
A Case-Based Reasoning Approach to Learning State-Based Behavior

Amrik Sacha Elapata Gunaratne, Babak Esfandiari, Ali Fawaz
Carleton University

1125 Colonel By Drive, Ottawa, ON
Canada, K1S 5B6

Abstract

Learning from Observation involves creating agents that ob-
serve experts performing tasks and imitate them. Case-Based
Reasoning (CBR) is a tool that can be used for this purpose.
Regular CBR can only learn memoryless behavior: behav-
ior that doesn’t rely on the past. Temporal Backtracking (TB)
is an approach to learning state-based behavior that uses re-
cency as its inductive bias, which may or may not be relevant
to the agent behavior. We show how TB can be viewed as
a particular case of a more generalized case-based approach
to learning state-based behavior that can accommodate other
inductive biases. We then propose five alternative similarity
metrics to learn three different state-based behaviors in a 2D
vacuum cleaner domain, and compare their performance to
the TB algorithm’s performance. We show that none of the
proposed metrics (nor TB) is a one-size-fits all algorithm for
learning state-based behavior.

1 Introduction

Motivation

Learning from Observation (LfO) is an approach for creating
software agents or robots by having them observe and imi-
tate an expert that is performing a task (Argall et al. 2009).
Case-Based Reasoning (CBR) has been successfully used
in the past for learning to play soccer (Floyd, Esfandiari,
and Lam 2008) or play various video games (Floyd 2013).
Traces of user behavior are captured and used as training
data. In the LfO context, a given case’s problem is a snap-
shot of the current situation perceived by the agent (and the
expert), and the case’s solution is the user’s action in that
situation. During testing and deployment, the agent is pre-
sented with a new and potentially unseen problem, and it is
supposed to solve it by retrieving the solution(s) to the clos-
est problem(s) in the case base, and adapting it (them) to the
current one.

Case-based reasoning as we know it, can only be used
to learn behavior that is memoryless: types of behavior that
don’t rely on the past, and only react to the current state
of the environment. This is because cases are considered
independent from each other, and therefore have no con-
nection to past or future cases. Behavior that relies on the

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

past is called state-based behavior: the “state” in this context
refers to the information that presumably the expert is re-
trieving from memory, which captures something in the past
that helps distinguish two apparently identical situations. It
is therefore important not to confuse the agent’s or the ex-
pert’s “state” with the environment “state”, which is just the
current snapshot as perceived by the agent or the expert. In
order to learn state-based behavior, it is important for the
agent to determine what are those salient past events that
were stored in the expert’s memory, and so the case must
be redefined to contain all the past events up till the cur-
rent time. This idea was introduced in (Floyd and Esfandiari
2011) and it proposed an algorithm called Temporal Back-
tracking (TB). TB gives more importance to more recent
events when comparing two cases. This can be viewed as
one particular similarity metric which captures a particular
inductive bias (Mitchell 1980), but there may be other biases
that may be more relevant and effective to address certain
state-based behaviors, as certain events in the more distant
past may have more importance, or certain behaviors might
depend on the frequency of occurrence of certain events or
actions in the past. Therefore, we propose other similarity
metrics that capture different biases when comparing two
cases. By viewing TB as just one particular similarity metric
among others, we unify state-based and memoryless CBR,
and we allow for alternative (to TB) biases for state-based
CBR.

Contributions

The domain used for testing and validation is the vacuum
cleaning domain introduced by (Ontañón, Montaña, and
Gonzalez 2014). The domain is a discrete grid world in
which a Vacuum cleaner moves around avoiding obstacles
and cleaning dirt. The domain is further explained in sec-
tion 5. We propose five different similarity metrics that cap-
ture different biases. To show that the similarity metrics can
capture different biases, we came up with three different ex-
perts to learn from. One expert travels in a fixed sequence,
one travels in a zig-zag and one which relies on the fre-
quency that it saw dirt to decide in which direction to turn
when it reaches a wall. Each similarity metric is used when
learning the expert behavior, and the results show how each
metric captures different biases. These are also compared to
the Temporal Backtracking algorithm mentioned earlier. Our

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

377

main argument is that there doesn’t seem to be a silver bullet
or a one-size-fits-all bias for learning all state-based behav-
ior at this point. However, we can hope to capture each bias
as a particular similarity metric within the CBR framework.

Structure

Section 2 will discuss the formalisms required to understand
the contributions and the state of the art. Section 3 will give
a brief account of the state of art of case-based reasoning in
its application to learning memory-based behavior. Section 4
will present the methodology, and section 5 will describe the
experiments performed to test the similarity metrics. Section
6 will present and discuss the experimental results, and de-
termine the validity of the hypothesis.

2 Background

Learning from Observation

Learning from observation entails learning behavior through
observation of or demonstration by an expert. This expert is
situated in an environment E which is a finite set of discrete,
instantaneous states and is able to perform a set of actions
Ac which transforms the state of environment (we will use
here the definitions and notations of (Woolridge 2002)):

E = {e0, e1, e2, .., en}
Ac = {a1, a2, a3...}

An agent’s goal, within learning from observation is to
reproduce the expert’s behavior, which is in the form of se-
quences of environment state-action pairs.

Runs

A sequence of environment state-action pairs is built in the
following manner: The environment is in some initial state,
and the expert chooses an action which transforms the envi-
ronment. As a result, the environment will be in a new state,
and the expert will choose an action based on this new state.
This cycle continues, until a stopping condition is met. This
sequence of environment state-action pairs is called a run
(Woolridge 2002) and a given run r can be represented in
the following manner:

r : e0
a0−→ e1

a1−→ ...
an1−−→ en

Let R be the set of all possible finite runs and RE ⊆ R
that contains runs that ends in an environment state.

Agents

An agent can also be formalized as a function Ag:

Ag : RE → Ac

The agent requires the run to end in an environment state
so that it can choose an action in response. This definition
captures the fact that an agent’s past actions and environment
states may affect its current action. Woolridge defines this as
a standard agent (Woolridge 2002).

A reactive agent is a type of standard agent that only de-
pends on the current environment state to make a decision

about its current action and can be defined in a simpler way
as such:

Ag : E → Ac

The standard agent model allows us to represent agents
that are influenced by the past, through the runs. An agent
that relies on its past events to make its current decisions
can also be called a state-based agent. Woolridge provides a
definition for the state-based agent as well.

action : I × E → Ac

next : I × E → I

Where I is an internal state that is updated each time the
agent receives a new environmental state. This internal state
captures the salient past events that are stored in the expert
memory. Woolridge proposes that the standard agent and the
state-based agent are equivalent in expressive power, and
that one can always be converted into the other. An exam-
ple of this can be seen in section 4.

Case-Based Reasoning

When applying case-based reasoning to LfO, A case c ∈ C
is an instance of an environment state-action pair from the
set C = E × Ac. When a case-based reasoning agent re-
ceives an environment state as a query, it searches through
the casebase, and returns the action from the case that has an
environment state that is most similar to the query. This re-
trieval method considers each case independently from each
other. Therefore, an agent’s action is only dependent on its
current environment state, which is the definition of a reac-
tive agent. An application of this can be seen in (Floyd, Es-
fandiari, and Lam 2008), in a 2D simulated soccer domain
called RoboCup. Since there is no temporal link between the
cases, and this retrieval method is not conducive to learning
state-based behavior.

3 State of the Art

(Floyd and Esfandiari 2011) proposes that in order to learn
more general behavior we need to redefine the set of cases
C to contain all the past history until that point in time:

C = RE ×Ac

Now, each case c ∈ C is temporally linked with its past.
In this instance, the query should be a run that ends in an
environment state, and the similarity metric should compare
runs. There may be many possible similarity metrics, each
capturing different inductive biases. If for the given environ-
ment state there are many differing actions suggested by the
casebase, the Temporal Backtracking algorithm (TB) (Floyd
and Esfandiari 2011) considers that the reason for the dis-
crepancy is situated somewhere earlier in the run, and so it
dynamically backtracks through the runs until it has found
consensus on the action it should perform. The inductive
bias of TB is therefore to give more weight to recent events
and actions. In the paper, the algorithm was used to learn
the behavior of an agent that toggles whether it turns left or
right each time it hits an obstacle. The results showed that

378

TB was able to outperform the reactive retrieval. In section
4 we apply the TB algorithm and a frequency bias metric to
a small example.

(Lora Ariza, Sánchez-Ruiz, and González-Calero 2017)
use time series based CBR to determine the skill level of a
player in a game of Tetris and adjust the level of help the
player is provided during the game. Depending on the type
of time-based case base created by the author, each case will
have three time series of varying size, depicting the change
of the parameters that describe the state of the game. The
similarity between two cases is calculated as a linear com-
bination of the similarities between their time series. The
time series are compared using a similarity metric based on
Euclidean distance, which gives equal weight to each point
in the time series - an implicit inductive bias. The results
showed that the user satisfaction, as well as average score
improved when CBR was used to predict the player profile
and adjust the game.

Another method that has been used for learning state-
based behavior is probabilistic graphical models. (Ontañón,
Montaña, and Gonzalez 2014) implemented three proba-
bilistic graphical models to learn different types of expert
behavior in a discrete 2D Vacuum cleaner domain (which
we re-use as a benchmark for our experiments). The models
were Bayesian networks, input-output HMMs and Dynamic
Bayesian networks. They were used to learn reactive, state-
based and stochastic behavior. The models learned each type
of behavior and were compared against one another and it
was shown that the Dynamic Bayesian networks were capa-
ble of capturing state-based behavior.

4 Methodology

Building state machines from runs

In Section 2, it was stated that one can theoretically build a
state-based agent from the standard agent. Practically, this
means that one should be able to build a state machine from
a run and vice versa. However, the caveat is that the set R
should contain all the possible runs of the agent. If this con-
dition is not met, there are many state machines that can be
built that will give rise to the runs in R. Let us consider a
simple vacuum cleaner domain. This domain has 4 environ-
ment states E = {NoWall (N), Dirt (D), Object (O), Human
(H)} and 3 actions Ac = {Left (L), Right (RT), Straight (S)}.
A run generated by an agent in this domain is shown below:

run : O
RT−−→ H

RT−−→ D
L−→ H

L−→
We can see in the above run that given the environmental

state H , two differing actions, namely L and RT , are ob-
served. Therefore, it can be said that the latest environment
state alone is not sufficient to explain the behavior (if we as-
sume that the agent’s behavior is not stochastic, that there are
no features we are not capturing, and that there is no noise in
the observed run) and so the expert’s memory (i.e., its state),
which cannot be directly observed, was also a factor in the
decision. The following Finite State Machines (FSM) can be
built from this run:

The state machine shown in Figure 1 is compact, and has
made a determination about there being two states. The sec-

Figure 1: Compact State Machine

Figure 2: Simple State Machine

ond FSM (Figure 2) is a simpler, less compact version. Both
FSMs will generate the run (assuming the initial state is A).
This is small example to prove that there exist many differ-
ent state machines that can generate the same run.

Since we generally only deal with a small subset of runs,
we can only approximate the state machine that generated
the subset of runs. Machine learning algorithms will create
different state machines based on the biases they are looking
for and use it to predict outputs given an input. In a CBR
approach, the state machine is not directly inferred; instead,
the similarity metric captures the salient inductive bias that
allows to select a certain subset of the run as being relevant
to the formation of the memory of the expert.

An example A small example of the generalized case-
based approach to state-aware CBR is shown below, using
the vacuum cleaning domain explained above. Consider an
expert that has a behavior captured by the state-machine
shown in Figure 3:

Figure 3: Expert in vacuum cleaner domain

Now consider the following two cases and query that are
generated by this state machine (assuming the start state is
Even). The correct action to be performed at environment
state H of the Query is L. This can be seen by running the
query through the state machine.

Case1 : D
L−→ N

S−→ O
RT−−→ D

L−→ H
RT−−→

Case2 : O
RT−−→ O

RT−−→ N
S−→ D

L−→ H
L−→

Query : O
RT−−→ N

S−→ O
RT−−→ D

L−→ H
?−→

We can apply the TB algorithm to the query and it would
predict RT as the action.If we apply a frequency based met-
ric that chooses the case with most similar probability dis-
tribution to the Query, the predicted action would be L. It

379

can be seen that there are the same frequency (count) of en-
vironment state and actions in the Query and Case 2, which
is not the case between the Query and Case 1. Algorithms
4 and 5 are the formal definitions of this metric. This shows
that we can design counter examples of behavior that will
cause certain algorithms to perform poorly. Therefore, we
shouldn’t rely on one type of algorithm to learn state-based
behavior. In the next section we provide different similarity
metrics that can be used to learn the different biases present
in the runs.

Similarity Metrics

Similarity function Each of the algorithms below will
have a similarity function - Similarity(element,element) that
takes two elements, which can be environment states or ac-
tions and determines their similarity. In the framework1 used
for testing, the user predetermines a similarity function for
each element before run time.

K-ordered This metric only considers the most recent k
elements of the runs as important: it is biased towards the
more recent elements. It performs a one-to-one comparison
of each element in two runs from most recent element to the
k’th element going back in time. The pseudo-code is shown
in algorithm 1. The notation |r| is used here to show the
number of elements (actions, environment states) in the run
r. Run[i] refers to the i’th element of a run, where the ele-
ments alternate between environment states and actions.

Algorithm 1 K-ordered-Similarity(Run1, Run2, k):Float
1: minSize← min(|Run1|,|Run2|)
2: for i = 0:min(k,minSize) do
3: sim += Similarity(Run1[i],Run2[i])
4: return sim

k

Ordered This metric considers the entire run important
and gives equal weight to all the elements. It performs a one-
to-one comparison of each element in two runs taking into
consideration the difference in their sizes. The pseudo-code
is shown in algorithm 2:

Algorithm 2 Ordered-Similarity(Run1,Run2):Float
1: maxSize← min(|Run1|,|Run2|)
2: return K-ordered-Similarity(Run1,Run2,maxSize)

K-unordered This metric captures a bias based on fre-
quency. It compares the frequency of elements in two runs
from the most recent element to the k’th element. It does
also have a bias towards a more recent subset of the run and
only considers the frequency of that subset.

In the following pseudo code for the k-unordered and
unordered similarity, the function getV is used to com-
pare frequencies of an element (el) in the two runs. The
freq(element, Run) function is used in getV to get the fre-
quency (count) of an element (el) in a run.

1available at https://github.com/sachag678/jLOAF

The pseudo-code for getV is shown in algorithm 3:

Algorithm 3 getV(Run1, Run2, el): Float
1: minFreq = min(freq(el,Run1),freq(el,Run2))
2: maxFreq = max(freq(el,Run1),freq(el,Run2))
3: return sim = minFreq

maxFreq

The pseudo-code for the k-unordered similarity metric is
shown in algorithm 4. The runs are converted into sets in
order to get the unique elements.

Algorithm 4 K-unordered-Similarity(Run1,Run2,k):Float
1: R1← k most recent elements of Run1
2: R2← k most recent elements of Run2
3: SetOne← R1 as a Set
4: SetTwo← R2 as a Set
5: for i= 0: |SetOne| do
6: sim += getV(R1,R2,SetOne[i])
7: return sim

|SetOne ∪ SetTwo|

Unordered This metric compares the frequency of ele-
ments in two runs. It considers the entire run to be important.
The pseudo-code is shown in algorithm 5.

Algorithm 5 Unordered-Similarity(Run1,Run2):Float
1: maxSize← min(|Run1|,|Run2|)
2: return K-unordered-Similarity(Run1,Run2,maxSize)

Weighted This metric compares each element in two runs
from the most recent element to the last element and weights
the more recent elements more heavily. This algorithm is bi-
ased towards the more recent elements but still considers all
the elements in the run. The pseudo-code is shown in algo-
rithm 6. The weight is arbitrarily assigned to 20 so that the
first 10 elements are weighted in an exponentially decreas-
ing manner. The rest of the elements in the run are weighted
by 1.

Algorithm 6 Weighted-Similarity(Run1,Run2):Float
1: weight← 20
2: minSize← min(|Run1|,|Run2|)
3: for i = 0: minSize do
4: ω ← (1+ e−i× weight)
5: sim += Similarity(Run1[i],Run2[i]) ×ω
6: return sim

minSize

5 Experiments

Vacuum cleaner domain

The vacuum cleaner domain consists of a grid world which
contains obstacles, dirt and walls. For the purposes of our
agents, the walls and obstacles are indistinguishable. An
agent that performs in this world will receive 8 binary per-
ceptions. The odd perceptions represent whether the agent

380

sees dirt(1) or obstacle/wall(0) in NORTH, EAST, SOUTH,
WEST directions. The even perceptions represent whether
the object is near(0) or far (1) with near being right next
to the agent. The agent also has access to five actions: Up,
Down, Left, Right and Stand. The following agents are cre-
ated within the constraints of this domain. An example ex-
pert (in green) can be seen in Map 1 in Figure 4. The per-
ception it receives from the environment is 10101010.

Designed Agents

Frequency Agent The agent moves down and counts the
number of times it sees dirt to the left and the number of
times it is next to a wall on its right or left. When the agent
collides with a wall or obstacle below it, if the dirt count is
greater than the wall count it moves left, otherwise it moves
right. Then the agent repeats this behavior but in the up di-
rection.

Fixed Sequence Agent An agent that follows a fixed se-
quence of 21 actions and repeats it when it is over. We used
the same agent defined in (Ontañón, Montaña, and Gonza-
lez 2014) because we had prior knowledge of TB under-
performing when imitating this behavior (Gunaratne, Esfan-
diari, and Chan 2017).

Zig Zag Agent An agent that traverses the environment
in a zig zag. It will travel to the left until it collides with
a wall or obstacle, then moves up and moves to the right
until colliding with a wall or obstacle. When it can go up
no further it repeats the behavior but going down (Ontañón,
Montaña, and Gonzalez 2014).

Experiment Design

Each experiment was performed using leave-one-out testing,
with 3 traces containing a 100 cases each. The training set
consists of 200 cases and the test set consists of 100 cases
for each iteration of the leave-one-out test. Each trace con-
tains the expert behavior on a different map. The maps were
specifically designed to limit the TB algorithm’s ability to
predict the behavior of the frequency agent, and are shown
in Figures 4 and 5. This was done by varying the number
of dirt (dark gray) and nearby obstacles (light gray) to cause
the agent (white square with arrow) to differ on whether it
moves left or right when it comes into contact with a wall
or obstacle above or below it2. For example, if the agent is
going down on Map 1, it will move left when it comes into
contact with the obstacle, while in Map 2 and 3 it will move
right. This is because in Map 1 it saw dirt to its left, but it
didn’t in Map 2 and 3. We used the same maps for the se-
quence and zig zag agent. The value of k in the k-unordered
and k-ordered algorithms was chosen to be 11. The results
from the experiments are shown in the next section.

6 Results

The results of our experiments are summarized in Tables 1,
2 and 3. Each table contains the Accuracy (Acc) and Global
F1 (F1) score of predicting the expert behavior on maps 1,2
and 3.

2https://github.com/sachag678/VacuumCleaner

Figure 4: Map 1 and Map 2

Figure 5: Map 3

Frequency Agent

The results for the Frequency agent are shown in Table 1.
The reason the TB algorithm doesn’t perform poorly is be-
cause for the most part the actions of the frequency agent
are not based on frequency. The TB algorithm should have
trouble predicting actions when the agent hits a wall above
or below it. The maps were designed to increase the amount
of times this occurred, however it was limited by the fact
that in between two obstacles above or below, there had to
be dirt or a wall to increase the counters of the agent. The
k-ordered and k-unordered metrics outperform the TB al-
gorithm, with the exception of Global F1 in Map 3.

Fixed Sequence Agent

The TB algorithm has a relatively low accuracy in compar-
ison to the other algorithms for Map 3 which is shown in
Table 2. Since TB dynamically backtracks one time step at
a time, and gives equal weight to environment states and ac-
tions, it is unable to imitate a sequence of actions that is not
dependent on the environment. The k-ordered, ordered, k-
unordered and unordered algorithms are able to perform
better for different reasons. The ordered algorithm back-
tracks to the beginning of the run and therefore will be able
to know exactly at which point in the sequence the query
sequence is at. The k-ordered algorithm is able to capture
the behavior because of the cyclic nature of the sequence. If
the k-ordered algorithm is able to have a k value that is half
the size of the sequence then it will be able to capture the
sequence behavior. The unordered and k-unordered metrics
function based on the frequency of elements in the run. In
this case the unique number of actions that occur before an-
other action allow the two metrics to capture the behavior as

381

Map 1 Map 2 Map 3
Similarity Acc F1 Acc F1 Acc F1

TB 0.88 0.6 0.92 0.75 0.79 0.87
k-ordered 1.00 1.00 0.94 0.8 0.88 0.48

k-unordered 0.93 0.71 0.94 0.8 0.93 0.66
ordered 0.89 0.48 0.89 0.47 0.89 0.49

unordered 0.83 0.62 0.89 0.47 0.88 0.47
weighted 0.99 0.95 0.94 0.73 0.88 0.49

Table 1: Results for Frequency Agent (Bold indicates the
best performance measure for each map)

Map 1 Map 2 Map 3
Similarity Acc F1 Acc F1 Acc F1

TB 1.00 1.00 1.00 1.00 0.85 0.83
k-ordered 1.00 1.00 1.00 1.00 1.00 1.00

k-unordered 0.99 0.99 0.99 0.99 1.00 1.00
ordered 1.00 1.00 1.00 1.00 1.00 1.00

unordered 0.97 0.97 0.97 0.97 0.94 0.94
weighted 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Results for Fixed Sequence Agent

well.

Zig Zag Agent

The results for the Zig Zag agent are shown in Table 3. This
agent was used to showcase the limitations of the frequency-
based similarity metrics. The behavior of the zigzag agent is
dependent on the action it performed the last time it collided
with an obstacle. This action occurs approximately 10 time
steps into the past. The cases before that time don’t affect the
current decisions. In Map 3, k-unordered, unordered and
ordered under-perform relative to the other algorithms. The
frequency of the actions or the environment states are not
important factors in this behavior and this could be the rea-
son for the poor performance of k-unordered and unordered.
Since ordered gives equal weight to all elements, the correct
subset of important elements isn’t captured, and this could
be the reason for its lower performance.

7 Conclusion

In this paper we have shown that we can come up with
counter examples which limit TB’s ability to predict the cor-
rect behavior, specifically with the frequency agent. We have
also shown that there are agents, such as the zig zag agent,
that theoretically limit some of our proposed similarity met-
rics’ ability to predict the correct behavior. However, based
on our results, it is difficult to conclusively say that a spe-
cific type of behavior will always cause a certain metric to
under-perform. This reiterates our hypothesis that there isn’t
a universal one-size-fits-all bias for learning state-based be-
havior at this point.

One area for future work is to be able to characterize types
of state-based behavior using the run. We can already dif-
ferentiate between reactive and state-based behavior. There-
fore, there is a possibility that it can be done between differ-
ent types of state-based behavior. We could then test metrics
on specific characterizations and determine if we are able
to suggest that a specific metric will perform better based
on the characterization. We would also like to implement

Map 1 Map 2 Map 3
Similarity Acc F1 Acc F1 Acc F1

TB 1.00 1.00 1.00 1.00 1.00 0.93
k-ordered 0.98 0.96 0.98 0.96 0.98 0.88

k-unordered 0.98 0.97 0.98 0.97 0.88 0.88
ordered 0.96 0.92 0.96 0.92 0.68 0.57

unordered 0.88 0.67 0.88 0.67 0.69 0.48
weighted 0.97 0.96 0.97 0.96 0.86 0.77

Table 3: Results for ZigZag Agent

metrics such as Levenshtein and Compression distance and
further test these on agent behavior in this domain, as well
as in a more real world domain, such as 2D simulated soccer
- RoboCup. Another area to investigate is the use of Long
Short-Term Memory (LSTM) based recurrent neural net-
works. LSTMs have been used to classify and predict time
series and speech-based data and should be well suited for
learning state-based behavior.

References

Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems.
Floyd, M. W., and Esfandiari, B. 2011. Learning state-based
behaviour using temporally related cases. Proceedings of the
Sixteenth UK Workshop on Case-Based Reasoning, Cam-
brdige, United Kingdom, December 13, 2011 829:9–11.
Floyd, M. W.; Esfandiari, B.; and Lam, K. 2008. A Case-
Based Reasoning Approach to Imitating RoboCup Players.
Proceedings of the Twenty-First International Florida Arti-
ficial Intelligence Research Society Conference, May 15-17,
2008, Coconut Grove, Florida, {USA} 251–256.
Floyd, M. W. 2013. A Comparison of Case Acquisition
Strategies for Learning from Observations of State-Based
Experts. FLAIRS 2013 - Proceedings of the 26th Interna-
tional Florida Artificial Intelligence Research Society Con-
ference 387–392.
Gunaratne, S.; Esfandiari, B.; and Chan, C. 2017. Towards a
Framework for Testing Learning from Observation of State-
Based Agents. AAAI Spring Symposium 2017.
Lora Ariza, D. S.; Sánchez-Ruiz, A. A.; and González-
Calero, P. A. 2017. Time series and case-based reasoning
for an intelligent tetris game. In Aha, D. W., and Lieber,
J., eds., Case-Based Reasoning Research and Development,
185–199. Cham: Springer International Publishing.
Mitchell, T. M. 1980. The need for biases in learning gen-
eralizations. Technical report.
Ontañón, S.; Montaña, J. L.; and Gonzalez, A. J. 2014. A
Dynamic-Bayesian Network framework for modeling and
evaluating learning from observation. Expert Systems with
Applications 41(11):5212–5226.
Woolridge, M. 2002. An Introduction to Multiagent Systems.
West Sussex, England: John Wiley and Sons, LTD.

382

