
Combining Qualitative and Quantitative
Reasoning for Solving Kinematics Word Problems

Savitha Sam Abraham, Sowmya S. Sundaram
Indian Institute of Technology Madras

Chennai 600036
savithas@cse.iitm.ac.in

Abstract

This paper describes a system that combines qualitative and
quantitative reasoning to solve kinematics word problems that
are expressed in a simplified form of English. Such an inte-
grated approach is useful in identifying the equations required
to solve the problem and to infer certain implicit details in the
problem scenario. The system also generates self explanatory
solutions that can assist a student in mastering the concept in-
volved. We created a dataset of 30 word problems from this
domain. Such word problems have not been addressed in re-
cent times.

1. Introduction

Kinematics is the study of motion where the cause of motion
is not considered. Word problems from kinematics domain
describe scenarios where there are single or multiple objects
in motion and the value of one of the parameters of motion
has to be computed. A word problem may have many details
hidden in the description which may turn out to be signifi-
cant in solving it.

The system developed integrates qualitative and quantita-
tive reasoning. The need for this integration can be explained
through an example problem:

Problem 1: Thomas kicks a ball at an angle of 43 degrees
with a velocity of 40 m/s. There is an obstacle at a height of
23.3843 m and at a distance of 28.2843 m from the initial
position of the ball. What is the position of the ball when it
hits the ground?

The final position will depend on whether the ball hits
the obstacle or not. In case, it hits the obstacle, the position
and the velocity of the ball at that point is also crucial in
determining the final position. Also, we should know the ef-
fects of such a collision. Though the problem statement does
not mention anything about a hit, a person reading it under-
stands that there are multiple behaviours possible. A human
solving the problem then uses appropriate equations and nu-
merical facts to eliminate all inconsistent behaviours from
the set of possible behaviours. In the same way, our system
identifies all the possible behaviours using qualitative rea-
soning (qualitative simulation) and then identifies the actual
behaviour by eliminating inconsistent behaviours through

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

quantitative reasoning. This results in identifying the equa-
tions required to solve the problem. Our system generates
the answer −106.6969m for the above problem with an ex-
planation for it.

We made use of three types of knowledge to solve
the above problem: qualitative, quantitative and knowledge
about events in the domain. Quantitative knowledge is the
knowledge about the different quantities in the domain and
the equations connecting them. Qualitative knowledge is the
knowledge about how quantities change with time and how
the change in one quantity affects the others. For exam-
ple, the fact that acceleration is the rate of change of ve-
locity with time is part of qualitative knowledge. Qualita-
tive knowledge can be used to generate the behaviour of
a process in terms of the direction of change of the rele-
vant quantities with time. Knowledge about events include
details like the preconditions and effects of an event. This
knowledge is encoded in the form of rules and this allows
reasoning about events. The occurrence of an event results
in discrete changes in the value of parameters. Hence, the
system uses qualitative knowledge to reason about contin-
uous change and event knowledge to reason about discrete
changes in the physical system.

2. Background and Motivation
(Clark et al. 2007) described a problem solver where only
quantitative knowledge about the domain was used to solve
a problem. The user who posed the question had to make all
implicit details in the question explicit as their system had
no notion of trajectory. For example, in Problem 2, it should
be explicitly stated that the vertical component of velocity is
0 m/s at maximum height. It is important to know this fact
to solve the problem.

Problem 2: Thomas kicks the ball at an angle of 43 degrees
to the horizontal. Its initial velocity is 15 m/s. What is the
maximum height reached by the ball?

In order to infer such implicit details, qualitative reason-
ing can be used. The use of qualitative reasoning in solving
physics problems was first emphasised in (De Kleer 1975).
Later, (Pisan and Bachmann 1998) described an algorithm
that combined qualitative and quantitative reasoning to solve
problems from dynamics domain. Given a problem, the sys-
tem used the initial state description to generate the initial

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

164

qualitative state, following which attainable envisionment
(Forbus 1997) was performed to generate the set of possi-
ble successor states. Inconsistent states were pruned using
quantitative facts given in the problem. The equations re-
quired to solve the problem were identified as part of this
pruning process.

This idea is used in our work, but we extend this by con-
sidering knowledge about events in the domain. If the sys-
tem has knowledge about the preconditions and effects of an
event, it can identify scenarios where there is a possibility
of event occurrence and also know how it is going to change
the parameters. We also make use of semi-quantitative rea-
soning (Kuipers and Berleant 1988) to prune inconsistent
behaviours.

3. Proposed System

Input

The input is template based. The templates used are of the
form ‘The quantity name of the object name is numeri-
cal value at state description.’. The parameters or quanti-
ties identified for our domain are horizontal position (hp),
horizontal velocity (hv), horizontal acceleration (ha), ver-
tical position (vp), vertical velocity (vv), vertical accelera-
tion (va) and angle of projection. A state description can in
turn be given by the value of some parameter or by the oc-
currence of some event. The example problem, Problem 2,
gives facts about two states start and maximum height. The
problem is restated as:

Problem 2: The velocity of the ball is 15 m/s at the start. The
angle of projection of the ball is 43 degrees at the start. What
is the vertical position of the ball at the maximum height of
the ball?

The input problem is processed and the facts are stored state
wise. A state has the following details in it:

Time: t (can be an instant or interval)
Object to Parameter-Value Map

Object: Object-1
Parameter-Value Map

Event: events occurring at t if any
Equation: equations that holds true for
this state
Next: pointer to successor of this state

A state of the physical system is described by the state of the
individual objects in it. State of the objects is described us-
ing its parameters’ values. A state represents the properties
of the system at a particular time instant or during a time in-
terval. A state also has details about the events that occurred
and the list of equations that are true at that state. For ex-
ample, if the event hit(O1, O2) is true at a state, then the
the equation slot of the state has the equation position(O1)
= position(O2). A state also has a pointer to the state that
follows it once it terminates.

Every parameter has three types of values associated with
it - quantitative, qualitative and interval value. The qualita-
tive value of the parameters define the object’s qualitative
state. A parameter takes one of the three possible values

M, Z, P, where ‘M’, ‘P’ and ‘Z’ means that the quantitative
value is negative, positive and zero respectively. The inter-
val value is an interval in which the quantitative value of the
parameter lies. The interval value of a parameter is initial-
ized depending on its qualitative value and later it gets up-
dated as more quantitative facts are inferred as in (Kuipers
and Berleant 1988). As interval is updated, its width be-
comes narrower and finally when the quantitative value of
the parameter becomes known (say, a value v), the interval
becomes [v,v].

The set of state descriptions given in the input is stored
into a state representation. Since the description of a state
given in input is only a partial description, all the slots in
the state class may not have fillers. Let the list of input state
descriptions {I1, I2...If}, be called I. In Problem 2, there are
two state descriptions {I1, I2}, where I1 is the state with facts
related to start state and I2 is the state with facts related to
maximum height.

Generation of Behaviour

Qualitative behaviour of a system is a sequence of quali-
tative states through which the system passes. A qualitative
state of the system is identified using qualitative value of
each parameter and the direction in which they are chang-
ing1. We start by constructing the initial qualitative state.
The successors of this state is then generated. If there are
multiple successors, the actual successor is identified by
pruning inconsistent successors using the numerical facts
given. We then check for events at this state using knowl-
edge about pre-conditions of an event. If there is an event
occurrence, the next state is generated based on effects of
the event. The successor generation continues until all facts
given in the problem are identified in the behaviour being
generated.

Generation of initial state and successors: The partial
description I1 is used to construct the initial qualitative state
of the system named, s1. s1 is a complete description of I1. If
qualitative values of some parameters are missing, their de-
fault values are used. The direction of change of each param-
eter is also inferred from the qualitative relations between
parameters. The possible successors of a state is computed
using the standard QSim algorithm (Qualitative Simulation
(Kuipers 1986)) 2.

Pruning inconsistent states: QSim algorithm can return
multiple possible successors for a state. There can be only
one consistent successor state for a state. The consistent suc-
cessor is identified with the help of numerical values of the
parameters available and the equations of motion. Algorithm
1 describes the pruning process. The quantitative reasoner
used for solving equations is described in later sections.

1If {va = M, vv = P, vp = P} is current state, then it is inferred
that vv is decreasing as va is negative (d(vv)/dt = va) and vp is
increasing as vv is positive (d(vp)/dt = vv). Next state: va is ‘M’
as d(va)/dt = 0, vv reduces to ‘Z’ from ‘P’ and vp is P.

2Java implementation by Dan Dvorak for QSim from
http://www.oursland.net/projects/qsim/ is used in this work.

165

Algorithm 1: prune(): Algorithm to check consistency
Input: behaviour generated so far B = {s0, s1,..si}, list of

possible successors of si, next[] = {si1, si2..}.
1 for each possible successor sj in next[] do
2 Create a copy of the behaviour B, Bcopy.
3 Assume sj is the successor of si in Bcopy
4 for each parameter in sj do
5 Compute value of parameter
6 if value obtained is not agreeing with the

qualitative value or is an imaginary value then
7 return sj is inconsistent
8 end

9 end
10 Substitute all the values computed in the set of

equations available
11 if the system of equations is consistent then
12 Return sj is consistent
13 end
14 else
15 Return sj is inconsistent
16 end

17 end

Mapping partial state descriptions to states in the be-
haviour being generated: As each state is generated, it
is checked whether the state can be a complete description
for a partial state description in input. Such a mapping is al-
lowed if it is consistent to assume the facts in the partial de-
scription as facts in the state generated. Once all the partial
descriptions in I are mapped to some state in the behaviour,
the behaviour generation terminates.

Checking for events: As each state is generated, it is
checked whether there is a possibility of event occurrence in
the state. If there is an event occurrence, the next state that
the system goes into is not generated by QSim algorithm as
the event can interrupt the continuous change in the parame-
ters. The next state in that case will depend on the effects of
that event on the parameters of the system. The event in our
domain is meet (object-1, object-2). The first level of check-
ing is a qualitative check where the interval value of position
is used. If the intervals of horizontal and vertical position for
the two objects overlap, there is a possibility for the two ob-
jects to meet. This is encoded in the following rule (S is the
state where event occurrence is checked).

holdsin(overlap(O1, O2), S) − > possible(meet(O1,
O2), S)

If the first level of checking succeeds, the second level of
numerical checking is done. This confirms the presence or
absence of the event.The numerical check involves checking
the consistency of the equations, that are pre-conditions of
the event, at state S:

(hp,O1, S)− (hp,O2, S) = 0
(vp,O1, S)− (vp,O2, S) = 0

The effects of the event is also encoded in the form of
rules. These rules are called the effect axioms (Shanahan
1999). Effect of meet (object-1, object-2), in cases like the

scenario in Problem 1, is that it reverses the direction of hor-
izontal velocity of the object (assuming that the coefficient
of restitution is 1). All that is not affected by the event con-
tinues to hold in the next state as well.

Solving equations

The previous section explained how qualitative and quan-
titative reasoning collaborates to generate the behaviour of
the system. This section describes the quantitative reasoning
module developed by us that is used in computing value of
an unknown parameter or to check consistency of a system
of equations.

Every equation has details about the list of parameters in
the equation, the states being considered as initial and fi-
nal and the formula connecting these parameters. If the be-
haviour generated is B = {s0, s1, s2...si}, equations are gen-
erated by considering a pair of instantaneous states, as initial
and final according to their temporal ordering.

Given a list of equations and a parameter whose value is
to be computed (the unknown), the system first constructs
a search tree with the unknown parameter at the root. The
nodes in the tree are variables and the edges represent equa-
tions. A sample search tree is shown in (A) of figure 1. Each
node in the tree has details like: the parameter/variable at
node, a tabu list that is a list of parameters that cannot be
visited again from this node, a pointer to its children nodes
and cost of the node. In the figure, the root node expands
to give two children through edges with equations var 1 +
var 2 + var 3 = k1 and var 1 + var 2 = k2, where k1
and k2 are constants. This means that var 1 can be com-
puted from the first equation if var 2 and var 3 are known
or from the second equation if var 2 alone is known. A node
is marked solved, if there is an equation that can be solved
to get the value of the parameter at that node. The cost of
such a node is set as 1 and the node is not expanded further.
Another case where a node is not expanded further is when
there are no more equations left that does not contain any
of the variables in the tabu list of that node. The least cost
path is followed in computing the root parameter. If none of
the leaf nodes are marked solved, then it indicates that the
problem requires solving simultaneous equations.

Solving simultaneous equations is done through a se-
quence of substitutions. (B) of figure 1 shows a part of a
sample search tree that is constructed by our system. The
search is done to find an equation with only one variable
in it which is the unknown parameter to be computed. The
nodes in the tree are equations. The first level of this tree
has all the equations that are originally available. The sec-
ond level of equations are those generated by combining
two equations and the third level by combining three equa-
tions and so on. Two equations are combined if they have
a common variable. Combining two equations means isolat-
ing common variable in one equation to get an expression,
and then substituting the expression in the other equation in
place of the common variable. When an equation is gener-
ated whose variable list has only one element which is the
unknown parameter, the formula for the equation is com-
puted. For example, if y is the unknown, in the figure, when
equation E10 with y as the only variable is generated, the

166

Figure 1: (A) shows a sample search tree with variables at nodes and equations at edges (B) shows a part of the tree that searches
for equations.

following processing is done:
Get parents of E10: E3 and E6 with common variable z
Get formula for parent equations. Since E3 is an originally
available equation, its formula is available. E6 is a newly
generated equation, hence its formula has to be computed.
Get parents of E6: E2 and E4 with common variable w
Use E2 to isolate w and get an equation of the form w =
expression. Substitute this expression in E4 in place of w
to get the formula for E6
Use formula for E3 and E6 similarly to get the formula for
E10
If the formula is valid (it is not of the form 0 = 0), it is used
to solve for y

As E10 is processed, we get the sequence of substitutions
done to finally arrive at the solution.

Generation of explanation

An explanation is generated from the behaviour. A state in
the behaviour is mapped to a description in English. For
example, a state with vertical position 0 m and time 0 is
mapped to a description “The object is initially on ground”.
The system goes through the states in the behaviour gener-
ated to generate an explanation in English.

Results and Discussion

The proposed system is implemented in Java. We solved a
set of around 30 problems from kinematics domain collected
from various sources in internet. As compared to (Clark et
al. 2007), our solver handles more scenarios (we can han-
dle problems with more than one object) and is able to make
inferences from the facts in the problem statement because
of the knowledge support it has. Also, the equation solver
implemented returns the sequence of substitutions done to
arrive at the solution which is easier for students to under-
stand. The problems we could not solve are because of the
restriction in input we had. For example, a problem where
difference between positions of two objects at some time

point is given could not be represented. This is because our
input template expects value of a parameter rather than rela-
tion between parameters.

Conclusion and Future Scope

A problem solver was developed for kinematics domain that
used a combination of qualitative and quantitative reasoning
to solve problems expressed in simplified English.

In future, we would like to make the interface more user
friendly. We hope to make the input more expressive. Also,
we hope to extend this work by building a question answer-
ing system around the solver. This would require formal rep-
resentation of the domain knowledge.

References

Clark, P.; Chaw, S.-Y.; Barker, K.; Chaudhri, V.; Harrison,
P.; Fan, J.; John, B.; Porter, B.; Spaulding, A.; Thompson,
J.; et al. 2007. Capturing and answering questions posed to
a knowledge-based system. In Proceedings of the 4th inter-
national conference on Knowledge capture, 63–70. ACM.
De Kleer, J. 1975. Qualitative and quantitative knowledge in
classical mechanics. MIT, Artificial Intelligence Laboratory.
Forbus, K. D. 1997. Qualitative reasoning.
Kuipers, B., and Berleant, D. 1988. Using incomplete quan-
titative knowledge in qualitative reasoning. In AAAI, vol-
ume 88, 324–329.
Kuipers, B. 1986. Qualitative simulation. Artificial intelli-
gence 29(3):289–338.
Pisan, Y., and Bachmann, A. 1998. Using qualitative reason-
ing to solve dynamic problems. In Proceedings of the 12th

International Workshop on Qualitative Reasoning, 167–173.
Shanahan, M. 1999. The event calculus explained. In Arti-
ficial intelligence today. Springer. 409–430.

167

