
Exploiting Textual and Citation Information to
Identify and Summarize Influential Publications

Mohamed A. Zahran
Purdue University

Department of Computer Science
West Lafayette, Indiana, USA

mzahran@purdue.edu

Amr Ebaid
Purdue University

Department of Computer Science
West Lafayette, Indiana, USA

aebaid@purdue.edu

Abstract

Given a group of publications, we investigate the problem of
identifying the papers with the most impact on others. We
refer to these papers as influential in the sense that they in-
troduce new concepts and language that will affect how fu-
ture articles are written. In this paper we propose weighted
PageRank algorithm that uses textual information from ar-
ticles and information from citation graph to rank the im-
pact of publications, then we automatically summarize these
publications and extract important keywords. We show that
using our algorithm outperforms default citation-based tech-
niques in ranking influential papers (those which won best
paper award) with no less than 2% in F1-score and NDCG.
We also show that our algorithm outperforms previous graph-
based keyword extraction techniques with no less than 1.5%
in F1-score.

Introduction

There exists a significant body of work in citation graph
analysis and modeling. Popular ranking algorithms as
PageRank and HITS were used in the context of citation
graphs to give different types of rankings as venue rank-
ing, author ranking and publication ranking. While previous
work shows that the default PageRank works for publication
ranking, textual information from publications are not used
in this line of work to influence the ranking. In this paper
we use textual information as well as graph information to
pick the top rated influential publications and determine the
type of new language and vocabulary these publications in-
fluenced other articles and publications. After picking those
influential publications we provide a summary for each pa-
per. The summary is basically to extract the top important
sentences, then for each of these sentences we extract the
most important words as keywords.

More formally: Given a group of publications P =
{p1, p2...pn} where pi is a publication. A publication is a
set of sentences pi = {s1, s2...sm} where si is a sentence.
A sentence is a set of words si = {w1, w2...wt} where wi is
a word. It is required to do these three tasks:

1. Publication Ranking: Given P , we identify a subset
P ∗ ⊆ P having the kp highest publication scores in P .

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2. Extractive Document Summarization: Given a paper p
we identify a subset S∗ ⊆ p having the ks highest scores
in p.

3. Keyword Extraction: Given a sentence s we identify a
subset W ∗ ⊆ s having the kw highest word scores in s.

Related Work

Our work is divided into three tasks as shown in the previous
section. We will divide the related work into three sections
as well.

Publication Ranking

Paper ranking can be done by mere citation count such that
papers are ordered descendingly by the frequency of their
corresponding citations. A better way is to view papers as
nodes, citations as edges and apply PageRank to calculate
the rank of each paper. While this idea works, this method
does not accommodate for the relative impact of publica-
tions or the impact of venues. (Sun and Giles 2007) pro-
posed using a Popularity Factor (PF) to reflect the influence
of a publication’s venue. The type of venue whether it is a
journal, conference or a workshop is transparent to the pop-
ularity factor.

PF (v, t) =
nv

N
∗
∑

iεP

PF (i, t)× w(i)

N(i)
(1)

Where PF (v, t) is the popularity factor for venue v in a
given year t ranging from 0 to 1. nv is the number of papers
published in venue v in year t, N is the total number of pub-
lications in all venues in year t, P is the set of venues which
cite this venue v in year t, w(i) is the frequency that venue
i cites venue v and N(i) is the total number of citations by
venue i.

Then using the popularity factor, they calculate the rank-
ing score of a paper as follows:

R(dT) = PF (vdT
) +

∑

t>T,dtεD

R(dt)

N(dt)
(2)

Where R(dT) is the score of paper d at time T , PF (vdT
)

is the popularity factor of venue publishing the paper dT .
N(dt) is the number of references in paper dt and D is the
set of papers citing dT

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

242

Figure 1: Simple Citation Graph Example

On the other hand, another line of work proposed using
solely textual information to identify influential papers. Us-
ing an NLP approach, (Gerrish and Blei 2010) suggested
that an influential article will affect how future articles are
written and that this effect can be detected by examining the
way publications corpus statistics change over time. Their
hypothesis is that an article’s influence on the future is cap-
tured by how the language of its field changes subsequent to
its publication. Their proposed model is based on dynamic
topic modeling.

(Ramage, Manning, and McFarland 2010) give ranking
to institutions by analyzing how futuristic their research is.
They perform topic modeling on the PhD dissertations ab-
stracts and check if these topics match the future publica-
tions’ topics.

Extractive Document Summarization

Focusing on graph based approaches for extractive summa-
rization, (Mihalcea and Tarau 2004) proposed generating
a graph with sentences as nodes and edges between these
nodes represent a similarity relation between the sentences.
Sentences appearing within a certain window are considered
neighbors. Similarity is measured as a function of their con-
tent overlap. For the sentence Si = wi

1, w
i
1, w

i
2...w

i
mi

and
Sj = wj

1, w
j
1, w

j
2...w

j
mj

, the content overlap based similar-
ity is:

Sim(Si, Sj) =
|{wk|wkεSi&wkεSj}|
log(|Si|) + log(|Sj |) (3)

The intuition is that adding similarity as weights on the
graph edges between two sentences can be seen as a process
of recommendation. A sentence that addresses certain con-
cepts in a text, gives the reader a recommendation to refer
to other sentences in the text that address the same concepts,
and therefore a link can be drawn between any two such
sentences that share common content. Then using weighted
PageRank (equation 4) the extractive summary will be the
top rated ks sentences.

WPR(vi) = (1−d)+d∗
∑

vjεIn(vi)

wji∑
vkεOut(vj)

wjk
WPR(vj)

(4)
From Figure 1 we can see that In(vj) is the set of nodes

with incoming edges into vj , while Out(vj) is the set of
nodes vj points towards them. d is a damping factor that can
be set between 0 and 1 (usually 0.85).

Keyword Extraction

Extracting important words from a paragraph is known
in the NLP community as keywords extraction problem.
(Mihalcea and Tarau 2004) proposed to use the input
paragraph to construct a graph between words. The graph
can be directed or undirected. Words appearing within a
certain window W will have an edge joining them, then
they calculate the PageRank score for words and pick
the k words with maximum score. The edges between
words can be either weighted or unweighted. They used
unweighted undirected graphs in their experiments. They
also experimented with various syntactic filters and reported
the best results by ruling out all words except for nouns and
adjectives.

In this paper, we combine a graph based approach us-
ing citation graph together with textual clues to identify and
rank influential papers, then using graph based approaches
we summarize these papers and extract the most important
keywords.

Methodology
Our work here involves three tasks, publication ranking, ex-
tractive document summarization, keyword extraction. We
propose using graph-based techniques to solve all three
tasks. As discussed we can view all of the three tasks as
ranking tasks. The idea is to convert the ranking problem
into a graph, such that nodes are the items to rank, and
edges are the relationships between them. Then, using edge
weighted PageRank we can rank these items and pick the
top rated ones.

To apply this idea we need: First, to use the appropri-
ate relation metric between items. Each of the three tasks
will define its own function to assign a relationship score
for each two connected items. Second, We need to modify
the weighted PageRank (equation 4). For PageRank to con-
verge,

∑
vjεOut(vi)

wij = 1, i.e. the summation of weights
of all the outgoing edges for any node must be 1. This can
be problematic in our tasks which depends on the relation-
ship score assigned to these edges. For example, considering
Figure 1, let Out(vj) = vi, vk and assume wji = 0.1 and
wjk = 0.025. In order to satisfy the above condition, we
should normalize these weights to be wji =

0.1
0.1+0.025 = 0.8

and wjk = 0.025
0.1+0.025 = 0.2. We can see that the weights

significantly increased. If these weights represent a similar-
ity measure between two nodes, then the similarity score
jumped from 0.1 (very low similarity) to 0.8 (very high simi-
larity). A simple work around is to do the normalization only
if the

∑
vjεOut(vi)

wij > 1. As long as the summation of the
out weights are less than one (as in our example) no nor-
malization is required and PageRank will run and converge.
In our experiments, we follow this simple trick which im-
proved our results. Next we present the methodology used
in each task.

Publication Ranking

The main idea is that all citations should not be treated
equally. Previous work treats the citations to other publi-

243

cations equally, which fails to account for the relative im-
portance of one citation over another. The importance of a
citation is directly proportional to the similarity of context
and ideas between the two papers.

For any research article, it make sense that its dependency
(represented in citations) on other publications is not uni-
form; For example, a paper can cite another publication for
just using a dataset, for a background and related work or
as self-citation. These types of citations should not get high
weights. On the other hand, a citation can be an extension of
some previous work, or enhancement/comparison of certain
aspects... etc. These types of citations should receive higher
weights because the cited articles have higher influence on
the paper at hand. The magnitude of this influence is some-
how subjective. However, if we have two papers vj and vi,
and the topics discussed in vj are very different from those
discussed in vi, then we can assume that it is highly unlikely
that vj cites vi or vice versa. The reason is that for vj to cite
vi they should have some common topics. The more similar
the topics of vj are to those of vi, the more impact vi has on
vj .

Using NLP techniques, we can give a score to the similar-
ity between two papers. The higher the score, the more im-
portant the citation is. Similarity scores are used as weights
on the edges of the citation network. More precisely, con-
sider Figure 1 where vj cites vi. The weight on the citation
edge wji = sim(vj , vi) where sim(.) is a similarity func-
tion that receives the textual information for both papers and
returns a similarity score between them.

We investigated two NLP approaches to assess the simi-
larity score between two documents:

Topic Modeling Using topic modeling techniques as LDA
(Blei, Ng, and Jordan 2003), we can analyze the topics of the
paper at hand, and compare these topics to the cited publi-
cation. The weight of such citation is directly proportional
to the similarity between the topics of the two papers. In our
experiments, we pooled all the publications together to iden-
tify all topics using gensim 1. The number of topics we used
is 100. The similarity between two papers will be by com-
paring how close the topics of the two papers are to each
other.

Document Embedding Instead of just analyzing the top-
ics of the papers, we can go a bit deeper by considering the
context of each paper, such that two papers with similar con-
textual information should receive a high score.

(Mikolov et al. 2013) proposed two techniques for build-
ing word representations in vector space using log linear
models; continuous bag of words (CBOW) and Skipgram
models. An extension to this work is made to embed a whole
document not just words. (Le and Mikolov 2014) proposed
to train document vectors the same way as words. The docu-
ment can be thought of as another word. It acts as a memory
that remembers what is missing from the current context,
and as the sliding window moves over the corpus, words in
the window change but the document is still present, such
that the document vector is shared across all contexts gen-

1https://radimrehurek.com/gensim/

erated from the same document but not across documents.
The words vectors on the other hand are shared across all
documents.

In our experiments, we pooled all the publications to-
gether to train the document vector of each paper. The vec-
tor size in our experiments is 300 and the sliding window is
10. We also filtered out all words with frequency less than
3, then trained the model using gensim. The similarity be-
tween two papers will be cosine the angle between their
corresponding document vectors: Sim(paperi, paperj) =
Max{ε, Cos(vi, vj)} where ε is a very small positive num-
ber. The max function is here to reject negative cosine scores
and return ε instead.

Extractive Document Summarization

Following the work of (Mihalcea and Tarau 2004), for a
given document, we will represent sentences as nodes, sen-
tences within a certain window are considered neighbors,
with edges weighted by the similarity score between the
connected sentences. But, rather than the similarity measure
they proposed in equation 3, we will use trained word em-
beddings 2 to get a vector representation for a sentence us-
ing Min/Max/Sum pooling. Given a sentence, break it into
words, and use the individual vectors of the words making
up the sentences to represent the sentence as a vector as well.
Pool the minimum components of all word vectors, then
concatenate it with the maximum components of all word
vectors, concatenated with the sum for all word vectors. Let
the sentence S = w1, w2...wt Let vi be the vector corre-
sponding to word wi and vi(x) is the xth dimension of the
vector, and let vs be the sentence vector.

vmin = [Min(vi(x)∀iε[1..t], ∀xε[1..|vi|])]
vmax = [Max(vi(x)∀iε[1..t], ∀xε[1..|vi])]
vsum = [Sum(vi(x)∀iε[1..t], ∀xε[1..|vi])]

Then vs = vmin|vmax|vsum where | is the concatenation
operator. The main reason to use this representation over the
document vector is that sentences have considerably fewer
number of words which will make the document vector not
very accurate and require a lot of training data, which sug-
gests that combining individual word vectors is a better op-
tion. Also we can find pretrained word vectors on a massive
amount of data as word2vec which is more likely to give
better vector representation for words and in turn better sen-
tence vectors for short sentences.

Now the similarity between two sentences si, sj will be
cosine the angle between the two vectors: Sim(si, sj) =
Max{ε, Cos(vi, vj)} where ε is a very small positive num-
ber. The max function is here to reject negative cosine scores
and return ε instead.

Keyword Extraction

Following the work of (Mihalcea and Tarau 2004), We rep-
resent words as nodes, and the edges carry weights repre-
senting the similarity between connected words. We propose
using weighted edges between words such that a weight on

2https://code.google.com/archive/p/word2vec/

244

the edge between two words represent a similarity score be-
tween these two words. Then, we use PageRank to get the
top k words to be the extracted keywords. We experimented
with these word to word similarity measures:

1. Word Vector Embeddings Similarity: Using the word vec-
tors discussed, then calculate the cosine similarity be-
tween the two word vectors.

2. Path Similarity: The score denoting how similar two word
senses are, based on the shortest path that connects the
senses in the is-a (hypernym/hypnoym) taxonomy as in
WordNet.

3. The Leacock & Chodorow (Lch) Measure (Leacock and
Chodorow 1998):

Simlch(c1, c2) = − log
len(c1, c2)

2 ∗D
Where c1 and c2 are the two concepts corresponding to
the two words in question. len is the length of the short-
est path between the two concepts c1 and c2 using node
counting, and D is the maximum depth of the taxonomy.

4. The Wu and Palmer (Wup) Measure (Wu and Palmer
1994):

Simwup(c1, c2) =
2 ∗ depth(LCS(c1, c2))

depth(c1) + depth(c2)

Where LCS is the least common subsumer of the two
concepts.

5. The Lin Measure (Lin 1998):

Simlin(c1, c2) =
2 ∗ IC(LCS(c1, c2))

IC(c1) + IC(c2)

Where IC is the information content, such that the in-
formation content of a concept c equals to IC(c) =
− logP (c) where P (c) is the probability of encountering
c in a large corpus.

Algorithm/Data Description

Algorithm

In this section we present our modified weighted PageRank
algorithm used in the three tasks. Algorithm 1 weighted-
PageRank(items) takes the nodes (items) and returns their
ranking.

Data Description

Publication Ranking We are using the Association of
Computational Linguistics (ACL) corpus3. It contains 21k
papers, 110k internal citations.

Extractive Document Summarization To evaluate the
summarization technique we used the Document Under-
standing Conferences (DUC) 2002 dataset4. The version we
used has 104 articles, each around 400 words. Reference
summaries are given, each 200 words. So the task will be
to summarize a 400-word article into a 200-word one.

3http://clair.eecs.umich.edu/aan/index.php
4http://www-nlpir.nist.gov/projects/duc/data/2002 data.html

Algorithm 1 weightedPageRank(items)
DG ← new directed graph
for i in items do

Add node i to DG
s ← new empty list
for j in Out(i) do
s[j] ← similarity score between (i, j)

end for
if sum(s) > 1.0 then
normalize(s)

end if
for j in Out(i) do

add node j to DG
add edge between (i, j) with score s[j] to DG

end for
end for
PR ← perform a weighted pagerank to DG
return PR

Keyword Extraction In order to evaluate our technique
we use the Inspec dataset5 (Hulth 2003). It contains 500 sci-
entific paragraphs and the keywords for each paragraph are
extracted manually by annotators.

Results

Publication Ranking

Evaluating this task is hard because it is highly subjective.
Claiming a paper is influential or not is very subjective, and
manual annotation for this task shows differences even for
experts. One idea is to assume all the publications that won
best paper award to be influential. For the ACL dataset we
have 46 best papers. We test using LDA, document vec-
tors for edge weighting versus the default unweighted edges.
We calculated the recall, precision, F1-score and NDCG for
each technique. An ideal ranking (oracle) will place the 46
best papers in the top 46 places. Let the set of best papers be
BP , let the ranked publications sorted by any technique be
PR, and let the top 46 rank of PR be RP|BP |.

tp = |p ∈ BP, p ∈ PR|BP ||
fp = |p /∈ BP, p ∈ PR|BP ||
fn = |p ∈ BP, p /∈ PR|BP ||
tn = |p /∈ BP, p /∈ PR|BP ||

Where tp, fp, fn, tn are the true positives, false positives,
false negatives and true negatives respectively. Then we can
calculate the recall, precision and F1-score.

The NDCG of pi where pi is one of the best papers

NDCG(pi) =

⎧⎨
⎩

1 pi ranked at top of |BP |
1

log(r)
∑r

k=|BP |+1
1

log(k)

if pi is ranked at r

Now the total NDCG =
∑

pi∈BP NDCG(pi)

|BP |
5https://github.com/snkim/AutomaticKeyphraseExtraction

245

�

�

�

�

�

��

�	
��� �	
����� ��
��	 ����

	
�

	�

��
�	

��

����
�������������

��
� 	
 !�" �	#����

Figure 2: Publication Ranking Evaluation

Figure 2 shows that our weighted PageRank algorithm
using document vectors outperforms default unweighted
PageRank with 2%. It also shows that using document vec-
tors as similarity measure is superior to using LDA.

Extractive Document Summarization

Using the DUC dataset we compare two similarity tech-
niques discussed, the Min/Max/Sum sentence representation
and the word overlap. We’re using ROUGE (Lin 2004) as the
metric for measuring the quality of the translations
• ROUGE-N: N-gram co-occurrence statistics. We used

N=1,2,3,4.
• ROUGE-L: Longest Common Subsequence (LCS). It

identifies longest co-occurrence in a sequence of n-grams
• ROUGE-W: Weighted LCS-based statistics that favor

consecutive LCSes .
• ROUGE-S: Skip-bigram co-occurrence statistics. Skip-

bigram is any pair of words in their sentence order.
• ROUGE-SU: Skip-bigram plus unigram-based co-

occurrence statistics.
Figure 3 shows the ROUGE metric against the window

size for using different similarity metrics: vector representa-
tion, word overlap and unweighted PageRank. Surprisingly,
using word overlap as a similarity measure outperformed us-
ing word vectors.

Keyword Extraction

In order to evaluate our technique, we use the Inspec dataset
(Hulth 2003). It contains 500 scientific paragraphs and the
keywords for each paragraph are extracted manually by an-
notators to be used as ground truth. (Mihalcea and Tarau
2004) used this dataset in keyword extraction by creating an
unweighted undirected graph for the input text and selecting
the top k words with the highest PageRank scores. Below
are the hyper-parameters used in the experiments.
• WINDOW: Basically words that are less than “window”

apart are considered neighbors; i.e. this parameter deter-
mines which words in the text between which to draw
edges. We use a window around each word so that words
in range [p-w:p+w] will have an edge with the current
word, where p is the position of the current word and w is
the window size

• K: The ratio between the number of top rated words to
consider as extracted keywords and the total number of
input words.

• POS: To filter out words by part of speech tags. In our ex-
periments (following the previous work) we only consider
NN (Noun, singular), NNS (Noun, plural), JJ (adjectives).

• SIM: The similarity measure used between edges.
For the sake of comparison, We used same configura-

tion as (Mihalcea and Tarau 2004) [WINDOW=2, K=0.3,
POS=NN/NNS/JJ] with only adding weights to the edges
of the graph using the similarity measures discussed pre-
viously. The results are reported in Figure 4, which shows
the vector based approach with cosine similarity is superior
to other similarity measure and shows 0.5% increase in F1-
score over the unweighted approach. Now, we will change
the hyper-parameters used in the experiments to see their
effect on the performance of different techniques. Figure 5
shows the effect of changing the window on the unweighted
graph and the vector based weighted graph with cosine sim-
ilarity, which reveals that word-to-word similarity weighted
graphs based on word embeddings is superior to the un-
weighted approach with around 1.5% gain in F1-score.

Discussion
In this paper, we discussed a hybrid graph- and NLP-based
techniques to summarize influential publications. We pro-
posed a framework to rank influential papers, then to sum-
marize those papers and finally to extract important key-
words. We represented items to be ranked as nodes, and re-
lationships as edges weighted with similarity measure be-
tween connected items. We used textual features to give dif-
ferent weights to citations based on the contextual similarity
between the two papers. We experimented with two textual
similarity techniques: the first is to embed papers in a mul-
tidimensional space, then calculate the cosine similarity be-
tween them; the second is to analyze the topics of each paper
with LDA and the similarity will be how much the topics
of the two papers overlap. We showed that by using tex-
tual features with citation graph information we were able
to give higher ranks for important papers (those which won
best paper award) than using citation information solely with
no less than 2%. Using the same framework we boosted the
performance of keyword extraction using a graph-based ap-
proach with no less than 1.5%.

However, For the extractive document summarization
task, using words overlap as similarity measure outper-
formed sentence vector similarity evaluated against the sam-
ple of DUC-2002 dataset. Possible extensions to the work
here is to investigate edge-wise personalized PageRank as
a solution to the convergence problem discussed in the
methodology section. Also, finding other methods to test the
influential paper ranking will provide a better test-bed for
bench-marking other techniques.

References
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent dirich-
let allocation. the Journal of machine Learning research
3:993–1022.

246

$�%�
$�%&
$�%'
$�%(
$�%)
$�%%
$�%*

+ & (+$

��
��

��
	

�
	

���
���	����

��������+

�	
�
��� �
���,	���� �	#�-�����

$�(*
$�)

$�)�
$�)'
$�))
$�)*
$�%

+ & (+$

��
��

��
	

�
	

���
���	����

���������

�	
�
��� �
���,	���� �	#�-�����

$�('
$�()
$�(�
$�)

$�)�
$�)'
$�))

+ & (+$

��
��

��
	

�
	

���
���	����

��������&

�	
�
��� �
���,	���� �	#�-�����

$�(
$�(�
$�('
$�()
$�(�
$�)

$�)�
$�)'

+ & (+$

��
��

��
	

�
	

���
���	����

��������'

�	
�
��� �
���,	���� �	#�-�����

���

����

����

����

���.

� 	
 ��

��
�

��
��
��

�

�������������

�������

!�����"�# �����$���%& ��'%(��)*�

��+�

���

����

����

����

����

� � � ��

	

��

�
�

��
	

��������	����

��	
����

�	
������ ����
,	���� �	#�-����	

,��
,��!
,��"
,�#

,�#
,�#�
����

� � � ��

�	

�

��

��
	

��������	����

���	
����

�	
������ ����	,	���� �	#�-�����

���
���!
���"
���

����
����
����

� � � ��

�	

�

��

��
	

��������	����

���	
����

�	
������ ����	,	���� �	#�-�����

Figure 3: ROUGE scores using vector based similarity and word overlap similarity with changing the neighborhood window.

��
��
��
��
��
��
��
��
��
��
��

	
������� ����������
� ��������������
 ������������ ����������� ����������� ���������

��
��

�

��

��
 !

"�#���� $%������
 $&������

'����� ������
 ()*�����

Figure 4: Results on Inspec data set using different similarity
measures

Gerrish, S., and Blei, D. M. 2010. A language-based approach
to measuring scholarly impact. In ICML, volume 10, 375–
382.
Hulth, A. 2003. Improved automatic keyword extraction
given more linguistic knowledge. In Proceedings of the 2003
conference on Empirical methods in natural language pro-
cessing, 216–223. Association for Computational Linguis-
tics.
Le, Q. V., and Mikolov, T. 2014. Distributed representations
of sentences and documents. arXiv preprint arXiv:1405.4053.
Leacock, C., and Chodorow, M. 1998. Combining local
context and wordnet similarity for word sense identification.
WordNet: An electronic lexical database 49(2):265–283.
Lin, D. 1998. An information-theoretic definition of similar-
ity. In ICML, volume 98, 296–304.
Lin, C.-Y. 2004. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out: Proceed-
ings of the ACL-04 workshop, volume 8.
Mihalcea, R., and Tarau, P. 2004. Textrank: Bringing order
into texts. Association for Computational Linguistics.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-

��
��
��
��
��
��
��

	
���� 	
���� 	
���� 	
���� 	
����

�
 ��
��
�

+

	����� ������

��� ������ �� �	������ �� � �����

����������������� ����������������

Figure 5: Effect on changing WINDOW on the F1-score of
unweighted graph and the weighted graph using cosine sim-
ilarity between word vectors

ficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.
Ramage, D.; Manning, C. D.; and McFarland, D. A. 2010.
Which universities lead and lag? toward university rankings
based on scholarly output. In Proc. of NIPS Workshop on
Computational Social Science and the Wisdom of the Crowds.
Citeseer.
Sun, Y., and Giles, C. L. 2007. Popularity weighted ranking
for academic digital libraries. In European Conference on
Information Retrieval, 605–612. Springer.
Wu, Z., and Palmer, M. 1994. Verbs semantics and lexical se-
lection. In Proceedings of the 32nd annual meeting on Asso-
ciation for Computational Linguistics, 133–138. Association
for Computational Linguistics.

247

