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Abstract 
Detection of abnormal behavior is the catalyst for many ap-
plications that seek to react to deviations from behavioral 
expectations. However, this is often difficult to do when di-
rect communication with the performer is impractical. 
Therefore, we propose to create models of normal human 
performance and then compare their performance to a hu-
man’s actual behavior. Any detected deviations can be then 
used to determine what condition(s) could possibly be influ-
encing the deviant behavior. We build the models of human 
behavior through machine learning from observation; more 
specifically, we employ the Genetic Context Learning algo-
rithm to create models of normal car driving behaviors of 
different humans with and without ADHD (Attention Defi-
cit Hyperactivity Disorder). We use a car simulator for our 
studies to eliminate risk to our test subjects and to other 
drivers. Our results show that different driving situations 
have varying utility in abnormal behavior detection.  Learn-
ing from Observation was successful in building models to 
be applied to abnormal behavior detection. 

 Introduction   
Abnormal behavior is a deviation from a behavior expected 
from someone under certain assumed conditions. Humans 
detect it naturally in their daily lives, from being alert for 
suspicious persons on a dark street to assessing someone’s 
honesty. Abnormal behavior detection has also played a 
crucial role in computational applications, from detecting 
deceptive writing styles in text (Afroz, Brennan, and 
Greenstadt 2012) to identifying impending simulated car 
crashes (Stanley et. al. 2005). Thus, many abnormal behav-
ior detection applications can benefit from research in in-
forming proper behavioral expectations without being ex-
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plicitly told what proper behavior is, and in deciding when 
such expectations have been violated. This can be done 
with behavior models built by Learning from Observation. 
 Learning from Observation (LfO) is a machine learning 
approach wherein a computer system learns to emulate an 
observed performer’s behavior through nonintrusive ob-
servation alone, without any direct communication with the 
performer. This approach allows implicitly unique traits of 
a particular performer’s behavior to be captured. We hy-
pothesize that when observing an unknown performer, LfO 
models can be used to determine the condition (physical, 
mental, or emotional) most likely affecting the performer, 
such as whether the performer is behaving normally or 
under the effect of an impairing influence. The results of 
this research could be used to detect dangerous impedi-
ments in performing humans, such as fatigue when operat-
ing complex machinery. 
 In this paper, we present an approach for detecting ab-
normal behavior in a simulated car driving domain. We use 
a modified version of Genetic Context Learning (GenCL) 
(Fernlund et. al. 2006), to learn models from observation of 
different human drivers. We use our models to discrimi-
nate between behaviors by different performers, and by 
one performer under different influences, specifically med-
icated and unmedicated Attention Deficit Hyperactivity 
Disorder (ADHD). By learning the driving traits of each 
human and each ADHD condition, we seek to detect ab-
normal driving by indicating when observed behavior 
doesn’t match expectations (as expressed by the model). 
 This paper is organized as follows. First, we briefly re-
view LfO and GenCL. Then, we describe our driving do-
main, data set, and approach to creating and validating 
driving models. Finally, we test our prototype system with 
the data set compiled and discuss the results of these. Last-
ly, we present conclusions and future research directions. 
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Learning from Observation 
Learning from Observation is an intuitive approach to ma-
chine learning when the objective is learning to perform 
observable tasks. Fernlund et. al. (2006) define LfO as:  

“The agent shall adopt the behavior of the observed 
entity solely from interpretation of data collected by 
means of observation.” 

In LfO, the learning agent learns to emulate a behavior that 
it observes a human or computer-controlled performer ex-
hibit, even if that behavior is suboptimal (or even incor-
rect). This is important for capturing behavioral nuances, 
flaws, and implicit knowledge specific to the performer. 
We hypothesize that LfO-built models can capture the spe-
cific aspects of an individual’s performance and differenti-
ate between different observed behaviors. 
 A full review of the field is outside the scope of this 
paper (the interested reader is referred to (Ontañón, Mon-
taña, and Gonzalez 2014)); however, a brief discussion is 
presented here. One of the earliest LfO works was in pro-
gram synthesis by observations of program instructions 
(Bauer 1979). LfO was later adapted to learning complex 
control mechanisms for flying a simulated airplane (Sam-
mut et al. 1992) and driving a car (Sidani and Gonzalez 
2000). Other early works include learning to play air hock-
ey (Bentivegna and Atkeson 2001) and how to control a 
real car’s steering by observing the road (Pomerleau 1989). 
 More recently, LfO has been extended by several re-
searchers. Stensrud and Gonzalez (2008) learned high-
level behaviors from observation in maze navigation and in 
poker. Stein and Gonzalez (2011) bootstrapped agent 
learning with LfO for tactical tasks such as driving a car 
and controlling a crane in simulation. Trinh and Gonzalez 
(2013) identified the contexts experienced by a performer, 
to be used as input to LfO. Johnson and Gonzalez (2014) 
learned team behaviors in bucket brigade and ship pursuit 
domains. Ontañón, Montaña, and Gonzalez (2014) devel-
oped a unified LfO framework and defined the types of 
behaviors that can be learned through LfO. Floyd (2013) 
developed a general framework for LfO that could learn 
without knowledge of its task or environment. Much LfO 
research has focused on creating agents that learn to re-
place the observed performer, but little work has been done 
on using LfO agents to detect abnormal behavior, one ex-
ception being (Fernlund et. al. 2009) who evaluated trainee 
behavior with LfO agents modeled after expert tank crews. 

Genetic Context Learning 
Our chosen LfO algorithm was Genetic Context Learning 
(GenCL). The interested reader is referred to (Fernlund et. 
al. 2006) for a detailed description of GenCL, but we brief-
ly describe it here. GenCL uses genetic programming (GP) 

and Context-Based Reasoning (CxBR) to create tactical 
agents from observation.  In CxBR (Gonzalez, Stensrud, 
and Barrett 2008), agent control is divided into several 
contexts or situations where the agent exhibits behaviors in 
conformity to implicit assumptions about its environment. 
At any time, the agent is controlled by exactly one active 
context. The active context contains action knowledge, 
which controls what the agent does within that context, and 
transition knowledge, which dictates to which other con-
texts (including a default context) the agent could transi-
tion when the active context becomes irrelevant to the 
agent’s current situation. The active context can also call a 
subcontext to handle a more specialized situation. In 
GenCL, the action and transition knowledge are represent-
ed by segments of C code. These code segments are gener-
ated by GP using evolutionary algorithms (Koza 1992). 
 GenCL combines CxBR and GP by learning an action 
rule and transition rule separately for each context that 
comprises an agent. Segments of a performer’s trace where 
the performer is behaving in a specific context are used in 
the fitness function. A GP individual is evaluated by run-
ning it in a Micro Simulator, a graphic-less model of the 
driving world. For each road segment used for training in a 
given context, the individual is presented with the same 
sensory inputs the human perceived at the start of that 
segment. Then, the individual emits an output to the con-
trol mechanism. The Micro Simulator uses this output to 
update the environment and present the individual with 
new sensory inputs. This process repeats for each time step 
in the segment. At regular intervals, the deviation of the 
individual from the human at a given time step in certain 
variables (such as speed in a car driving domain) is meas-
ured and the individual’s final fitness value is the average 
deviation recorded (lower fitness values are better). 

Car Driving Domain 
GenCL was originally applied to a simple driving domain 
in an urban setting with traffic lights and turning at inter-
sections (Fernlund et. al. 2006). In that study, agents ob-
served a human driver’s actions in a simulation and learned 
to control a car’s throttle/brake. The sensory input to the 
learning agents included car speed, distance to nearest in-
tersection or traffic light, traffic light color, and Boolean 
values for impending intersection turns and traffic lights. 
Fernlund et. al. (2006) predefined a context hierarchy gov-
erning agent behavior; its contexts were Traffic Light Driv-
ing (with Green Light and Red Light subcontexts), Inter-
section Turning, and Urban Driving, the default context. 
 We expanded the work by Fernlund et. al. (2006) in two 
ways. First, they omitted rural areas, “hazardous” situa-
tions (such as another car cutting in front of the driver, 
road maintenance, etc.), and other vehicles from their 
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agents’ training. In contrast, we include those scenarios. 
Second, Fernlund et al. (2006) limited the sensory input to 
five variables, but our sensory input uses 45 variables. This 
potentially makes our learning task harder because not all 
variables will be needed for every situation and GenCL 
may be required to do feature selection in addition to learn-
ing how to combine variables to form an agent’s procedur-
al knowledge. This may also make our resulting driving 
models more complex. 
 The increased complexity of our driving domain re-
quired us to modify the context hierarchy in (Fernlund et 
al. 2006) by adding stop sign and car following contexts 
(see Figure 1). Other driving scenarios of note include con-
struction zones, hill driving, and curving turns, which are 
handled by the Default Driving context. For future work, 
we hope to use an automatic contextualization technique, 
like that in (Trinh and Gonzalez 2013), to automatically 
infer a context hierarchy for our driving agents. 

 
Figure 1: Driving domain CxBR context hierarchy 

Data Set 
As of the time of this publication, we have collected data 
from 22 ADHD and 16 non-ADHD teens via a realistic 
driving simulator. There were five driving scenarios, in-
cluding a practice drive not used for training or assessment 
of driving agents (Drive 0). Drives 1 and 2 feature rural 
driving and scenarios such as curving turns and hills. 
Drives 3 and 4 feature urban driving and scenarios such as 
turning at intersections and traffic lights. Figure 2 shows a 
snapshot of the driving simulator used by the test subjects. 
These driving scenarios featured situations with high po-
tential for driver error in beginner drivers; more details 
about the data are provided in (Ontañón et. al. 2017). 
 Our goal has been to use LfO-built models to detect ab-
normal behavior in human drivers by training agents that 
emulate human drivers under different conditions vis-a-vis 
ADHD. These agents control a car’s throttle and brake by 
treating both as one variable (brake is negative throttle), as 
was done in (Fernlund et. al. 2006). The angle of the car’s 
steering wheel was not controlled by the agent. Instead, the 
agent’s next steer value was set to that of the human driver 
when he/she was closest to the agent’s location. 

 

Figure 2: A first-person view of the driving simulation the human 
participants experienced (Drive 1) 

We created three driving agents from two humans. Agent 
Baseline (B) was modeled from a non-ADHD teen, who 
generated four traces, one per drive. Agent Medicated (M) 
was modeled from an ADHD teen after he/she had taken 
medication to control the effects of ADHD. Agent Unmed-
icated (U) was modeled after the same ADHD teen, but 
without medication. Thus, the ADHD subject generated 
two traces per drive, one with and one without medication. 
As part of our ongoing work, we will in the future train and 
analyze agents with data from all 38 participants. 
 The sensory input to our learning agents used 45 varia-
bles: 12 internal car variables (e.g., speed, acceleration, 
heading, XYZ position), 10 driving world variables (e.g., 
speed limit, distances to stop signs and impending turns, 
road slope, traffic light color), 20 variables for other cars 
(ID, XY position, relative distance/speed of closest car in 
front, behind, left, and right), cumulative distance traveled 
(2D and 3D), and simulation time. Sensory variable values 
are persistent; for example, speed limit is recorded for all 
time steps and not just when the speed limit sign is visible. 
 For a given agent, we manually selected the parts of the 
human performer’s trace that corresponded to each context 
in the hierarchy of Figure 1. These segments were used to 
train the action and transition rules for each context. Seg-
ments from Drives 1, 2, and 4 were used for training. Drive 
3, the only drive with both intersection turns and traffic 
lights, was reserved as a validation drive to assess the 
agent’s generalization capabilities, except for three inter-
section turning segments from Drive 3, because no other 
drive had intersection turns. In future work, we plan to use 
an automated contextualization tool, (see (Trinh and Gon-
zalez 2013)), to assign trace segments to each context. 

Assessment 
This section describes how we evaluated the goodness of 
our agents after training and then how we used them to 
determine whether a driver’s behavior was abnormal. 
 We measured the effectiveness of agent learning through 
speed RMS error. To see how well a trained agent learned 
its human counterpart’s driving behavior, we simulated the 
agent over each of its training segments and compared its 
behavior to the trace used to train it. Then, we computed 
the speed RMS error (meters/second) for each training 
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segment. Finally, the average of all speed RMS errors of 
segments for a given context was calculated for each con-
text, both unweighted and weighted by segment time dura-
tion. Low speed RMS errors indicate successful learning. 

We used our agents to detect abnormal driving in an 
observed driving segment, given an assumed condition (i.e. 
Baseline, Unmedicated, or Medicated), by 1) initializing 
our agents with the sensory input of the human at the start 
of the segment, then 2) generating a trace for each agent 
(B, U, and M – described in the “Data Set” section) for the 
duration of the human’s operation in this segment, and 
finally, 3) labeling the influencing condition of the ob-
served behavior as that of the agent with the lowest speed 
RMS error when its trace is compared to the observed be-
havior. Therefore, abnormal behavior in the scope of this 
work is defined as follows: “Given an observed behavior 
and an assumed condition of influence, the behavior is 
abnormal if it is more similar to the behavior of a driving 
model of a different condition than it is to that of the model 
with the assumed condition.” 
 For example, let us initially assume that a driver with 
ADHD has taken his/her medication. During specific driv-
ing situations (e.g. approaching a car from behind), the 
Unmedicated and Medicated ADHD agents, trained a pri-
ori from this driver’s behavior while under these condi-
tions, will generate traces indicative of what he/she would 
do in this situation. After the situation has concluded, these 
agents’ traces will be compared to what the human just did 
in this situation via the speed RMS error. If the Medicated 
agent has the lower speed RMS error, then the human’s 
behavior is “normal”. Otherwise, the human’s behavior is 
deemed more similar to unmedicated driving, which is 
indicative of abnormal behavior in violation of our initial 
assumption of “medicated driving”; that could indicate that 
either the medication is wearing off or the human forgot to 
take it before driving. If the same diagnosis is made for 
several observed segments, then proper action can be taken 
(e.g., notifying the driver and/or his or her guardian). 

Results
Table 1 contains the context-specific speed RMS errors for 
agents B, U, and M, for all contexts in Figure 1, except 
subcontexts. Across all agents, the Car Following context 
had relatively high RMS errors while the Traffic Light and 
Intersection Turning contexts had relatively low RMS er-
rors. Overall, RMS errors seem low, but accumulating er-
rors over time may hamper agent utility in abnormal be-
havior detection.  Generally, agents adequately learned the 
high-level speed trends of their human trainer but tended to 
“smooth” out the low-level irregularities observed in their 
human trainer’s behavior, as seen in Figure 3. In agent con-
trol applications, this smoothing out is desirable, but this 

loss of information may be detrimental to abnormal behav-
ior detection when the abnormal actions are of short dura-
tion and smoothed over. 

Table 1: Learning Effectiveness Results 

 

Figure 3: Car Following segment comparing speed over time for 
medicated ADHD human and agent M 

To show how our agents detect abnormal behavior, we 
used our agents to classify the driving behavior of each 
training segment as either Baseline, Unmedicated, or Med-
icated driving. For each segment, the squared speed devia-
tions used to compute the lowest and second lowest speed 
RMS errors by the agents were compared with a one-tailed 
t-test (α = 0.05) to determine statistical significance. A 
correct prediction was a “success” if it had statistical sig-
nificance; otherwise, it was a “partial success”. An incor-
rect prediction was a “failure”, but if the second lowest 
speed RMS error by the agents was modeled after the actu-
al behavior and the difference in speed deviations had no 
statistical significance, it was only labeled a “partial fail-
ure”. Tables 2-4 show success/failure frequencies for Base-
line, Unmedicated, and Medicated driving, respectively. 
 For Baseline driving (Table 2), Intersection Turning had 
the highest success rate (100%), followed by the Stop Sign 
context (71%). In contrast, Default Driving had the highest 
failure rate (19%), followed by Traffic Light (14%). Traf-
fic Light also had the highest combined partial suc-
cess/failure rate (44%), which is indicative of a high pro-

Agent Context # Segs Speed RMS 
Unweighted 

Speed RMS 
Weighted 

B 

Car Foll. 14 1.655 1.800 
Intersect. 3 0.993 0.943 
StopSign 7 1.589 1.697 
Traffic 7 1.189 1.248 
Default 16 1.440 1.631 

U 

Car Foll. 15 1.545 1.643 
Intersect. 3 0.754 0.787 
StopSign 7 1.185 1.185 
Traffic 7 0.606 0.627 
Default 15 1.765 1.751 

M 

Car Foll. 11 1.266 1.303 
Intersect. 3 1.023 1.027 
StopSign 6 1.110 1.200 
Traffic 7 0.694 0.693 
Default 20 0.777 0.830 
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pensity for diagnostic uncertainty if the behavior is Base-
line driving. Therefore, Stop Sign and Intersection Turning 
seem to be the best contexts for detecting Baseline driving. 

Table 2: Classified Driving Accuracy, Baseline 

 
Table 3: Classified Driving Accuracy, Unmed. ADHD 

 
Table 4: Classified Driving Accuracy, Med. ADHD 

 
For Unmedicated ADHD driving (Table 3), Traffic Light 
and Intersection Turning had 100% success rates. Default 
Driving had the highest failure rate (53%), followed dis-
tantly by the Stop Sign context (14%), which also had the 
greatest combined partial rate (43%). Therefore, Intersec-
tion Turning and Traffic Light seem to be the best contexts 
for detecting Unmedicated driving. 
 For Medicated ADHD driving (Table 4), Intersection 
Turning again had the highest success rate (100%), fol-
lowed by Traffic Light (86%) and Default Driving (75%). 
However, Default Driving also had the highest failure rate 
(25%), which indicates that Medicated driving is best de-
tected by Traffic Light and Intersection Turning. 
 Overall, Intersection Turning seems to be the best pre-
dictive context across all behaviors. The Traffic Light and 
Stop Sign contexts also had moderate to high success. In 
contrast, our agents had greater difficulty properly classify-
ing segments from the Car Following and Default Driving 
contexts. These two contexts also had the most training 
segments. This may indicate a need to divide these con-
texts into finer, more specialized contexts to detect subtler 
forms of abnormal driving. 
 To further our understanding of which contexts can as-
sist abnormal behavior detection, we present the confusion 

matrices for behavior classification in Table 5 for all con-
texts except Intersection Turning, which had 100% success 
for all behaviors. Overall, Baseline driving was approxi-
mately equally confused with Unmedicated and Medicated 
driving. However, it is most often confused with Medicat-
ed driving for Default Driving segments and with Unmedi-
cated driving for Traffic Light segments. Overall, Unmedi-
cated driving was most often confused with Medicated 
driving because of two segments in the Stop Sign context; 
it had equal confusion with Baseline and Medicated driv-
ing in all other contexts. Overall, Medicated driving was 
most often confused with Unmedicated driving; Car Fol-
lowing had the most segments (four) that confused Medi-
cated driving with Unmedicated driving. 

Table 5: Context-Specific Confusion Matrices 

 
These results align with the intuition that comparing be-
haviors from different humans (Baseline versus Unmedi-
cated or Medicated) will produce less confusion than com-
paring behaviors from the same person under different 
conditions (Unmedicated versus Medicated). In particular, 
Default Driving had the most confused segments, while 
Intersection Turning had the least. Some confusion will be 
inevitable in abnormal behavior detection, particularly in 
situations where only one reasonable action is possible 
(e.g. brake hard or crash). Thus, future work will focus on 
determining how many segments must be observed in 
which contexts before a confident diagnosis can be made. 
 Our results show that our chosen contexts have varying 
utility in abnormal behavior detection. In contexts like In-
tersection Turning, different behaviors are discernible and 
abnormal behavior can be detected relatively easily. In 
contexts like Default Driving, this task is harder and more 
specialized contextualization may be needed to detect sub-
tler driving abnormalities. In the end, we have shown suc-
cess in discerning different behaviors in abnormal behavior 

Context Success Part. Suc. Part. Fail. Failure 
Car Follow 9 (64%) 4 (29%) 0 1 (7%) 

Intersect 3 (100%) 0 0 0 
Stop Sign 5 (71%) 0 2 (29%) 0 

Traff Light 3 (43%) 2 (29%) 1 (14%) 1 (14%) 
Default 10 (63%) 2 (13%) 1 (6%) 3 (19%) 
Overall 30 (64%) 8 (17%) 4 (9%) 5 (11%) 

Context Success Part Suc Part Fail Failure 
Car Follow 9 (60%) 2 (13%) 2 (13%) 2 (13%) 

Intersect 3 (100%) 0 0 0 
Stop Sign 3 (43%) 2 (29%) 1 (14%) 1 (14%) 

Traff Light 7 (100%) 0 0 0 
Default 7 (47%) 0 0 8 (53%) 
Overall 29 (62%) 4 (9%) 3 (6%) 11 (23%) 

Context Success Part Suc Part Fail Failure 
Car Follow 6 (55%) 1 (9%) 3 (27%) 1 (9%) 
Intersection 3 (100%) 0 0 0 
Stop Sign 4 (67%) 1 (17%) 1 (17%) 0 

Traff Light 6 (86%) 0 1 (14%) 0 
Default 15 (75%) 0 0 5 (25%) 
Overall 34 (72%) 2 (4%) 5 (11%) 6 (13%) 

Context Actual 
Behavior 

Predicted Behavior 
Baseline Unmedic Medic 

Car Fol-
lowing 

Baseline 13 1 0 
Unmedic 2 11 2 
Medicat. 0 4 7 

Stop Sign Baseline 5 1 1 
Unmedic 0 5 2 
Medicat. 0 1 5 

Traffic 
Light 

Baseline 5 2 0 
Unmedic 0 7 0 
Medicat. 0 1 6 

Default 
Driving 

Baseline 12 1 3 
Unmedic 4 7 4 
Medicat. 3 2 15 

Overall - 
All  

Contexts 

Baseline 38 5 4 
Unmedic 6 33 8 
Medicat. 3 8 36 
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detection, specifically regarding ADHD, and we have be-
gun to identify in which contexts abnormal driving is likely 
to occur. This indicates great promise in general detection 
of abnormal driving behavior in humans from observation 
of specific driving situations using context-based LfO.  

Conclusion 
Abnormal behavior detection is important in many compu-
tational applications, such as determining an unknown per-
son’s identity or whether he or she is under the influence of 
a specific condition. LfO is an intuitive approach for cap-
turing implicit traits that inform behavioral expectations. 
We used Genetic Context Learning to train driving agents 
that emulate observed human drivers’ behavior in a simula-
tion. We modeled agents after baseline non-ADHD, medi-
cated ADHD, and unmedicated ADHD drivers, and used 
them to detect abnormal driving behavior in humans.  
 Our results show that abnormal behavior detection can 
be used to distinguish between behaviors by different hu-
man drivers and by one human under medicated and un-
medicated ADHD in the Intersection Turning context and 
to a lesser degree in the Traffic Light and Stop Sign con-
texts. Abnormal driving was relatively harder to detect in 
the Default and Car Following contexts, which indicates a 
need for finer contextualization to detect subtler abnormal 
driving in these situations. Overall, a context-based LfO 
approach shows great promise in detecting general abnor-
mal driving in humans of varying internal influence. 
 For future work, we plan to investigate how to use 
agents enabled with transition knowledge to allow a com-
parison over an entire trace rather than context-by-context; 
automatically contextualize human traces for more special-
ized context hierarchy inputs as done in (Trinh and Gonza-
lez 2013) as well as to eliminate the need for the extensive 
manual data preparation required in this work so far; and 
allow agents to use memory of past events in abnormal 
behavior detection to better emulate human performance. 
We also plan to develop metrics that detect abnormal be-
havior in real-time and to investigate which traits of ab-
normal behavior are generalizable across different human 
drivers with the same internal influence, such as ADHD. 
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