
On-Line Agent Detection
of Goal Changes

Nathan Ball, Jason Bindewald, Gilbert Peterson
Department of Electrical and Computer Engineering

Air Force Institute of Technology ∗
WPAFB, OH 45433

Abstract

An increasingly important job for the autonomous agents is
determining what goal they should be accomplishing. In dy-
namic environments the goal of the autonomous agents does
not always remain constant. This research examines how to
detect and adapt to goal changes within a dynamic game en-
vironment. An adaptive learner capable of detecting concept
drift is used to detect when a goal change has occurred within
the game environment and exploration techniques are used to
adapt to the change. Initial results show that the agent has an
84% detection rate.

Introduction
As autonomous agents continue to expand into new and
unique environments an important capability for them will
be intelligent goal detection. Whether implemented in a
completely autonomous system or as part of a human-
machine team, future autonomous agents will need to be
able to operate in highly dynamic environments where goals
can constantly change. To function efficiently, future au-
tonomous agents will need to detect and adapt to changing
goals without having to be explicitly told to do so by a hu-
man. For example, if an autonomous transport truck encoun-
ters an accident on the road it would be beneficial for it to
briefly change its goal to ensure that the accident is reported,
and medical authorities are en route. Additionally, the capa-
bility to recognize goal changes can benefit human machine
teams. By keeping their goals in alignment with those of the
human, agents can avoid hindering operational performance
(Endsley 2015).

This paper presents an agent that can adapt to a variety
of goals within a game environment. We present an adaptive
learning agent that utilizes concept drift techniques to de-
termine when the games goal has changed. Reinforcement
learning is then utilized to learn the new goal. We aim to de-
termine how well the agent can detect changes and whether
certain categories of goals are more difficult to adapt to than
others.

∗The views expressed in this paper are those of the authors, and
do not reflect the official policy or position of the United States Air
Force, Department of Defense, or the U.S. Government.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The rest of the paper is organized as follows. First, we
discuss the related work: goal classification, concept drift,
and the Space Navigator environment. Next, we review the
methodology, explaining the agent and experimental design.
Then we analyze the early results obtained from initial trials
of the experiment. The paper closes with a conclusion of the
research.

Background & Related Work
An important first step before developing a system that can
adapt to changing goals, is defining exactly what goals are.
When it comes to games, goals are not always easily defined.
Often, they are generalized as, “acquire the most points”,
“survive for a length of time”, or “kill the enemy units.”
Within each of these “meta-goals” are a subset of game-
play goals that must be accomplished. Djaouti et al (2008)
proposed a unique taxonomy for classifying games through
their mechanics. The list of mechanics is divided into ei-
ther gameplay mechanics or goal mechanics. In this division,
gameplay mechanics define actions that rely on player input,
while goal mechanics provide feedback to the player about
their performance. The four goal mechanics (avoid, match,
destroy, and create) have been adopted as the target goals
between which our system must adapt.

Goal determination and adaption is not an inherently new
concept to games. Many games have implemented an adap-
tive artificial intelligence that can reason over goals to im-
prove realism and difficulty. The AI enemies in, No One
Lives Forever 2: A Spy in H.A.R.M.s Way (Orkin 2003) and
F.E.A.R. (Orkin 2006), dynamically choose between differ-
ent goals and create an action plan according to the current
goal. In both games, however, the agents are hard coded with
all the possible goal states and need only determine which
goal they should accomplish. They do not formulate new
goals beyond the ones that have been hard coded. In this
research the agent has no knowledge of how the goals can
change and instead must observe the environment to deter-
mine the current goal state.

The problem of identifying goal changes is closely related
to concept drift. In any supervised learning problem, the ob-
jective is to predict a target variable y given some set of in-
put features X using known (X, y) training pairs (Hoens,
Polikar, and Chawla 2012). Here, y can be viewed as the
feedback from goals within the environment and X are the

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

294

Figure 1: Generic framework for an adaptive learning sys-
tem. Recreated from (Gama et al. 2014).

features of the game that are used to determine what goal
should be accomplished. Concept drift occurs when the goal
changes and the previously learned (X, y) pairs become ob-
solete, requiring new relations must be learned.

A system that can adapt to concept drift must be able to
overcome two key problems (Hoens, Polikar, and Chawla
2012, Gama et al. 2014); it must detect legitimate concept
drift while filtering out noise in the data and adapt to the new
data. Gama et al (2014) present a generic framework, seen
in Figure 1, to create a capable adaptive learner. The frame-
work posits that a drift learning system only needs four key
components: memory, learning, loss estimation, and change
detection modules. These control how much data is stored,
how to update the predictive model, and what change in the
data triggers a drift alarm. For each of these modules, design
decisions are dependent on the problem domain and the data
being analyzed.

The contribution of this research is the application of con-
cept drift adaption to a game environment with multiple dy-
namic goals that start unknown to the autonomous agent.
The agent begins with no knowledge of the goals, only an
understanding of the actions it can take. Through change de-
tection and reinforcement learning the agent can formulate
new goals.

Experiment Environment
The environment utilized for this research is the Space Navi-
gator (Bindewald, Miller, and Peterson 2014) route creation
game. Shown in Figure 2, Space Navigator is a tablet-based
air traffic control style game. There are three primary ship
colors (red, blue, and yellow) that spawn on the edges of the
screen at regular intervals. The player draws a trajectory that
the ship will follow by dragging the ships colored marker
around the screen. The ship follows its given trajectory until
it lands on its home planet, is destroyed, or reaches the end
of the trajectory. If two primary ships of different colors col-
lide, they will combine to form a new ship that is the fusion
of the two colors. Red and yellow combine to form orange,
blue and yellow form green, finally, red and blue form pur-
ple. Initially when a ship collides with another ship of the
same color or a fusion ship, its “shield” will absorb the col-
lision. A second collision will destroy the ship, removing it
from the game. For this research, autonomous play is imple-
mented using a pair of agents that, generate trajectories for
the ships and avoid collisions with all objects other than the

Figure 2: An example game of Space Navigator being
played by the autonomous agent.

Table 1: Breakdown of points by interaction for each goal
scenario.

Points
by

Goal

Planet
Collision

Shield
Depletion

Ship
Destrustion

Ship
Fusion

(per ship)
Avoid 150 -50 -100 -50
Match 50 100 -150 -75

Destroy -150 50 100 -150
Create 100 -50 -100 100

intended target.

Methodology
The goals, (avoid, match, destroy, and create) are imple-
mented in Space Navigator through changing the number
of points earned for the interactions between ships and the
other objects in the environment. Interactions are defined as
a collision between a ship and another ship or planet. A de-
scription of the four goal scenarios are presented as follows:

• Avoid: Ships must avoid collisions with other ships.
Points are earned from landing on planets and lost for all
forms of collisions.

• Match: Ships of the same color must collide to deplete
their shield. Points are earned when a ship depletes its
shields and points are lost from ship destruction or fusion.

• Destroy: Ships must destroy themselves through multiple
collisions. A small number of points are earned for shield
depletion then more points are earned from destruction of
the ship.

• Create: The three base colored planets have been replaced
by the fusion ship color planets. Fusion ships must be
formed to earn points for landing on planets.

Table 1 shows the point breakdown for each interaction
across the four goals. The points were distributed across the
goals such that, at most a single ship can earn 150 points and
at worst lose 150 points.The goal in this research is carried
by the environment not the specific agents.

The goals in the environment are tracked through an adap-
tive learner agent. The adaptive learner primarily follows the

295

framework presented by Gama et al (Gama et al. 2014) mod-
ified with an additional reinforcement learning layer of ex-
ploration and exploitation. Algorithm 1 gives an overview of
how the agent functions. Single example memory is used to
populate the predictive model. Only the most recent example
of an interaction is stored by the agent. When a new exam-
ple of an interaction is received, it overwrites the previous
example. The predictive model, which predicts the number
of points a ship will earn for an interaction, is formed via
a lookup table between the interactions and their associated
point reward in memory.

When a ship completes its assigned interaction, the agent
receives a noisy value for the number of points earned. The
noise added to the score is drawn from a unit normal distri-
bution then multiplied by 25 to increase its effect. The noise
avoids giving perfect information to the agent that would al-
low it to instantly detect when a change occurs. This repre-
sents how a player may not notice the change due to their at-
tention being taken up from drawing trajectories and avoid-
ing collisions. The feedback is compared against the pre-
dicted number of points for the interaction to get the predic-
tion error. The agent maintains a short (five sample) and long
(10 sample) window of the error to compare the loss over
time. The average loss in the short window will be affected
more quickly after a change than the long window. When
the average error in the short window is 25 points greater
than the average loss in the long window a change alarm is
triggered. The alarm signals to the agent that it should be-
gin exploring the environment to learn the full extent of the
changes.

Exploration occurs using a semirandom recency based ap-
proach. While exploring the environment the agent main-
tains memory of the interactions that it has explored and
only explores new interactions. The exploration is partially
random due to the random color of the ships that spawn, so
there is no way to control the order in which interactions will
occur. The agent explores for 45 seconds before switching
to exploitation. At the end of an exploration phase the agent
compiles the exploration knowledge of the reward for each
interaction. The data is used to formulate the current goal,
which is then distributed across all ship colors. This way,
even if a ship color did not explore an interaction it can esti-
mate the points based on what the other ship colors have ex-
perienced. The agent always begins in an exploration phase
and only returns to exploration after a change is detected.

While not exploring the agent enters an exploitation
phase. During exploitation the agent utilizes the predictive
model generated by the learner to assign ship targets. When
a ship spawns the agent compiles a list of objects that will
yield the most points based on the ships state. When an ob-
ject on the list, that also has the other ship on their targets
list, spawns or becomes available the two objects assign each
other as goals. During exploration if a ship is on screen for
20 seconds before a target is assigned then it will query the
goal agent for a random target. This ensures that some ex-
ploration occurs after a change even if it is not explicitly
detected.

Algorithm 1 Adaptive Learner Agent algorithm for detect-
ing change and assigning targets.

1: Start:
2: exploreT ime = currentT ime+ 45
3: Exploring = true
4: Update:
5: On Ship Spawn: assignTarget(Ship)
6: After Delay: checkDrift(feedback, prediction)
7: if Exploring && currentT ime > exploreT ime

then
8: Exploring = false
9: Compile exploration knowledge

10: Formulate goal
11: Distribute goal across all ships
12: function ASSIGNTARGET(ship)
13: if Exploring = true then
14: Explore new interaction
15: else
16: Compile list of targets
17: if Target exists then
18: Assign target
19: else if Target not assigned in 20 sec then
20: Assign random target
21: function CHECKDRIFT(feedback, prediction)
22: Update memory
23: Calculate loss
24: Update loss windows
25: if avg(5 sample Loss) > avg(10 sample Loss)+25

then
26: Clear loss windows.
27: exploreT ime = currentT ime+ 45.
28: Exploring = true

Experiment

An initial experiment tests the adaptive agents performance
and examines which goal is the hardest for the agent to learn.
For each condition, the environment starts in one of the four
goal states, then the goal switches to one of the other three
during the game. A goal change window occurs at either a
quarter of the way through the game or half way through
the game. For both times, randomness is added such that
the change can occur within a 30 second window on either
side. Pairing each set of goal changes with the two switch
windows results in 24 different conditions.

Several assumptions are made during this experiment.
First, all ships share the same goal, at no point during the
experiment do two ships have different goals. The goal dis-
tribution that occurs at the end of each exploration phase is
dependent on this assumption. Second, the true points value
is known everywhere except in the loss calculation. The last
assumption is that the adaptive agent starts with no informa-
tion about the environment. At the start of each new trial the
agent is refreshed and does not carry over any information
from the previous trial.

296

Figure 3: Average scores binned by goal and goal period.
Plot displays the average score and 95% confidence interval.

Results
Over seven full batteries of trials, 168 total games, the av-
erage score across all games was 25,570. Figure 3 shows a
box plot of the score distribution separated by goal and goal
period, being either the starting goal or ending goal. While
the average score for games starting with the match goal
is lower than the other three, there is not enough of a dif-
ference to be considered statistically significant. However,
when sorted by the second goal a large difference is seen.
Games with match as the second goal had a significantly
lower score than games with the other three goals. There is a
12,000-point difference in the average score between match
and the other three goals. The extreme difference between
the two goal periods is a result of second goal being active
longer than the first goal. In half the games the first goal is
only active for a quarter of the total game, thus when match
is the second goal it is active longer leading to lower scores.
The poor match goal performance was due to the goal agent
triggering a high number of false positives. A false positive
here meaning that the goal agent detects a change when none
has occurred. Of the 183 false positives that were detected
by the learner 173 of them occurred during the match goal.
This resulted in the agent exploring far more than it should
have instead of exploiting the learned knowledge.

The goal change was properly detected in 141 of the 168
games in an average of 13.3 seconds. Of the 27 games where
a change was not properly detected; in 12 the change was de-
tected over a minute after the switch occurred, in 10 games a
false positive change was detected closely before the switch
such that the exploration period overlapped with the change,
and in five games no change was ever detected. For games
with proper detection, Figure 4 shows the time taken to de-
tect the goal change, separated by goal and goal period, be-
ing either the starting goal, changed away from, or ending
goal, changed to. On average, it took significantly longer to
both detect change to, and away from the create goal. The
create goal takes longer to detect because the ships often
rely on the time triggered exploration to detect the change.
Reducing the 20 second timer could improve the change de-
tection time but might also trigger more often even when the
goal has not changed.

These results show that the adaptive learner agent is ca-
pable of quickly detecting goal changes in the environment.

Figure 4: Average time taken to detect the goal change
binned by the goal that was switched away from, or to. Plot
displays the average detection time and 95% confidence in-
terval.

The final scores show that the agent can adapt to the new
goal and achieve a high score. Additionally, the results in-
dicate that the agent can detect and adapt to the change in-
dependent of the starting or ending goal. The exceptions to
this statement are the match goal score performance and cre-
ate goal detection time. This could apply to other games to
create agents that can react to unexpected player events. In
games players find methods to subvert the intended goal in
ways the AI is unable to adapt to. This system could be used
to detect when a player has changed their goal, then adapt to
the new goal the player is attempting to accomplish.

Conclusion
The problem of detecting goals within an environment is in-
creasingly important as autonomous agents spread into new
dynamic environments. This paper presented a framework
for adapting to dynamic goals within the Space Navigator
environment. The results show that the agent can success-
fully detect and adapt to drift in the goal. Future work will
aim to improve agent performance in the match and create
goal scenarios. Additionally, we are interested in comparing
these results to human play to compare which is better at
detecting changes.

References
Bindewald, J. M.; Miller, M. E.; and Peterson, G. L. 2014.
A function-to-task process model for adaptive automation sys-
tem design. International Journal of Human-Computer Studies
72(12):822–834.
Endsley, M. 2015. Autonomous horizons: System autonomy
in the air force–a path to the future. US Department of the Air
Force, Washington.
Gama, J.; Žliobaitė, I.; Bifet, A.; Pechenizkiy, M.; and
Bouchachia, A. 2014. A survey on concept drift adaptation.
ACM Computing Surveys (CSUR) 46(4):44.
Hoens, T. R.; Polikar, R.; and Chawla, N. V. 2012. Learning from
streaming data with concept drift and imbalance: an overview.
Progress in Artificial Intelligence 1(1):89–101.
Orkin, J. 2003. Applying goal-oriented action planning to games.
AI Game Programming Wisdom 2:217–228.
Orkin, J. 2006. Three states and a plan: the ai of fear. In Game
Developers Conference, volume 2006, 4.

297

