3 1865.23 308.49 3349.52 1641.54
MOBFSS − 3− LS 1946.28 506.94 3716.42 1607.20

Sonar BMOPSO − CDR 2265.14 41.18 2354.69 2180.68
BMOPSO − CDRLS 2104.58 169.48 2699.18 1944.72
MOBFSS − 1−WO − T 2090.05 198.41 2543.17 1847.74
MOBFSS − 1− LS 2528.43 169.47 2887.85 2150.29
MOBFSS − 1 2821.31 194.26 3245.92 2449.60
MOBFSS − 2 2575.69 53.04 2700.62 2453.51
MOBFSS − 2− LS 1586.84 127.07 1915.93 1496.09
MOBFSS − 3 1393.04 124.82 1630.84 1191.05
MOBFSS − 3− LS 1337.24 114.36 1541.09 1195.842

impacts the results. Several settings and algorithms achieve
the same best solutions, and 100 iterations are enough to
reach them. In Table 2, M-3-LS shows the shortest execution
time in seconds. Given the variations reaches similar solu-
tions (see Figure 1), it is recommended to utilize the fastest
version, M-3-LS. Using less than six features, the error clas-
sification for Wine remains less than 0.011%, while one of
the features is of particular importance for providing high
accuracy.

The Ionosphere classification is a harder problem than the
classification in Wine, and each algorithm presented differ-
ent results. The M-3 and M-3-LS variations had the fastest
execution time as displayed in Table 2. In Table 3 we ob-
serve that the maximum hypervolume (HV) was obtained by
M-3-LS which is also the second fastest algorithm. In addi-
tion, BMOPSO-CDRLS, M-1-LS, M-1 and M-3-LS shows
similar mean values which indicates that the usage of local
search is positive, but M-1 was not strongly impacted. Al-
though the turbulence and local search were not determinant
in this dataset, their usage seems positive for the algorithms.
Spacing (S) can be evaluated to identify the diversity of the
Pareto Fronts. In Table 3, S is optimized by M-3, but its per-
formance is not one of the best. Looking at the HV and S, it
is possible to observe that the M-3-LS is the best option be-
cause the diversity is easier in suboptimal locations. Table 3
shows that the maximization of the Maximum Spread (MS)
is accomplished by M-3-LS revealing a considerable exten-
sion of the Pareto front, and longer Pareto fronts are easier
to achieve in suboptimal locations.

The statistical test for Ionosphere dataset is exhibited in
Table 4. In this table, � means that the row is better than
the column, � represents that the row is worse than the col-
umn, and – means that the results are similar. The statistical
tests were done using the Wilcoxon test with a 95% of the
confidence interval.

M-3-LS statistically beats the other algorithms, and it

Table 3: Mean, Standard Deviation, Maximum and Mini-
mum of the 30 simulations of each algorithm calculated by
the three metrics of Ionosphere and Sonar datasets.

Dataset Algorithm Mean Standard Deviation Max Min

Ionosphere BMOPSO − CDR 0.8066 0.0182 0.8390 0.7639
(Hypervolume) BMOPSO − CDRLS 0.8805 0.0181 0.8918 0.8126

MOBFSS − 1−WO − T 0.8592 0.0222 0.8931 0.7925
MOBFSS − 1− LS 0.8784 0.0226 0.9172 0.8453
MOBFSS − 1 0.8759 0.0127 0.8960 0.8468
MOBFSS − 2 0.8074 0.0272 0.8675 0.7632
MOBFSS − 2− LS 0.8084 0.0645 0.8793 0.7325
MOBFSS − 3 0.8368 0.0140 0.8700 0.8160
MOBFSS − 3− LS 0.8895 0.0197 0.9066 0.8435

Sonar BMOPSO − CDR 0.6926 0.0105 0.7151 0.6687
(Hypervolume) BMOPSO − CDRLS 0.8019 0.0045 0.8115 0.7941

MOBFSS − 1−WO − T 0.8306 0.0152 0.8678 0.8086
MOBFSS − 1− LS 0.8608 0.0031 0.8676 0.8558
MOBFSS − 1 0.8348 0.0137 0.8639 0.8126
MOBFSS − 2 0.7487 0.0204 0.7887 0.7145
MOBFSS − 2− LS 0.7974 0.0066 0.8160 0.7833
MOBFSS − 3 0.7844 0.0151 0.8243 0.7605
MOBFSS − 3− LS 0.8477 0.0045 0.8557 0.8367

Ionosphere BMOPSO − CDR 0.0327 0.0130 0.0692 0.0095
(Spacing) BMOPSO − CDRLS 0.0731 0.0221 0.1095 0.0128

MOBFSS − 1−WO − T 0.0278 0.0349 0.1396 0.0014
MOBFSS − 1− LS 0.0344 0.0232 0.0880 0.0014
MOBFSS − 1 0.0329 0.0180 0.0624 0.0023
MOBFSS − 2 0.0351 0.0183 0.1042 0.0043
MOBFSS − 2− LS 0.0862 0.0596 0.1676 0.0118
MOBFSS − 3 0.0140 0.0064 0.0314 0.0022
MOBFSS − 3− LS 0.0877 0.0392 0.1414 0.0102

Sonar BMOPSO − CDR 0.0247 0.01131 0.0561 0.0090
(Spacing) BMOPSO − CDRLS 0.1136 0.0230 0.1848 0.0760

MOBFSS − 1−WO − T 0.0189 0.0163 0.0574 0.0036
MOBFSS − 1− LS 0.0581 0.0073 0.0874 0.0508
MOBFSS − 1 0.0210 0.0144 0.0606 0.0052
MOBFSS − 2 0.0140 0.0169 0.0728 0.0000
MOBFSS − 2− LS 0.1832 0.0330 0.2392 0.1184
MOBFSS − 3 0.0177 0.016 0.0692 0.0013
MOBFSS − 3− LS 0.1367 0.022 0.1904 0.0965

Ionosphere BMOPSO − CDR 0.8654 0.0197 0.8977 0.8274
(Maximum Spread) BMOPSO − CDRLS 0.8785 0.0220 0.9258 0.8414

MOBFSS − 1−WO − T 0.8990 0.0344 1.0093 0.8418
MOBFSS − 1− LS 0.8926 0.0232 0.9443 0.8380
MOBFSS − 1 0.8874 0.0217 0.9372 0.8475
MOBFSS − 2 0.9086 0.0240 0.9618 0.8747
MOBFSS − 2− LS 0.9185 0.0217 0.9801 0.8814
MOBFSS − 3 0.9035 0.0130 0.9272 0.8720
MOBFSS − 3− LS 0.9314 0.0248 0.9843 0.8889

Sonar BMOPSO − CDR 0.8975 0.0208 0.9567 0.8601
(Maximum Spread) BMOPSO − CDRLS 0.9373 0.0272 0.9942 0.8802

MOBFSS − 1−WO − T 0.9208 0.0100 0.9418 0.9043
MOBFSS − 1− LS 0.9338 0.0173 0.9869 0.9023
MOBFSS − 1 0.9174 0.0134 0.9419 0.8858
MOBFSS − 2 0.9641 0.0159 0.9880 0.9294
MOBFSS − 2− LS 0.9647 0.0514 1.0372 0.7885
MOBFSS − 3 0.9468 0.0147 1.0014 0.9239
MOBFSS − 3− LS 0.9985 0.0211 1.0322 0.9518

is one of the fastest algorithms. However, M-1-LS could
reach the best value of HV (the best solution for the prob-
lem). The algorithms displayed in Table 4 are better than
the algorithms BMOPSO-CDR, M-2, M-2-LS and M-3.
Figure 1 presents the best solution found by the 30 tri-
als. M-1-LS displayed a bigger and better Pareto front than
M-3-LS; these versions also show a better Pareto front than
BMOPSO-CDRLS.

Last, the Sonar dataset is the most complex experiment
performed in this paper because the number of features is
larger highlighting the efficiency of the MOBFSS versions.
The execution time of all the algorithms displayed in Table 2
is minimum in M-3-LS. However, the best algorithm regard-
ing performance is M-1-LS (as shown in Table 3). Between
those 2 versions, we recommended the use of the version
which prioritizes the main goal of a problem. Some prob-
lems will require higher accuracy, and others are better to
achieve fast answers. For this dataset, the usage of the local
search was positive in all the cases. Moreover, when com-
paring the MOBFSS versions without local search to the
BMOPSO-CDRLS, the MOBFSS versions were better. The

191

(a) Wine (b) Ionosphere

(c) Sonar

Figure 1: Pareto front for the best results in the External
Archive (EA).

diversity was minimized by M-2, but, as mention before, it is
easier to achieve better diversity with suboptimal solutions.
Thus, the algorithms which achieve better solutions provide
worse results for S. M-3-LS presented the best values for the
extension found on Pareto fronts (MS).

Table 4: Comparison of the best algorithms for the perfor-
mance of Ionosphere dataset.

BP-CDRLS MF-1 MF-1-WO-T MF-1-LS MF-3-LS

BP-CDRLS – – – �
MF-1 – � – �
MF-1-WO-T � � � �
MF-1-LS – – � –
MF-3-LS � � � –

Table 5: Comparison of the best algorithms for the perfor-
mance of Sonar dataset.

BP-CDRLS MF-1 MF-1-LS MF-3-LS

BP-CDRLS � � �
MF-1 � � �
MF-1-LS � � �
MF-3-LS � � �

Table 5 shows the pairwise comparison of the versions
using the same Wilcoxon test used before. M-1-LS is sta-
tistically better than the others, and M-3-LS also beats the
others except for M-1-LS. In addition, BMOPSO-CDRLS is
better than BMOPSO-CDR, M-2, M-2-LS and M-3. Figure
1 depicts the best solution for the 30 trials where clearly the
best solution was achieved by M-3-LS. It is also important
to note that the usage of 10-20% of the dimensions yields a
10-17% in error classification.

Conclusion

We proposed new versions for MOBFSS aiming to minimize
the computational cost while maintaining performance. A
new lighter version called MOBFSS-3-LS presents a good
accuracy with reduced computational cost, but it did not beat
MOBFSS-1-LS regarding hypervolume in all databases. The
algorithms also aimed to avoid local minima, and the lo-
cal search showed significant efficiency in that regard. We
contributed to Swarm Intelligence by suggesting new bi-
nary multi-objective algorithm variations in particular to the
problem of feature selection. We suggest that our variations
need to be analyzed considering other configurations, and
tested in real-world problems.

References

Bastos-Filho, C. J., and Guimaraes, A. C. 2015. Multi-
objective fish school search. International Journal of Swarm
Intelligence Research (IJSIR) 6(1):23–40.
Carneiro, R. F., and Bastos-Filho, C. J. 2016. Improving
the binary fish school search algorithm for feature selection.
In Computational Intelligence (LA-CCI), 2016 IEEE Latin
American Conference on, 1–6. IEEE.
de Souza, L. S.; de Miranda, P. B.; Prudencio, R. B.; and
Barros, F. d. A. 2011. A multi-objective particle swarm
optimization for test case selection based on functional re-
quirements coverage and execution effort. In Tools with Ar-
tificial Intelligence (ICTAI), 2011 23rd IEEE International
Conference on, 245–252. IEEE.
de Souza, L. S.; Prudêncio, R. B.; and Barros, F. d. A. 2014.
A hybrid binary multi-objective particle swarm optimization
with local search for test case selection. In Intelligent Sys-
tems (BRACIS), 2014 Brazilian Conference on, 414–419.
Durillo, J. J., and Nebro, A. J. 2011. jmetal: A java frame-
work for multi-objective optimization. Advances in Engi-
neering Software 42(10):760–771.
Hearst, M. A.; Dumais, S. T.; Osuna, E.; Platt, J.; and
Scholkopf, B. 1998. Support vector machines. IEEE In-
telligent Systems and their applications 13(4):18–28.
Lichman, M. 2013. Uci machine learning repository.
Macedo, M. G. d. M.; Bastos-Filho, C. J. A.; Vieira, S. M.;
and Sousa, J. M. C. 2017. Multi Objective Binary Fish
School Search. Critical Developments and Applications of
Swarm Intelligence.
Sargo, J. A.; Vieira, S. M.; Sousa, J. M.; and Bastos-Filho,
C. J. 2014. Binary fish school search applied to feature
selection: Application to icu readmissions. In FUZZ-IEEE.
Sargo, J. A. G. 2013. Binary fish school search applied to
feature selection.

Acknowledgments

Mariana Macedo thanks to University of Pernambuco (PFA-
UPE) and CAPES (Coordination for the Improvement of
Higher-Education Personnel) for the partial financial sup-
port provided. Ronaldo Menezes was partially supported by
the US Army Research Office under Agreement Number
W911NF-17-1-0127.

192

