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Abstract

MAMMA-DSCS (mammary carcinoma decision support
core system) is a prototype implementation designed for the
support of decision processes for breast cancer (mammary
carcinoma) treatment plans: Given a set of patient values,
the system suggests different applicable treatment plans. As
additional knowledge sources, MAMMA-DSCS uses exter-
nal ontologies containing further information and correlations
which are not directly tied to the tumor itself (e.g. toxicities,
drug interactions). As a consequence, general knowledge like
the substance composition of a specific therapy and its phar-
macological hierarchy, can be separated from the knowledge
about the applicability of therapies for a patient. The latter is
encoded in an ASP program that is able to access the exter-
nal ontologies and to take the obtained information into ac-
count for determining the set of all therapy plans that may be
applied in a given situation. The ASP program models med-
ical knowledge combining general guidelines and up-to-date
expert knowledge for treating breast cancer on a very fine-
grained level, originating from a hospital in Germany.

Introduction
Fast progress in the field of cancer research leads to a grow-
ing variety of substances, therapies and therapy types for the
treatment of cancer. Today medicamentous cancer therapies
entail combinations of drugs, which are applied to the pa-
tient based on temporal schemes. For the determination of a
suitable treatment plan, several important attributes have to
be taken into account. Beyond the recommendations given
in clinical practice guidelines (CPGs), medical experts may
also deviate from these suggestions and define individual
therapies based on their own expert experience and on the
patient’s specific medical situation.

Over the past 16 years the pharmaceutical department to-
gether with the clinic of Hematology and Medical Oncology
of the St.-Johannes-Hospital in Dortmund, Germany, has de-
veloped a structured collection of treatment plans containing
more than 45,000 therapeutical cycles for over 2,300 indi-
vidual treatment situations. These plans include important
information about application, dose modifications and tu-
mor board decisions. Furthermore each treatment plan is ex-
tended with notes about behavioural rules and explanations
for medical experts and patients.
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Besides the reference treatment plans, also the OCTA-
Ontology (Beierle et al. 2016) has been built up as an ad-
ditional knowledge source. This ontology provides general
knowledge about substances of cancer therapies and their
interrelationships. The ontology classifies the different sub-
stances and drugs and contains information about the sub-
stance composition (regimen) of a therapy, rules about the
administration of the containing drugs and their toxicity. The
availability of sources with such large and complex knowl-
edge about the disease and its treatment calls for the usage
of computer-based support systems.

In this paper we introduce the core implementation of
a decision support system for the mammary carcinoma
(MAMMA-DSCS) with Answer Set Programming (ASP).
ASP with external atoms (HEX) provides an excellent for-
malism for a transparent and modular representation of ther-
apy decisions which leads to an extendable and maintainable
core implementation for this type of systems. So we used
ASP-HEX to implement the knowledge base of this system;
first work in this regard has been done in (Thevapalan 2017).
Given the medical information about a patient, MAMMA-
DSCS suggests possibly applicable treatment plans for this
patient according to both the information given in the ref-
erence treatment plans and the ontology. The ontology can
be accessed through external atoms and allows us to sep-
arate basic medical knowledge from the expert knowledge
about the cancer therapies. The patient information can be
defined in a simple text file, which the system takes as an
input to compute all possible treatment plans. As a specific
feature of ASP, default rules involving default negation al-
low for modelling rules with exceptions as well as incom-
plete and uncertain information. This leads to a flexible and
practical supporting tool for the treating doctors. To guaran-
tee the maintainability and extendability of the system, we
created a model of the decision processes in cancer therapies
by considering the relationships between entities, like ther-
apies and patient attributes, and the classification of these
entities. This leads to a modular design which was accepted
by researchers from the computer science field as well as the
medical field.

After outlining some related work and the preliminaries
needed for this paper, we describe the different types of can-
cer therapies, the design of a treatment plan and the rela-
tion of therapies to the tumor with its characteristics. Af-
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ter that we describe our modeling approach by presenting
the structure of MAMMA-DSCS and the encoding of the
different entities like patient values, therapies and treatment
plans. Furthermore we show how external atoms allow the
system to handle the aspect of contraindications independent
of the actual treatment plan determination in the ASP pro-
gram. After that we describe how the implementation was
verified by outlining the test procedure. This procedure en-
sures that the program computes the treatment plans accord-
ing to the given reference treatment plans. Finally we con-
clude our findings and present ideas for future work.

Related Work

Currently there are many approaches for implementing sup-
port systems with logic programming in the medical field.
Besides cancer therapies, the handling of comorbidities with
ASP is a current topic. This is addressed in (Zhang and
Zhang 2014) and (Merhej et al. 2016). Here the authors
define a mathematical model to represent clinical practice
guidelines. CPGs contain systematically developed state-
ments to assist the treating doctors. One goal of CPGs is
to enable the delivery of high quality, evidence-based health
care (Lohr and Field 1990). The approach of Zhang et al. is
based on activity graphs with the goal to automatically com-
pute treatments for patients with multiple diseases based on
the corresponding CPGs. Furthermore redundancies and in-
consistencies between therapies are removed by consider-
ing all possible therapies. The implementation of this model
is an ASP program which takes patient information as the
input data and computes a possible treatment based on the
CPGs encoded as ASP rules. In contrast to our approach,
general medical knowledge is encoded in the program itself.
Therapies are computed by mainly considering the avail-
able information and guessing other patient values which
are not available but required for the computation. Our ap-
proach deals with unknown information by making default
assumptions which can be overridden due to the nonmono-
tonic properties of ASP. Furthermore their ASP program
encodes every single possible treatment plan of a CPG while
our approach condenses therapies and unitizes the treatment
plans according to the underlying treatment type and other
categories to remove redundant rules and definitions.

In (Chen 2016) Chen proposes a decision support system
for the management of chronic heart failure (CHF), which
contains the set of clinical guidelines encoded as ASP rules.
Given a patient’s medical information, the system gener-
ates recommendations for treatment plans. The system uses
s(ASP)1, a query-driven ASP system, to compute its mod-
els. The knowledge in Chen’s system is based on the entire
set of clinical practice guidelines for CHF and can deal with
incomplete patient information. In contrast to our approach,
aspects like contraindications are encoded directly into the
ASP rules and due to the usage of the s(ASP) system, the
answer sets contain default negation.

Another approach towards formalization of knowledge
for clinical decision support systems is the development of
computer-interpretable clinical guidelines (CIGs). CIGs are

1https://sourceforge.net/projects/sasp-system/

based on task model networks which enable the specification
of complex, multistep guidelines with temporal information
and dependencies (Peleg et al. 2003). GLIF (Patel et al.
1998) and PROforma (Fox, Johns, and Rahmanzadeh 1998)
are two frameworks which provide the creation of CIGs via
a custom language. GLIF also uses knowledge in taxonomic
hierachies like SNOMED to reason in. PROForma provides,
like our approach, an interface for accessing external sources
and implements the modeling of components with logic pro-
gramming and object-oriented modeling. In our approach
the treatment plans were already developed in a decision-
tree-like structure. In contrast to CIG-oriented systems our
system does not introduce a new format or language for the
definition of CPGs. For now this kind of meta layer is redun-
dant. The knowledge in the given mindmap was modelled
exactly by the ASP, but in a more abstract and compact way
than what was possible with the mindmap.

ASP and HEX Programs

Answer Set Programming (ASP) is a well developed form
of declarative programming. An extended logic program is
a finite set of rules of the form

H ← A1, . . . , An, not B1, . . . , not Bm.

where H,A1, . . . , An, B1, . . . , Bm are literals, i.e. logical
atoms in positive or negated form, not is called default
negation. Each such rule may be read as: If A1, . . . , An

all hold, and it can be assumed that none of B1, . . . , Bm

holds, then conclude H . H is called head of the rule and
A1, . . . , An, not B1, . . . , not Bm its body. A rule with-
out a body is called a fact and is identified with its head
H . A rule without a head is called a constraint. A set of
literals X ⊆ A of ground atoms is a model of a logical
program P , if H ∈ X whenever A1, . . . , An ⊆ X and
B1, . . . , Bn ∩ X = ∅ for every rule in P . The concept of
a stable model, or answer set, is used to define a declarative
semantics for logic programs with default negation. If AS is
a state, then AS ∈ AS(P) is the answer set of P if AS is
a minimal set closed under P in case of a program P with-
out default negation and AS is an answer set of P if AS is
answer set of the reduct PAS in case of a program P with
default negation. For further details of answer set program-
ming please see e.g. (Baral and Gelfond 1994).
HEX Programs are extensions of answer set programs, ad-
mitting higher-order atoms and external atoms. The seman-
tics of a HEX program is given by generalizing the answer
set semantics (Eiter et al. 2005).

An external atom is of the form
&g[Y1, . . . , Yn](X1, . . . , Xm), where Y1, . . . , Yn is an
input list, X1, . . . , Xm is an output list and &g is an
external predicate name. External atoms allow the com-
munication of ASP programs with external resources.
Thus, the program may also include external knowledge,
e.g. in the form of an ontology. Therefore a plugin can
be implemented in C++ or, as in our case, in Python for
accessing external resources. A higher-order atom is a tuple
Y0(Y1, . . . , Yn), where Y0, . . . , Yn are terms.
DLVHEX System is a logic-programming reasoner for
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Figure 1: An exemplary path of the mindmap
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Figure 2: Therapy types

computing the models of HEX-programs. It is an exten-
sion of DLV (Eiter et al. 2000), a system implementing
answer set programming which has been developed at the
universities of Vienna, Austria, and Calabria, Italy. As a
special feature, it also allows disjunctive information in the
head of logic program rules. For our application the system
computed answer sets in a couple of seconds.

Cancer therapies and treatment plans

The collection of treatment plans at the St.-Johannes-
Hospital is represented in a mindmap-based structure. The
nodes of the mindmap are either medical attributes or ther-
apy names. A path from the root to a leaf represents a full
treatment plan (reference treatment plan), containing the in-
formation about the therapies, the requirements for the appli-
cability of these therapies and the temporal scheme, stating
when and how each therapy has to be applied to the patient.
In this paper, we only consider treatment plans for early
breast cancer tumors which are treatable and not metasta-
sized or locally advanced. Figure 1 shows a path which rep-
resents the following treatment plan: A patient, whose bi-
ological age is under 70, who has a good general medical
condition and a HER2-positive, ER/PR-negative and node-
negative tumor, can get a chemotherapy with the internal
name EC T followed by a targeted therapy with the internal
name H8 6. After a patient is diagnosed with breast cancer,
it is the task of the treating doctors to tailor a combination of
therapies specifically for this particular patient. The planned
cancer treatment together with the information about the pa-
tient’s tumor is called a treatment plan. The determination of
a suitable treatment plan is complex and requires a lot of ex-
pert knowledge and information. Depending on the tumor’s
biological characteristics, the stage of the breast cancer and
general patient values, like the patient’s biological age, gen-
eral medical condition and the existence of additional dis-
eases or disorders (comorbidities), different therapies and
therapy types are possible (see figure 2). During systemic

Chemo-
therapy

Targeted
Therapy Surgery Targeted

Therapy
Hormone
Therapy

neoadjuvant adjuvant

Figure 3: General structure of a treatment plan

therapies the cancer is treated by using drugs, which can be
given intravenously or orally. There are several types of sys-
temic therapies. In this application we look at chemothera-
pies, targeted therapies and hormone therapies.

In chemotherapies cytotoxic substances are used to dis-
turb the proliferation of tumor cells. In targeted therapies
substances attack specific cell structures of the tumor. If a
patient has a HER2-positive tumor, there is an increased
occurrence of the protein HER2/neu in the cell membrane
of the tumor cells. The monoclonal antibody trastuzumab
is a targeted therapy that interferes with the HER2/neu re-
ceptor. Hormonal therapies include substances which alter
the activity and production of specific hormones in the body
(Beierle et al. 2016).

Besides the systemic, non-invasive therapies, doctors can
recommend invasive surgery as a local treatment to remove
the tumor cells directly. Whether the patient is qualified for a
surgery depends on various attributes including the type and
size of the tumor. If possible, surgery is additionally pre-
ceded by one or more systemic therapies to shrink the tumor
and ease the surgery. Likewise systemic therapies can follow
after a surgery to minimize the risk of recurrence. A treat-
ment plan for the patient usually comprises some combina-
tion of applicable systemic therapies (generally one therapy
of each type) and surgery (see figure 3).

Modeling approach

The knowledge model of MAMMA-DSCS was designed
by considering the medical coherence between therapy
types, therapies and treatment plans. This allows a generic
modeling approach and ensures that this system can be used
as a prototype in other applications and domains. Figure 4
shows an overview of the model: The input of MAMMA-
DSCS is the patient file and the OCTA-ontology. The
Python plugin allows the usage of this input data in the
ASP program, which is extended with corresponding exter-
nal atoms. Furthermore the content of the extended ASP-
program (ASP-HEX program) can be separated into two
groups: The information about a patient p is encoded in
the problem instance Pp

I . The problem class PC consists of
the rules which encode the decision process. It contains the
knowledge about the applicability of therapies and further
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decision rules. For a program Pp = Pp
I ∪ PC , we compute

the set of answer sets AS(Pp
) as the output. An answer set

AS ∈ AS(Pp
) represents a possible treatment plan T p

AS
for patient p. The treating doctors and physicans can subse-
quently pick the treatment plan which is most suitable for
the patient or use the output for the development of a new,
adjusted treatment plan.
Knowledge types: As mentioned above, we distinguish be-
tween general, domain-specific knowledge (basic medical
knowledge) and the knowledge about the applicability of
specific therapies and relations among them (expert knowl-
edge). Medical knowledge contains classic logical, certain
information, expert knowledge on the other hand often con-
tains generic rules with exceptions and uncertain knowledge.
The latter is encoded in the ASP program with rules like:

ctApplicable:-her(pos),epr(neg).

ctCandidate("EC_T"):-ctApplicable,

nodal(neg),bioAgeLower70,not -gmc(good).

(1)

The second rule encodes the reference treatment plan
shown in figure 1 and states, that if a patient can get a
chemotherapy (ctApplicable), does not have metas-
tasized axillary lymph nodes (nodal(neg)), has a bio-
logical age under 70 (bioAgeLower70) and has a good
general medical condition (not -gmc(good)), then the
chemotherapy scheme EC-T is a possible treatment candi-
date (ctCandidate("EC T")). The usage of default and
classical negation, like in the gmc-atom, allows the consider-
ation of default knowledge about the patient and the tumor.

Medical knowledge is encoded in ontologies. The ASP

Mandatory attribute Possible values

HER2 status her(pos), her(neg)
Hormone receptor status epr(pos), epr(neg)
Biological age bioAge([integer])

Treatment type schedule(adj),
schedule(neoAdj)

Lymph node status nodal(pos),
nodal(neg)

Contraindication anthra-
cyclines ci(ant),-ci(ant)

Figure 5: Mandatory information in patient file

program can access this knowledge through external atoms.
This allows the use of knowledge in external sources inde-
pendently of the expert knowledge in the ASP program.
Patient model: The information about a patient p can be
modeled by stating relevant attributes like tumor size or risk
(e.g. tumor size:80mm, risk:high). In the ASP program these
patient values are encoded as the set of facts Pp

I .
In MAMMA-DSCS one can model a patient in form

of a patient file F p, which is a text file containing key-
value pairs for the different patient values, e.g.: her=pos,
epr=pos or schedule=adj. The Python plugin frame-
work of DLVHEX enables the import of those key-value
pairs into the ASP program as the set of atoms Pp

I . We dis-
tinguish between mandatory attributes (see figure 5) and op-
tional attributes. The specification of mandatory attributes
ensures the proper computation of treatment plans with min-
imal information. The specification of all mandatory at-
tributes is required. The definition of the optional attributes
are handled as defaults, if necessary, but those additional
information can lead to more refined treatment plan sug-
gestions. For instance the example in (1) shows that in the
absence of a value for the attribute general medical condi-
tion (gmc) a good medical condition is taken as the default
value.
Therapies and therapy types: The ASP program encodes a
set of reference treatment plans R given by the St.-Johannes-
Hospital. The hospital provided these treatment plans in
form of a mindmap, where each decision path encodes a
unique treatment plan. We identified the three types of sys-
temic therapies chemotherapy, targeted therapy and hor-
mone therapy and also surgery as a non-systemic treatment.
Systemic therapies are unique and can be identified by an
acronym which indicates the substances used in the therapy,
e.g.: The atom ctScheme("EC_T") encodes a chemother-
apy with the substances epirubucin, cyclophosphamide and
paclitaxel. In the following, a set of reference treatment
plans Rp ⊆ R is the set of treatment plans which are possi-
bly applicable for a patient p.
Handling contraindications: The usage of an ontology en-
ables the outsourcing of medical knowledge out of the ASP
program into an external source. This type of knowledge can
then be handled independently of the ASP program. Fur-
thermore this ontology can be utilized in other applications.

The knowledge in the ontology connected to this program
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contains information about the content of several chemother-
apies specified in the program. This knowledge can be used
to determine contraindicated therapies by comparing the
substances of an applicable therapy with the contraindicated
substances of the patient.
Determination of treatment plans: The computation of
treatment plans consists of the following steps: (1) determi-
nation of applicable therapy types, (2) gathering of specific,
applicable therapies for every applicable therapy type and
(3) calculation of all possible treatment plans by assembling
the possible therapies according to the treatment plans given
by the St.-Johannes-Hospital. Figure 6 shows the calculated
values of each step. In every step the knowledge from the
patient values and from the steps before are used. The gen-
eral applicability of a therapy type usually depends on the
HER2 and ER/PR status:

ctApplicable :- not ci(ct).
abtApplicable :- her(pos), ctApplicable.
ahtApplicable :- epr(pos), not gender(male).

In the next step we gather all therapy candidates for each ap-
plicable therapy type. The applicability of a specific therapy
depends on various patient values (and in some cases on the
other therapies of the treatment plan):

ctCandidate("EC_T") :- ctApplicable,
nodal(neg), ageLower70, not -gmc(good).
ctCandidate("ETC") :- ctApplicable,
adjctApplicable, nodal(pos), ageLower50, not
-gmc(good), not -lndCount4to9. % [...]

In the last step we can compute all possible treatment plans
for the patient by plugging a therapy candidate of each ther-
apy type together according to the general treatment plan
structure shown in figure 3. The selection of a therapy can-
didate for a treatment plan is done by following rules:

% set contraindicated therapies
ctIsCI(X) :- ci(ant), hasANT(X).
suggestedCT(X) :- ctCandidate(X), not
skipCT, not ctSuggested, not ctIsCI(X).
suggestedCT(X) v -suggestedCT(X) :-
ctCandidate(X), ctScheme(X).
suggestedAbT("H6") :- abtSuggested,
suggestedCT(TH), hasTrastu(TH).
suggestedAbT("H8_6") :- abtSuggested,
suggestedCT(TH), not hasTrastu(TH). %[...]
suggestedAHT(AHT) :- ahtCandidate(AHT), not
ahtSuggested.
suggestedAHT(AHT) v -suggestedAHT(AHT) :-
ahtCandidate(AHT), aht(AHT).

The computing of treatment plans is not done by only creat-
ing the cartesian product of all therapy candidates. In some
cases the reference treatment plans showed explicit devia-
tions and exceptional treatment plans. These informations
are also encoded in the ASP program.

Test procedure and verification

The program was tested against the given mindmap, i.e., the
treatment plans computed by the ASP programs must be ex-
actly the same as in the mindmap for the respective patient

data. In this way we also tested the correct implementation
of the ontology integration.

For the verification of these criteria, we defined a semi-
automatic test procedure, where we (1) defined test cases,
(2) computed the according answer sets and (3) compared
the treatment plan suggestions encoded in the answer sets
with the reference treatment plans in the mindmap.

In order to ensure that we take all cases covered by the
mindmap into account, we defined hypothetical patients,
each consisting of a unique set of patient values. We iden-
tified 475 different patient value combinations from the
mindmap which were relevant in the sense that each hypo-
thetical patient was realistic and covered a unique case. We
did that by generating all possible combinations of patient
values and removing the impossible cases, e.g., the cases
not occurring in the mindmap for medical reasons. For ex-
ample, it does not make sense to distinguish between the
menopausal status if the patient’s tumor is ER/PR-negative
because then a hormonal therapy cannot be applied and the
menopausal status is only relevant for the selection of hor-
monal therapies.

First we defined a set P of hypothetical patients by creat-
ing a patient file F p for each patient p ∈ P . In the next step
we ran the ASP program Pp for every F p. The answer sets
of these computations were transformed into a more read-
able format and stored in a single result file:
patient-001.txt
===========================================
("her(pos),epr(pos),schedule(adj),nodal(pos)
,gmc(good),age(45),ci(ant)")
===========================================
("1.CT(ETC),2.AbT(H8_6),2.AHT(TMX10)")
-------------------------------------------
("1.CT(TCH),2.AbT(H6),2.AHT(AI5_TMX5)")
-------------------------------------------
("1.CT(TCH),2.AbT(H6),2.AHT(TMX10)")
-------------------------------------------
("1.CT(ETC),2.AbT(H8_6),2.AHT(AI5_TMX5)")
===========================================

patient-002.txt
===========================================
("her(pos),epr(pos),schedule(adj),nodal(pos)
,gmc(good),age(45),-ci(ant)") %[...]

In the last step we identified the set of reference treatment
plans Rp for every test case p. A test case p is success-
ful, if every reference treatment plan Rp

i ∈ Rp from the
mindmap matches a computed treatment plan T p

j ∈ T p and
vice versa. This means that for every test case p every single
computed treatment plan T p

j ∈ T p can be found as a path
in the mindmap and every path in the mindmap is encoded
correctly in the ASP program. Intuitively the verification of
a test case ensures that given a patient p, MAMMA-DSCS
computes all treatment plans exactly according to the hos-
pital’s reference treatment plans. The program is correct, if
every test case p ∈ P is successful.

The results of the testing procedure show that MAMMA-
DSCS computes all treatment plans exactly according to the
treatment plans of the hospital. Consequently the implemen-
tation of the proposed model proved to be successful.
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Conclusion and Future Work

MAMMA-DSCS is a prototype implementation which
shows a concrete application of recent developments in an-
swer set programming with external sources. We used cur-
rent real-life data and prepared a framework for the usage
of clinical decision support systems in oncological domains.
The system computes all possible solutions for a patient. The
treating doctors can use these suggestions to create the most
suitable treatment plan for this patient. Knowledge in exter-
nal sources can also be accessed and used for the decision
process and for the enrichment of information in each so-
lution. Our verification process shows that the system com-
putes all treatment plans according to the hospital’s data and
ensures that no unknown (not existing) treatment plans are
introduced.

In the future the matching of computed treatment plans
and reference treatment plans should be extended to get a
fully automated testing procedure. Also the encoded knowl-
edge should be extended by expanding both the existing on-
tology and the ASP program and by adding more knowl-
edge sources. Conceivable aspects of further functionalities
could be the analysis of drug interactions and the refinement
of treatment plans by adding additional statistical data. Fur-
thermore information about current studies regarding a sug-
gested therapy should extend the treatment plan suggestion
for the treating doctors.

This paper is the first step towards setting up a system for
recommending cancer therapies that works on a declarative,
more abstract base than the mindmap which is currently (al-
ready very successfully) used in the clinical routines of the
St.-Johannes-Hospital, and that is supposed to be maintained
and updated more easily. So, next steps will involve inves-
tigations with respect to adopting new patient information,
due to integrating new medical knowledge. We will compare
the amount of change in the ASP program with the amount
of change that would be necessary to adapt the mindmap.
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