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Abstract

We consider the problem of robot path planning in an ini-
tially unknown environment where the robot does not have
access to an a priori map of its environment but is aware of
some common obstacle patterns along with the paths that en-
able it to circumnavigate around these obstacles. In order to
autonomously improve its navigation performance, the robot
should be able to identify significant obstacle patterns and
learn corresponding obstacle avoidance maneuvers as it nav-
igates through different environments in order to solve its
tasks. To achieve this objective, we propose a novel online
algorithm called Incremental State Discovery Via Clustering
(ISDC) which enables a robot to dynamically determine im-
portant obstacle patterns in its environments and their best
representations as combinations of initially available basic
obstacle patterns. Our results show that ISDC when combined
with our previously proposed navigation technique was able
to identify significant obstacle patterns in different environ-
ments in a time effective manner which accelerated the over-
all path planning and navigation times for the robots.

Introduction

A crucial aspect in real-time robot path planning is to en-
able robots to determine obstacle boundaries so that they can
avoid collisions. Many existing path planning techniques
(Arslan 2016; Arslan, Guralnik, and Koditschek 2016; Ott
and Ramos 2013; Ravankar et al. 2012) use supervised
learning techniques where robots are trained to recognize
obstacle boundaries as features. However, supervised learn-
ing techniques require considerable human effort to label
features and their properties. To identify features rapidly, in
real-time and without human assistance, it would be useful
if a robot could autonomously learn features from its per-
ceived sensor data during navigation. A possible solution
to this problem is afforded by a clustering-based unsuper-
vised learning technique called affinity propagation (Frey
and Dueck 2007) that iteratively exchanges real-valued mes-
sages between data points to automatically cluster them.
Although affinity propagation has been used extensively in
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different domains including biology, sensor networks, deci-
sion making in business and operational research, there has
been limited utilization of clustering techniques in real-time
robotics, possibly due to large time requirements of cluster-
ing algorithms that are not suitable for real-time operation
of robots. In this paper, we attempt to speed up the cluster-
ing technique by proposing a framework called Incremental
State Discovery via Clustering (ISDC) that combines option
augmented meta-point affinity propagation (OMP-AP), an
advanced variant of affinity propagation adapted for robot
navigation, with a Fast Approximate K-Nearest Neighbor
(K-NN) classifier (Muja and Lowe 2009). Our experimen-
tal results with Coroware Corobot robots within the Webots
simulator for different robot navigation tasks in different en-
vironments, with different obstacles, validate that cluster-
ing obstacle features using ISDC reduces the overall plan-
ning time by 81%, total time by 64%, total distance by 8%
and only reduces the average expected q-values by 27% in
comparison to a previously proposed hierarchical navigation
technique SMDPU-T (Saha and Dasgupta 2017). In order
to explicitly assess the advantage of clustering in ISDC, we
have analyzed its performance after the clustering process
and found that ISDC on average reduces the planning time
by 84%, total time by 74%, total distance by 25% and only
decreases the average expected q-value achieved by 13%
compared to SMDPU-T. In spite of the average reduction in
the q-values, ISDC was able to achieve a final q-value which
was 21% higher compared to the final q-value achieved by
SMDPU-T.

Related Work

Clustering has been applied in robotics for designing scal-
able algorithms for controlling the motion of large groups
of robots as motion coordination of large multi-robot teams
is computationally challenging. Some of the major works in
this area include (Ayanian, Kumar, and Koditschek 2011;
Chaimowicz and Kumar 2007; Ogren 2004). In(Arslan
2016; Arslan, Guralnik, and Koditschek 2016), the au-
thors have proposed a computationally efficient coordi-
nated multi-robot motion design utilizing hierarchical clus-
tering techniques. Works which specifically involve clus-
tering with obstacle avoidance and robot path planning in-
clude (Imeson and Smith 2017; Mas and Kitts 2012). How-
ever, most of these methods utilize clustering techniques
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as offline computations in multi-robot paradigm. In con-
trast, in our work, we propose to utilize a fast clustering
technique called meta-point affinity propagation (Frey and
Dueck 2007; Ott and Ramos 2013) that will enable robots
to autonomously learn appropriate representations of their
environment dynamically by performing clustering in real-
time. In (Ravankar et al. 2012), the authors propose a map-
building technique for mobile robots using k-means clus-
tering on laser sensor data. However, this technique suffers
from the limitation of specifying the number of clusters a
priori and is extremely sensitive to noise. Our work ex-
tends the line of research proposed in (Frey and Dueck 2007;
Ott and Ramos 2013) but focuses explicitly on the incorpo-
ration of this fast clustering technique to augment the real-
time navigation performance in robots by enabling them to
determine the intrinsic environmental features across envi-
ronments.

Problem Formulation

We consider the problem of navigation where a wheeled
robot has to navigate efficiently in an initially unknown
bounded environment composed of multiple complicated
obstacles Qobs and free space Qfree. We consider that the
robot does not possess any a priori map of the environment.
Thus, the robot is unaware of the location and geometry of
the obstacles. The primitive actions of the robot are repre-
sented in the continuous space as a = (ψ, d) where ψ de-
fines the desired bearing and d is the distance that the robot
moves. Robots are also equipped with depth sensors (e.g.
laser) which enable them to record point clouds when placed
in close proximity of the obstacles. Robots are also assumed
to be localized with respect to the environment using a lo-
calization device. The navigation task requires a robot to
determine a collision-free path between the start and goal
(qstart, qgoal) ∈ Qfree. For this, the robot has to determine
a sequence of actions that results in a collision free path
when it encounters an obstacle in its path. ISDC utilizes
a previously proposed hierarchical navigation technique
SMDPU-T (Saha and Dasgupta 2017) as its underlying mo-
tion planner which combines semi-Markov decision process
(SMDP)(Sutton, Precup, and Singh 1999) and Markov deci-
sion process with unawareness (MDPU)(Halpern, Rong, and
Saxena 2010).

Option Augmented Meta-point Affinity
Propagation

Affinity propagation (AP) (Frey and Dueck 2007) algorithm
requires the similarity values between data points as its in-
put. The similarity between data points is defined depending
on the problem domain. To apply AP to our problem of real-
time obstacle recognition, we need to capture features that
are both scale and rotation invariant and are capable of ap-
propriately capturing the overall shape of the laser scans. We
investigate the applicability of Viewpoint Feature Histogram
(VFH) (Rusu et al. 2010) as distinctive features for similar-
ity calculation for clustering obstacle patterns. Rusu et al.
achieved promising results in household object recognition
using VFH as classification features and Fast Approximate

K-NN as classifier. However, we believe clustering is an im-
portant step for the problem of robot navigation as unlike
classification where the number of classes is known before-
hand, in our problem, there can be previously unseen ob-
stacle(s) encountered by the robot while solving the current
navigation task. Under such a condition, the robot should
be able to dynamically update the number of classes as and
when required. VFH is an advanced variant of Point Feature
Histogram (PFH) (Rusu et al. 2008) which evaluates the rel-
ative pan, tilt and yaw angles between the surface normals of
the centroid and every point on an object and bins that results
in a histogram. In order to compute the similarity between
the histograms of two obstacle patterns which is needed by
AP to create the clusters, we use histogram intersection ker-
nel following d(H1, H2) = Σg

i=1min(H
i
1, H

i
2) where g is

the number of histogram bins and H1, H2 are the two his-
tograms to be compared and Hi

1 and Hi
2 are respectively

the values of H1 and H2 at the ith bin (Barla, Odone, and
Verri 2003). From the input similarity information, a graph is
constructed where the nodes represent the individual obsta-
cle pattern and edges represent the similarity between pairs
of obstacle patterns. Affinity propagation proceeds by inter-
changing two types of messages between connected nodes in
the graph called responsibility and availablity (Eqns 1, 2).

r(i, k) = s(i, k)− max
k′s.t.k′ �=k

(a(i, k′) + s(i, k′)) (1)

a(i, k) = min(0, r(k, k) + Σi′s.t.i′ /∈{i,k} max(0, r(i′, k)))
(2)

where s(i, k) is the similarity score between obstacle pat-
terns i and k. The exemplar of a data point is another data
point which represents the previous data point appropriately
and has the highest similarity to it in the feature space. Meta-
point affinity propagation (MP-AP) (Ott and Ramos 2013)
extends the application of affinity propagation to real-time
environments where high-speed clustering needs to be per-
formed. In MP-AP, obstacle patterns which are close in the
feature space are grouped together and replaced by a sin-
gle meta-point. As our objective is to improve the robot’s
navigation by determining suitable obstacle pattern through
clustering, we define option augmented meta-points (OMP)
which are similar to meta-points with added corresponding
option taken by the robot while navigating around each ob-
stacle pattern (each data point of the meta-point), resulting
in option augmented MP-AP (OMP-AP). An option is a se-
quence of time-extended actions with an initial state I, a
policy π and a termination condition β guided by a deci-
sion making framework called semi-markov decision pro-
cess (SMDP) (Sutton, Precup, and Singh 1999). MP-AP
considers two types of meta-points called cluster-points mc

i
and noise-points mn

i . The former denotes obstacle patterns
that are used for the standard affinity propagation and noise-
points are obstacle patterns which are ignored while the ex-
ecution of the actual clustering happens. We consider the set
of noise points as N = {mn

i } and the set of cluster points
as U = {mc

i}. A noise-point is considered cluster-point if it
represents sufficient number of obstacle patterns. When one
or more noise-points qualify as cluster-points, they are elim-
inated from N and included in U . Mathematically, this can
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be represented using equations 3, 4 and 5.
N = N \mn

i s.t. |mn
i | ≥ θmin (3)

mc
i = mn

i (4)
U = U ∪mc

i (5)
where θmin denotes the minimum number of obstacle pat-
terns required to become a cluster-point mc

i from a noise-
point mn

i . ISDC consists of an initial training phase and a
testing phase which are described next.

Training Phase for Creating Initial Obstacle
Patterns and Options in SMDPs

In this phase, we allow the robots to perform path planning
while navigating in simple environments with representative
obstacles and capture the basic obstacle patterns. When a
robot encounters an obstacle pattern p, it records the contour
of it as a set of 2D way points p = {(x, y)}. We apply a vari-
ant of Meta-point affinity propagation (Ott and Ramos 2013)
on the obstacle data accumulated during the training process
to identify the initial set of clusters C0 formed of similar
obstacle patterns. Each data point in the cluster corresponds
to an obstacle pattern. The number of clusters in C0 corre-
sponds to the set of initial obstacle patterns in the explored
environments. The exemplar pattern pe of each cluster in C
denotes the obstacle pattern which best represents the entire
cluster c. Each exemplar pattern pe is added as a new state
s to the state space of the MDPU SMu = SMu

⋃
s. Now

we allow the robot to plan paths around each of these exem-
plar patterns pe by varying the goal locations around them.
The navigation around each exemplar obstacle pattern pe is
recorded as a set of 2D way points {(x, y)} which form the
states of an SMDP and each obstacle avoidance maneuver
learned during the training phase creates an option for the
SMDP for pe. The locations of the robot {(x, y)} where it
first perceived the obstacle pattern form the set of initiation
states I for the SMDP. The policy π for the SMDP gives the
sequence of actions that the robot needs to follow at each
state or location for successfully avoiding the perceived ob-
stacle pattern pe. Hence, each exemplar obstacle pattern pe,
when perceived, maps to the initial state (x, y) of the op-
tion o i.e. F : p → (x, y) such that (x, y) ∈ I. During
this training phase, the robot thus records a set of options O
along with the set of MDPU states SMu (exemplar obstacle
patterns) which will be used by ISDC for subsequent state
discovery and later on by SMDPU-T for planning robot nav-
igation in the future. For our proposed framework, we also
consider a unit pattern free corresponding to the case where
the robot does not perceive any obstacle and is potentially in
an obstacle free zone in the environment. In contrast to the
training phase of conventional reinforcement learning where
the robot is trained to learn the best action at each state, in
the training phase of our approach, the robot focuses on a
sub problem which involves learning the best actions to cir-
cumnavigate an obstacle pattern in its environment.

Clustering Combined with Classification for Fast
Obstacle Recognition

While the robot navigates in its environment, it keeps track
of the recorded obstacle patterns at each step along with the

identified exemplar pattern pe. Finally, when the robot ar-
rives at the free state by avoiding the obstacle, it combines
all the intermediary obstacle patterns captured as cp. The
robot also keeps track of the intermediary options that it ex-
ecutes and combines these options to form the initial option
co = {oi}. To guarantee real-time performance, we have
to ensure that the robot is able to quickly recognize the en-
countered obstacle pattern as either one of the exemplar ob-
stacle patterns or an unknown pattern. The K-NN classifier
classifies the combined obstacle pattern cp into one of these
classes. In the former case, the cluster c corresponding to the
exemplar pe is updated with the new obstacle pattern p. In
the latter case, the data from the obstacle pattern is passed
to the clustering system as a new observation. For our prob-
lem, each data point is actually a collection of 2D points
representing the perceived obstacle contour. The new obser-
vation is identified by the clustering system into one of the
following cases- (i) There is a suitable cluster-point present
corresponding to the new observation, (ii) There is a suitable
noise-point present for the given observation but no suitable
cluster-point, (iii) No suitable cluster-point or noise-point
can appropriately represent the new observation. For the first
two cases, the new observation updates the corresponding
cluster-point and noise-point respectively along with their
associated statistics. The cluster-points are also stored in an
outlier reservoirZ. The actual clustering is performed by ex-
ecuting standard affinity propagation (AP) algorithm on the
cluster-points which is computation-intensive. Hence, to en-
sure real-time performance, AP is executed only at certain
intervals. Following (Ott and Ramos 2013), we consider the
number of cluster-points in the outlier reservoir Z as a con-
dition for determining when to perform AP. If the number of
meta-points in Z exceeds a certain threshold, AP is called to
execute clustering. Every time AP is executed, there is a pos-
sibility that a new cluster cnewis created expanding the set
of initial clusters C = C

⋃
cnew. The new exemplar pattern

pnewe corresponds to a newly discovered state of the over-
lying MDPU and is added to its state space S = S

⋃
snew.

This creates a new SMDP in the context of the newly discov-
ered MDPU state snew. The combined option co recorded
corresponding to snew forms its initial option and snew is
added to the initiation state I for co. The clustering can also
alter the exemplar(s) of the existing clusters in which case
the MDPU state space SMu is updated with the updated ex-
emplar pattern(s). A fast approximate K-NN classifier (Muja
and Lowe 2009) is trained with the features extracted from
the exemplars of the new cluster(s) which helps in the fu-
ture obstacle recognition as the robot encounters other ob-
stacles. Fast approximate K-NN utilizes multiple random-
ized kd-trees (Friedman, Bentley, and Finkel 1977), which is
a form of balanced binary search tree, for efficiently storing
the training data and finds approximate nearest neighbors in
a time effective manner especially in high dimensional data
using priority search (Silpa-Anan and Hartley 2008).

Autonomous Obstacle Pattern Expansion Using
ISDC

In this subsection we explain in details how the robot au-
tonomously determines important obstacle patterns and ex-
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Figure 1: (a)-(j) Different environments used for testing proposed ISDC algorithm.

Algorithm 1: ISDC algorithm
Input: Perceived combined obstacle pattern cp,

corresponding combined option co, set of
cluster-points U , set of noise points N ,
Outlier reservoir Z

Output: Updated cluster set C, updated MDPU state
space SMu and updated option set O

1 (U,N,Z, nn)← OMP-AP(cp, U,N,Z)
2 if Z.count > ζ then
3 AFFINITY-PROPAGATION(Z)
4 Z ← ∅

5 U ← ∅

6 Update C
7 repeat
8 snew ← pnewe s.t. pnewe is the exemplar of

cnew
9 SMu ← SMu

⋃
snew

10 Onew ← Onew

⋃
co

11 I ← snew
12 until all new cluster(s) cnew are covered;
13 repeat

14 if exemplar pie ∈ ci �= si then

15 si = pie
16 Update O for si with the associated

option(s) co
17 until all previously existing clusters ci /∈ C0 are

covered;
18 Train K-NN with the features extracted from the

exemplars of the updated clusters
19 Adjust policy πu for each new state snew and

corresponding options Onew

20 Adjust policy πu for the existing state(s) which
got updated for executing AP

pands the MDPU state space SMu along with the associated
option space O as it navigates in different environments.
The pseudocode is given in Algorithm 1. When the robot
ends up in a free zone after avoiding the obstacles, then
the OMP-AP algorithm is called with the combined obsta-
cle pattern cp. Next the algorithm determines if AP needs
to be performed by checking either if the outlier reservoir

Z has exceeded its limit ζ (Line 2). If this condition is true,
AP algorithm is called with the new data points as the set
Z (Line 3). It returns the updated set of cluster-points U ,
noise-points N , outlier reservoir Z and the nearest neighbor
set evaluated nn (Line 1). After AP is performed, the outlier
reservoir Z and the set of cluster-points U are reset (Lines
4−6) and the set of clustersC is updated. For each new clus-
ter cnew created, the MDPU state space SMu is updated with
the exemplar pattern pnewe as snew (Lines 8 − 9). The asso-
ciated set of options for the newly created MDPU state snew
is updated with the initial combined option co created while
avoiding the detected obstacle. snew is included in the set
of initiation states I for option co in Onew (Lines 10− 11).
Also for each cluster ci previously existing in C which does
not belong to the initial set of clusters C0, it is checked if
the exemplar pie of each cluster ci is same as the correspond-
ing state si in the MDPU state space SMu . If these two are
not the same, the MDPU state si is updated with the cur-
rent exemplar as it is the best representation for the current
cluster ci (Lines 13 − 17). After this, the K-NN classifier
is trained with the features extracted from the exemplars of
the updated clusters (Lines 18 − 19). As the final steps, the
algorithm adjusts the policy πu with the newly added state
snew and options Onew. In case any change occurred to the
exemplars of the existing clusters ci outside the initially cre-
ated set of clusters C0, the ISDC also adjusts the policy πu

accordingly (Line 20).

Experimental Setup and Results

We have verified the performance of the ISDC algorithm us-
ing simulated corobot robot in the Webots simulator. The
corobot is a four-wheeled ground robot equipped with a
laser sensor with a 360◦ field of view and a view range of
2 m, a gps node and a compass. In order to assess the ef-
ficiency of our clustering-based ISDC algorithm, we have
compared its performance with SMDPU-T (Saha and Das-
gupta 2017) which learns each newly encountered obstacle
patterns along with the corresponding options as the robot
navigates in different environments. As SMDPU-T does not
involve an explicit clustering process, we believe that its
comparison with our algorithm will clearly illustrate the ad-
vantage of the clustering process with time.
For validating the comparative advantage of ISDC, we have
used a set of 20 different simulated test cases where each
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Figure 2: Planning Time, Total Time and Total Distance traveled by ISDC and SMDPU-T in (a)-(c) the first half of the pre
clustering environments and (d)-(f) the second half of the pre clustering environments.
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Figure 3: Planning Time, Total Time and Total Distance traveled by ISDC and SMDPU-T in the post clustering environments.

test case refers to a combination of distinct test environment
(22 × 22 m2) and start and goal locations. The robot was
allowed to solve each test case using ISDC and SMDPU-T
and the corresponding performance metrics were recorded.
The first 16 of our test cases were used for experiments be-
fore ISDC performed OMP-AP clustering and the last 4 test
cases were used for experiments after ISDC performed clus-
tering and created new MDPU states. In order to account for
randomness in both the algorithms, each test case was run 5
times making a total of 100 runs for each of the algorithms
and the mean and standard deviation values were recorded.
Figure 1 illustrates some of our test environments with rep-
resentative obstacle patterns. We have compared the perfor-
mance of ISDC and SMDPU-T in terms of both navigation
as well as learning performance. For evaluating the naviga-
tion performance, we have reported three standard naviga-
tion metrics- planning time, total time and total distance.
Planning time refers to the cumulative time that the robot
expends in order to classify an encountered obstacle pattern
into an MDPU state and select a suitable option from the
available options for that state. Total time combines planning
time and the time taken by the robot to perform navigation

by following the recommended option. Total distance refers
to the total distance covered by the robot to reach the goal
from its start location. For assessing the comparative learn-
ing performance of ISDC, we have recorded the average ex-
pected Q-value achieved by the robot at the end of each test
case. As ISDC utilizes a reinforcement learning-based mo-
tion planning framework SMDPU-T, we believe the average
expected Q-value captures the learning performance of the
algorithm in a succinct manner.
Figure 2 illustrates the comparative navigational perfor-

mance of ISDC and SMDPU-T in the pre clustering envi-
ronments (Test cases 1 − 16). It can be observed from the
figure that just with the contribution of Fast K-NN, ISDC
performs better than SMDPU-T in terms of planning and
total time and achieves comparable total distance for ma-
jority of the test cases. From our analysis of the navigation
metrics in the pre clustering environments, we found that
ISDC on average takes 18% of planning time, 36% of total
time and 91% of total distance compared to SMDPU-T. Fig-
ure 3 illustrates the comparative navigational performance
of ISDC and SMDPU-T in the post clustering environments
(Test cases 17 − 20). It is evident from the figure that with
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Figure 4: Average expected Q-values achieved by ISDC and
SMDPU-T in (a)pre clustering environments and (b) post
clustering environments.

the combined effects of high speed clustering and classifi-
cation ISDC offers competitive advantage over SMDPU-T
with respect to planning time, total time and total distance.
From our analysis of the navigation metrics in these test
cases, we found that ISDC takes 15% planning time, 26%
total time and 74% total distance compared to SMDPU-T.
From a comparative analysis of pre clustering and post clus-
tering data, it can be observed that the combined effects of
OMP-AP clustering and Fast Approximate K-NN on aver-
age leads to 3% reduction in planning time, 10% reduction
in total time and 17% decrease in total distance covered. The
comparative learning performance of ISDC and SMDPU-T
is illustrated in Figure 4. It can be observed from the figures
that although SMDPU-T on average achieves a higher aver-
age expected Q-value, however, the differences in Q-values
between the two algorithms reduce almost consistently from
pre clustering (Test cases 1−16) to post clustering test cases
(Test cases 17− 20). It can be observed that in the latter test
cases this difference sharply reduces and ISDC eventually
achieves an average expected Q-value which is 21% higher
than SMDPU-T. From our analysis we have found that over-
all ISDC on average achieves 72% of the average expected
Q-value and achieves 86% of the same exclusively in the
post clustering test cases.

Conclusions

In this paper, we proposed a novel algorithm called Incre-
mental State Discovery Via Clustering (ISDC) which inte-
grates a fast, real-time clustering-based technique called op-
tion augmented Meta-point Affinity Propagation (OMP-AP)
and a Fast Approximate K-Nearest Neighbor (K-NN) clas-
sifier. Our experimental results validate that the combined
effects of high speed clustering and classification in ISDC
reduces the overall path planning and navigation times in the
robot along with reduced total distance and leads to eventual
improvement in its learning performance. In future we plan
to assess the performance of the ISDC algorithm on a hard-
ware robot with higher amounts of pre and post clustering
data.
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