
Between Multi-Attribute Utility Decision Making and Recommender Systems:
Transparent, Instantaneous, Local Recommendations for Sparse Data

James Schaffer, James Michaelis, Adrienne Raglin, Stephen Russell
US Army Research Laboratory, Battlefield Information Processing Branch

{james.a.schaffer20.civ, james.r.michaelis2.civ, adrienne.j.raglin.civ, stephen.m.russell8.civ}@mail.mil

Abstract

One of the most significant contributions to decision technol-
ogy is multi-attribute utility (MAU) theory. MAU has gained
increased traction in determining the value of information in
tactical networking, has been a inspiration for some content-
based recommender systems, and artifacts of MAU can be
found on nearly every e-commerce website. While recom-
mender systems attempt to create a model of the user (of-
ten on latent variables) from rating data, MAU attempts to
solicit content-relevant attribute weightings explicitly. Both
of these methods have trade-offs which might be mitigated
if they could be combined. This research presents a method
that we call MAUSVR for fusing recommender and MAU
decision technology by automatically learning MAU mod-
els (from a user’s ratings. A comparison with collaborative
filtering techniques on the MovieLens dataset suggests that
MAUSVR achieves better ranking quality under sparse con-
ditions while also gaining in transparency and locality. Ad-
ditionally, MAUSVR was able to be built instantaneously
(< 100ms) for more than 75% of the evaluated users with
an off-the shelf Java implementation of SMOreg. These find-
ings indicate promise for the use of MAUSVR in real-time
decision support systems operating in sparse data conditions.

Introduction

As the amount of information available to an individual
continues to increase, useful normative theories of deci-
sion making become more important. One such approach is
known as Multi-attribute Utility (MAU), which has been re-
searched as early as 1968 (Raiffa 1968). Although there is
no consensus about normative theories of decision making,
MAU has gained traction in tactical networking research.
This may be because MAU is simple in concept, locally
computed, and easy to explain. MAU has wide applicabil-
ity and is even suitable for domains where bad decisions are
costly, such as when selecting an international supplier, di-
agnosing health issues, and Command, Control, Communi-
cations, Computers, Intelligence, Surveillance and Recon-
naissance (C4ISR).

Of principal interest to the authors is establishing effec-
tive decision technology in the C4ISR and tactical network-
ing domains. Typical tactical networking conditions include

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sparse data, low bandwidth, and intermittent connectivity,
due to operations being conducted in regions where net-
works are not immediately available or are interfered with
due to adversary activity. MAU modeling has previously
been explored for supporting Value of Information (VoI) as-
sessment to prioritize content delivery (Suri et al. 2015) in
C4ISR situations. This is for (but not limited to) two crit-
ical reasons: 1) high transparency makes it easy to detect
adversarial behavior and error, and 2) there is little reliance
on global data, since MAU can be computed locally and in-
formation transmission decisions can be made ad-hoc. How-
ever, there are also two issues with the MAU approach: the
collection of item attributes in the domain and the elicita-
tion of attribute-based preferences. The former problem has
been mitigated in part through advances in content manage-
ment protocols for relevant data sources, including the In-
ternet of Things and pervasive sensors. The recommender
systems approach, which is to automatically learn current
preferences from past behavior, have the potential to address
the latter problem

Collaborative filtering (CF) approaches have been shown
to be both portable and consistent in terms of accurately as-
sessing the value of items to a particular person, however,
CF has several issues that make it unsuitable for tactical
networking: cold-start, reliance on dense global preference
data, and low inherent transparency. Likewise, constraint or
content-based (CB) methods only rely on a domain model
and the preferences for the user in question, making them
more suitable for tactical networking situations. Moreover,
recent research has shown that users have indicated they
prefer specifying preferences en masse (Chang, Harper, and
Terveen 2015) for single-session cold start situations, rather
than rating items individually. This suggests an approach
wherein a content-based recommender may want to lever-
age item ratings when available but elicit attribute prefer-
ences when they are not. CB systems are also notably more
transparent than CF, for instance, Tasteweights (Bostandjiev,
O’Donovan, and Höllerer 2012) and LinkedVis (Bostand-
jiev, O’Donovan, and Höllerer 2013) were perceived to be
transparent by study pools. Although these two systems are
strikingly similar to a MAU approach and suggest compat-
ibility, their quantitative accuracy and ranking quality have
not been assessed. These features of CB suggest compati-
bility with C4ISR, however, an unfortunate issue is that CB

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

478

methods are not as standardized as CF approaches, requiring
new methods to be designed for each application.

To build a CB recommendation system for C4ISR, this
research takes inspiration from the observation that support-
vector regression (SVR) with a linear kernel produces a
model that is a weighted linear sum of products of domain
features – essentially a MAU model (MAUM). However,
building MAUM using naive SVR has fairly poor perfor-
mance on the ranking problem when compared with CF
techniques and even does worse than ranking by the mean
average rating. We present a few heuristic modifications to
SVR that can produce more effective MAUM. The result-
ing technique, which we call MAUSVR, can instantaneously
provide a user with attribute weightings, and thus, recom-
mendations. Although preference/rating data in the C4ISR
domain is not yet available, this initial study uses a sample
of the MovieLens 20M dataset consisting of 5 million rat-
ings was used to assess ranking quality, robustness to spar-
sity, and speed. The evaluation presented here indicates that
MAUSVR would be suitable for tactical networks. More-
over, the resulting method is competitive with CF in terms
of accuracy, and as long as domain features are provided,
remains as domain-independent as SVR itself.

Method

MAUSVR aims to learn the MAUM of an individual user’s
preferences through support-vector regression (SVR). A
MAUM can be described as:

f(x) = ω · φ(x) + b (1)

where φ(x) returns an array that are the attribute values
of item x. This results in simply a linear sum of weighted
attributes. Here, an SMOreg implementation is used (Smola
and Schölkopf 2004) to build MAUM, however, some modi-
fications are needed to achieve high quality of item ranking.
The modifications are based on two observations. First, any
number of MAUM can be linearly combined into a single
model that still matches the form of an MAUM, such that the
weights (w) are the weighted sums of the ensemble weights
and the bias (b) is the weighted sum of the ensemble biases.
Second, the mean item rating approach, which is relatively
stable at all sample sizes, is surprisingly good at the rank-
ing problem. In this section we describe the three modifica-
tions, which each have associated parameters. In each case, a
greedy linear sampling strategy was used on the MovieLens
dataset to determine the ideal value for the parameter.

First, a bagging approach (Breiman 1996) was utilized to
improve both the ranking quality and speed of SMOreg. The
time complexity of support vector regression is also fairly
bad: O(max(n, d)min(n, d)2) (Chapelle 2007), so limiting
the maximum size of any bag greatly improves the scalabil-
ity of the approach. The number of learners in the ensemble
I was determined with the following function of a user’s
profile size, |P |:

I = 10 +min

(|P |2
B2

max

, 200

)
‘ (2)

To minimize the worst case build time of the ensemble,
our evaluation suggests that the maximum number of itera-
tions should be limited to 210 and the maximum bag size,
Bmax, should be set to 100.

Second, mean ratings should be used to boost the perfor-
mance of MAUSVR. Fortunately, mean ratings do not re-
quire large amounts of global data to get good estimates:
assuming a standard deviation of 1.0 stars, it only takes 50
samples to estimate a mean rating to within about a quarter
of a star (this also means that mean ratings do not have to be
updated frequently). In MAUSVR, this “baseline” MAUM
(Mb) can be blended with the trained ensemble model (Me)
to produce the rating prediction of item ri by quantifying the
confidence α of the latter, as follows:

ri = αMe(i) + (1− α)Mb(i) (3)

Since the predictive power of the ensemble model in-
creases only as the user’s profile size increases, quantifying
the confidence is relatively straightforward. The following
function, wherein β is a tuning parameter, of the user’s pro-
file size |P | was used:

α =
log(|P |)

β
(4)

Third, SVR needs a way to deal with discrete at-
tributes. One way to handle discrete-valued attributes A ∈
{a1, a2, ...an} is by creating n new numeric attributes ai ∈
{0, 1}, however, this can quickly lead to an overwhelming
number of attributes for a human decision maker to con-
sider. This problem is exacerbated when the attribute can
take multiple values (e.g. movie genre and cast). Having ex-
cessive attributes with little mutual information can also hurt
the performance of SMOreg. For instance, a single movie
can have hundreds of cast members, perhaps few of which
could be found elsewhere in a user’s profile. For this reason
the total number of discrete attributes was pruned down to
a reasonable subset. In the implementation of MAUSVR, a
cutoff was used to remove attribute columns that had fewer
than ε instances. ε was determined with the following func-
tion, which has one tuning parameter γ affecting the cutoff:

ε = γ
|P |
n

(5)

Based on our experimentation, we recommend
MAUSVR’s β and γ parameters to be fixed to 6.0, ,
and 75.0 respectively. Additionally, the “slack” variable
C in each SVR has to be set. We found that the ensemble
method was not particularly sensitive to C, however,
smaller values of C result in faster build times. Thus, we
recommend setting C to 0.1.

Evaluation

MAUSVR was evaluated based on its performance on the
ranking problem in comparison with CF (similar to (Kouki
et al. 2015)). The MovieLens 20M dataset was used for eval-
uation. As of this writing, CF techniques (including matrix
factorization) still achieve the highest accuracy scores on
this dataset. The first 5 million of the 20 million ratings were

479

selected (the ordering of MovieLens is randomized) and the
remaining were discarded to decrease the time needed for
evaluation. For the remaining 5 million ratings, some of the
rated items had missing attribute values and were discarded.
Then, the dataset was pruned one final time by removing
users that had fewer than 20 ratings, resulting a dataset with
just under 4.8 million ratings, which we will call ML5M. For
each user in ML5M, the 20% most recent ratings provided
by that user were set aside as the testing set. The remain-
ing 80% of ratings were used as training data. 12 experi-
ments were run, with each experiment randomly discarding
up to 99% of the training data for each user in the dataset,
resulting in the 12 different densities shown on the x-axis of
Figure 1. One additional dataset was created where all but
10 item ratings for each user were removed, which we re-
fer to as the “10-item” dataset. This was intended to mimic
situations where ratings are being elicited to “cold-start” a
recommendation algorithm.

MAUSVR was compared to CF algorithms in the popular
LensKit API (Ekstrand et al. 2011): Item-Item CF (IICF),
FunkSVD (FUNK), and Slope-One (SLOPE1). Addition-
ally, all algorithms were compared to the mean rating ap-
proach (AVG RATING). User-User CF was considered, but
was not included in the final experiment due to poor perfor-
mance and long training times relative to IICF.

The tuning parameters in the CF approaches were maxi-
mized using a greedy linear sampling strategy: FUNK was
run with 25 hidden features and the deviation damping of
SLOPE1 was set to 1.0. It is important to note that the mean
item rating approach was set as the baseline for all CF algo-
rithms, that is, the average rating is used when the CF sim-
ilarity matrix does not connect a user to a specific item. In
this evaluation, we focus on the ranking problem, since pre-
diction accuracy is irrelevant to decision-making domains
(for instance, it is not useful to predict very accurately that a
piece of information is not irrelevant). The median number
of items in a profile’s test set was 15, so NDCG@5 is used.

We evaluate MAUSVR’s build times with objective stan-
dards of interactiveness (Nielsen 1994) rather than compar-
atively with CF. This was for three reasons, which relate to
accuracy, comparative fairness, and relevance: first, imple-
mentation details can severely impact build times; second,
cold builds of the CF algorithms in Lenskit can take upwards
of fifteen minutes; and third, MAUSVR is targeted for inter-
active systems and thus instantaneous responses (< 100ms)
are desired. It might be possible to modify the Lenskit im-
plementations of CFto update interactively (for instance, in
user-user CF, a user could theoretically get updated recom-
mendations by only calculating a single row in the matrix),
however, it is unknown if instantaneous timings could be
achieved and thus it is outside the scope of this work.

Movie content for use in the MAUSVR training process
was pulled from the TMDb API1. Features analyzed were:
runtime, revenue, genre, language, collection (e.g. “Star
Wars,” “Marvel”), director, lead actor, cast (multiple cate-
gorical), and user-generated tags (multiple categorical). For
each categorical and multiple categorical feature, SMOreg

1https://www.themoviedb.org/

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.
04

%
0.
07

%
0.
11

%
0.
19

%
0.
27

%
0.
34

%
0.
41

%
0.
47

%
0.
54

%
0.
60

%
0.
66

%
0.
73

%N
DC

G@
5
GA

IN
O
VE

R
RA

N
DO

M

DENSITY

AVG RATING SLOPE1 IICF FUNK MAUSVR

Figure 1: NDCG@5 gain over random shuffling for each
algorithm that was evaluated, for the various densities that
were sampled. MAUSVR has superior NDCG@5 under
sparse conditions, which are common in other recommen-
dation contexts and predicted to affect the C4ISR domain.

will add additional columns for each discrete value that the
feature takes. “Cast” and “Tags” were pruned according to
Equation 5. When the learned ensemble Me is blended with
the baseline Mb, the “mean rating” attribute is added to the
final MAUM. The final weight of this attribute is determined
solely by Equations 3 and 4.

Ranking Quality

A comparison of ranking quality (NDCG@5) gain plot-
ted against data density is shown in Figure 1. NDCG@5
gain is the difference in NDCG@5 between the algorithm
and the result obtained from randomly shuffling the test
set. Data density is the inversion of sparsity, or the num-
ber of ratings available over the size of the user/item ma-

0

0.02

0.04

0.06

0.08

AVG
RATING

SLOPE1 IICF FUNK MAUSVRN
DC

G@
5
GA

IN
O
VE

R
RA

N
DO

M

AVG RATING SLOPE1 IICF FUNK MAUSVR

Figure 2: NDCG@5 gain over random shuffling for each al-
gorithm that was evaluated, for the 10-item dataset.

480

trix. MAUSVR performs best at the ranking problem until
data density reaches 0.30%. MAUSVR performs 47% better
than FUNK and 37% better than AVG RATING at 0.04%
data density. However, MAUSVR performs 16% worse than
FUNK at 0.73% density. At no point does MAUSVR drop
below the performance of AVG RATING, which makes it
unique amongst the algorithms evaluated.

A comparison of NDCG@5 on the 10-item rating dataset
is shown in Figure 2. MAUSVR is the only algorithm that
can beat the AVG RATING approach, which it does by 22%.

Build Speed of MAUSVR

The average profile size was 147 ratings with an average
build time of 75 milliseconds. The median profile size was
71 ratings with a build time of 4 milliseconds. The third
quartile build time was 74 milliseconds with a profile size
of 160. The max build time was 3.2 seconds for a profile
size of 2993.

Although the time complexity of an SVR is
O(max(n, d)min(n, d)2) (Chapelle 2007), the size of
any SVR problem n in MAUSVR was fixed to be at most
100, and the total number of learners in the ensemble is
limited to 210. This means that the time complexity of
MAUSVR is simply O(d3).

Discussion and Conclusion
Under sparse conditions of rating availability, MAUSVR
had an NDCG@5 gain that was up to 47% higher than
FunkSVD. Like other content-based approaches, perfor-
mance at high sparsity is due to effective leveraging of do-
main information. MAUSVR also performs strictly above
the average rating approach, due to the uncertainty quantifi-
cation modification. In CF techniques, uncertainty cannot be
captured as easily, since accuracy depends on the sparsity of
the item-item or user-user matrix. For this reason, CF tech-
niques are often hybridized with other approaches to boost
performance on sparse data, however, this comes at the cost
of increased system complexity and opaqueness - whereas
MAUSVR’s model is unaffected by blending with the aver-
age rating approach.

The MovieLens dataset is relatively dense. The Yelp
and Last.fm datasets, for instance, have densities of about
99.92% and 99.72% (although the former depends on in
which city the recommendations are being made - 99.92%
would be for Scottsdale, AZ) (Kouki et al. 2015). In C4ISR,
ratings are given in operational contexts, which makes them
expensive. Since MAUSVR can generate relatively high
quality rankings with just 10 ratings, it is an attractive option
for this context. MAUSVR performed better than the popu-
lar item rating approach under all sparsity conditions, mak-
ing it relatively reliable compared to CF approaches. Un-
like the mean item rating approach, MAUSVR is also guar-
anteed to be personalized (Equation 4), though the degree
of personalization will vary based on the number of ratings
available. Despite these results, a quantitative study would
be needed to establish effectiveness in the C4ISR domain.
This is the target of the author’s future work.

MAUSVR was able to be built instantaneously < 100ms
for more than 75% of profiles, using un-optimized Java code

and off-the-shelf implementations of SMOreg. Some users
would experience delays of greater than 100ms, but no
more than 3000ms. Nielsen’s research (Nielsen 1994)sug-
gests that at this limit the system would need to show indica-
tions of operation, but that user flow would not be adversely
affected. This implies a responsive, MAUM-style user inter-
face could be immediately built on top of MAUSVR, similar
to (Bostandjiev, O’Donovan, and Höllerer 2012) and (Bo-
standjiev, O’Donovan, and Höllerer 2013).

References

Bostandjiev, S.; O’Donovan, J.; and Höllerer, T. 2012.
Tasteweights: a visual interactive hybrid recommender sys-
tem. In Proceedings of the sixth ACM conference on Rec-
ommender systems, 35–42. ACM.
Bostandjiev, S.; O’Donovan, J.; and Höllerer, T. 2013.
Linkedvis: exploring social and semantic career recommen-
dations. In Proceedings of the 2013 international conference
on Intelligent user interfaces, 107–116. ACM.
Breiman, L. 1996. Bagging predictors. Machine learning
24(2):123–140.
Chang, S.; Harper, F. M.; and Terveen, L. 2015. Using
groups of items for preference elicitation in recommender
systems. In Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Comput-
ing, 1258–1269. ACM.
Chapelle, O. 2007. Training a support vector machine in the
primal. Neural computation 19(5):1155–1178.
Ekstrand, M. D.; Ludwig, M.; Konstan, J. A.; and Riedl, J. T.
2011. Rethinking the recommender research ecosystem: re-
producibility, openness, and lenskit. In Proceedings of the
fifth ACM conference on Recommender systems, 133–140.
ACM.
Kouki, P.; Fakhraei, S.; Foulds, J.; Eirinaki, M.; and Getoor,
L. 2015. Hyper: A flexible and extensible probabilistic
framework for hybrid recommender systems. In Proceed-
ings of the 9th ACM Conference on Recommender Systems,
99–106. ACM.
Nielsen, J. 1994. Usability engineering. Elsevier.
Raiffa, H. 1968. Decision Analysis: Introductory Lectures
on Choices Under Undertainty. Addison-Wesley.
Smola, A. J., and Schölkopf, B. 2004. A tutorial on support
vector regression. Statistics and computing 14(3):199–222.
Suri, N.; Benincasa, G.; Lenzi, R.; Tortonesi, M.; Ste-
fanelli, C.; and Sadler, L. 2015. Exploring value-of-
information-based approaches to support effective commu-
nications in tactical networks. IEEE Communications Mag-
azine 53(10):39–45.

481

