
Alert Generation in Execution Monitoring Using Resource Envelopes

T. K. Satish Kumar
tkskwork@gmail.com

Hong Xu
hongx@usc.edu

Zheng Tang, Anoop Kumar, Craig Milo Rogers, Craig A. Knoblock
{zhengtan, anoopk, rogers, knoblock}@isi.edu

Information Sciences Institute, University of Southern California,
Marina del Rey, California 90292, USA

Abstract

A simple temporal network (STN) can often be used to repre-
sent the flexibility in the execution of a plan. Nodes represent
the execution times of actions and directed edges represent
constraints between them. An STN with resources (STNR) is
an STN in which each node is associated with production or
consumption levels of resources. The upper (lower) resource
envelope of an STNR is the maximum (minimum) accumu-
lated resource levels at every time instant over all possible
executions. In this paper, we discuss the usefulness of re-
source envelopes in the context of execution monitoring. We
show that they can be used in a tractable framework for for-
ward projection of world states during plan execution. This
allows an execution monitor to recognize depletion of re-
sources early and to generate alerts with large look-aheads. It
also supports retasking by enabling “what-if reasoning” dur-
ing plan execution.

Introduction

An agent that intends to achieve certain goal conditions in an
interactive environment is really involved in a game against
nature and other agents constituting that environment. In this
game-theoretical setting, the agent is required to take an ac-
tion in response to every situation it finds itself in. In other
words, the agent needs to design a policy for achieving its
goal conditions (Russell and Norvig 2009, Chap. 17). How-
ever, policy generation, in general, is computationally very
hard; and therefore, the agent often benefits from making
certain assumptions about the environment.

Automated planning techniques are used to focus on the
agent’s ability to compose individual actions into a goal-
achieving sequence of actions (in a relatively simplified
model of the environment). Compared to policy generation,
plan generation is easier but is still PSPACE-hard (Russell
and Norvig 2009, Chap. 11). The state-of-the-art automated
planners in fact use a plethora of different heuristics and
other algorithmic techniques (Ghallab, Nau, and Traverso
2004). Although research in automated planning has ad-
dressed richer models of the environment, the focus is still
on the capability of the planning agent but not on the game-
theoretical strategies of nature or other agents.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Because automated planning focuses on plan generation
using certain assumptions on the environment, it is imper-
ative for us to remove these assumptions in the concomi-
tant problem of execution monitoring. In particular, a plan
generated by the planning algorithm may not lead to the in-
tended outcome when executed. For example, if there are
exogenous factors that were not considered by the planning
algorithm, the plan execution could fail or not lead to the
intended outcome. This emphasizes the importance of exe-
cution monitoring despite the fact that it is not as well stud-
ied as automated planning (Pettersson 2005). In execution
monitoring, the agent gathers partial observations from the
environment while it executes the plan. The intention is to
make sure that the observations made during plan execution
do not invalidate the feasibility of the remaining plan.

At any point of time during execution, if the remaining
plan is close to becoming infeasible, an alert has to be raised
to invoke retasking or replanning. Retasking adjusts the cur-
rent plan within the space of the same causal interactions
between its actions. If retasking options are not available,
or the remaining plan is conclusively infeasible, replanning
is invoked. Replanning is significantly more expensive than
retasking, and therefore, intelligent alert generation is im-
portant for minimizing the number of times that replanning
is invoked. This in turn contributes to the successful integra-
tion of automated planning and execution monitoring.

Intelligent alert generation requires a forward projection
of the current world state into all possible future world
states. This look-ahead is important in the same sense
that forward checking is important in constraint satisfac-
tion (Dechter 2003). If all future world states are invalidated
by the observations made so far, a strong alert is generated
to invoke replanning. If a subset of the world states is inval-
idated by the observations made so far, a weak alert is gen-
erated to invoke retasking. In either case, computing all fu-
ture world states for a certain look-ahead is computationally
expensive since the number of such future world states can
be exponentially large in the length of the look-ahead. This
typically limits the look-ahead that can be used for alert gen-
eration in execution monitoring. Therefore, the infeasibility
of the plans is not recognized early enough to take remedial
measures.

The flexibility in the execution of a plan can often be rep-
resented by a simple temporal network (STN), where nodes

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

38

X0 : 0

X1 : 50 X2 : −50

X3 : 250

X4 : −150

[5,10]

[5,8]

[10,10]

[2,4]

[5,10]

Figure 1: Shows an example of an STNR. Each square is a
node. The labels X0, X1, X2, X3 and X4 represent events,
and the numbers after them indicate their resource levels.
Each directed edge represents a simple temporal constraint
specified using a lower and an upper bound. For example,
X1 and X2 are connected by a directed edge that encodes
the simple temporal constraint 5 ≤ τ(X2)− τ(X1) ≤ 8.

Figure 2: Shows the resource envelope of the STNR in Fig-
ure 1. The solid line shows the upper resource envelope and
the dashed line shows the lower resource envelope. (At some
time instants, the upper and lower bounds are equal, and are
thus indicated together by the solid lines.)

represent the execution times of actions and directed edges
represent constraints between them. In such a framework,
we introduce the idea of resource envelopes to do forward
projection of world states in polynomial time using a re-
duction to maxflow (Kumar 2003). This allows an execution
monitor to recognize depletion of resources early and to gen-
erate alerts with large look-aheads. It also supports retasking
by enabling “what-if reasoning” during plan execution.

Informally, given a set of events that produce or consume
resources and the time constraints between these events (i.e.,
a plan), the upper and lower resource envelopes describe the
highest and lowest possible total resource levels at each time
instant over all possible executions of the plan. In this paper,
we show how to apply resource envelopes for alert genera-
tion in various application domains, such as task scheduling
in smart homes, food delivery systems, and system and ser-
vice management.

Background and Formalization

The STN, first proposed in (Dechter, Meiri, and Pearl 1991),
is a graphical representation of a collection of simple tem-
poral constraints between the execution times of various
events. It is popularly used in temporal reasoning for ex-
pressing fairly rich quantitative constraints while also being
able to solve them in polynomial time. Autonomous space

exploration (Knight et al. 2001), domestic activity man-
agement (Pecora and Cirillo 2009) and job scheduling on
servers (Ji, He, and Cheng 2007) are just a few applications
of STNs.

Formally, an STN S is defined on a directed graph G =
〈X , E〉, where X = {X0, X1, . . . , Xn} is the set of nodes
representing events and E is the set of directed edges be-
tween them representing simple temporal constraints. A
schedule τ is a function that maps each node to a time
instant at which the corresponding event should be exe-
cuted. For any schedule τ , τ(X0) is set to 0 by conven-
tion to establish a frame of reference. Each directed edge
eij = (Xi, Xj) ∈ E is associated with a pair of non-negative
real numbers [LB(eij), UB(eij)], representing the simple
temporal constraint LB(eij) ≤ τ(Xj)−τ(Xi) ≤ UB(eij).
A schedule is said to be consistent iff it satisfies all con-
straints given by the edges in E . For a given STN S, the
corresponding simple temporal problem (STP) is to find a
consistent schedule for S if it exists. Throughout this paper,
let T (S) be the set of all consistent schedules of S.

An STN with resources (STNR) is defined as an STN
in which each node X ∈ X is associated with a resource
level r(X). r(X) is a real number that represents “how
much X affects the resource”: If r(X) is positive, X is a
producer in P and generates r(X) amount of the resource
upon execution; if r(X) is negative, X is a consumer in
C and depletes −r(X) amount of the resource upon exe-
cution; if r(X) is zero, it does not change the amount of
the resource. r(X0) is always assumed to be zero. Figure 1
shows an example of the STNR. The total resource level
R(t, τ) of a consistent schedule τ at a specific time instant
t is defined as the sum of all resource levels of all events
that have been executed no later than t as specified by τ , i.e,
R(t, τ) =

∑
X∈{X′|τ(X′)≤t} r(X).

The upper (lower) resource envelope of an STNR is the
maximum (minimum) accumulated resource levels at ev-
ery time instant considering all possible executions. For-
mally, it is defined as follows. We first define the upper
bound RU (t) (and lower bound RL(t)) of the total resource
level at a certain time instant t of a given STNR as the
highest (and lowest) total resource levels over all consistent
schedules, i.e., RU (t) = maxτ∈T (S) R(t, τ) (and RL(t) =
minτ∈T (S) R(t, τ)). We call the functions RU (·) and RL(·)
of an STNR as its upper and lower resource envelopes, re-
spectively. The resource envelope problem on an STNR is
to compute its upper and lower resource envelopes (Kumar
2003). Figure 2 shows a simple example.

Computing Resource Envelopes

In this section, we review how to construct the upper and
lower resource envelopes RU and RL of an STNR (Kumar
2003). The lower resource envelope RL can be constructed
using a procedure for constructing the upper resource enve-
lope RU by switching the roles of producers and consumers.
Therefore, we only show the construction of the upper re-
source envelope RU . Algorithm 1 shows how to compute
the upper bound RU (t) of the total resource level at time in-
stant t. This algorithm runs in polynomial time since it can

39

Algorithm 1: Compute the upper bound for a given
STNR at a specific time instant t.

1 Function UPPER-ENVELOPE-AT-T(S, t)
Input: An instance of the resource envelope problem

on an STNR S.
Input: A time instant t.
Output: The upper bound RU (t) at time instant t.

2 • Construct the distance graph D(S) on the nodes of S
as follows:

3 for each edge e = 〈Xi, Xj〉 ∈ E do
4 Add 〈Xi, Xj〉 annotated with UB(e);
5 Add 〈Xj , Xi〉 annotated with −LB(e);

6 Let dist(Xi, Xj) denote the length of the shortest
path from Xi to Xj in D(S);

7 • Build a vertex-weighted directed graph E(S) as
follows:

8 The vertices of E(S) correspond to events in
P ∪ C;

9 The weight on a vertex Xi is set to |r(Xi)|;
10 for each Xp ∈ P and Xc ∈ C do
11 if dist(Xp, Xc) ≤ 0 then
12 Add a directed edge 〈Xp, Xc〉;

13 • Construct a graph M(S) from E(S) as follows:
14 Remove a production node Xp ∈ P and all its

incident edges iff t+ dist(Xp, X0) < 0;
15 Remove a consumption node Xc ∈ C and all its

incident edges iff dist(X0, Xc)− t < 0;

16 Compute Q = {u1, u2, . . . , uk} as the largest
weighted independent set in M(S);

17 return
RU (t) :=

∑
yi∈P∩Q |r(yi)| −∑

yi∈C\Q |r(yi)|;

be reduced to computing maxflow on bipartite graphs. Al-
gorithm 2 shows how to construct the entire upper resource
envelope RU . This algorithm also terminates in polynomial
time since it only makes a linear number of calls to Algo-
rithm 1. The upper resource envelope RU is a piecewise con-
stant function with a linear number of discontinuities. The
proof for the correctness of these two algorithms has been
shown in (Kumar 2003).

Application in the Smart Home Domain

In this section, we present a running example from the smart
home domain (van den Briel, Scott, and Thibaux 2013;
Kumar et al. 2018). Here, an intelligent scheduler first elic-
its user-specified constraints for when to run various appli-
ances. It then provides a schedule that tries to satisfy these
constraints and resolve various resource contentions. Fig-
ure 3 shows an example. Here, the washer can run anytime
between 30 and 35 minutes, after which the dryer runs be-
tween 45 and 50 minutes. The dryer starts running between
5 and 30 minutes after the washer stops. The refrigerator
should be running for the entire day, except for a break of
less than 40 minutes. The rice cooker runs between 20 and
30 minutes and must finish cooking before the dinner time,
e.g., 6:00pm, and after a certain time to keep the cooked food
fresh, e.g., 5:00pm. The dishwasher runs between 50 and

Algorithm 2: Compute the upper resource envelope
for a given STNR.

1 Function UPPER-ENVELOPE-ALL-T(S)
Input: An instance of the resource envelope problem

on an STNR S.
Output: RU of S.

2 for each Xp ∈ P do
3 Insert −dist(Xp, X0) into list L;

4 for each Xc ∈ C do
5 Insert +dist(X0, Xc) into list L;

6 Sort L in ascending order 〈d1, d2, . . . , d|L|〉;
7 for i = 1, 2, . . . , |L| − 1 do
8 RU (di) := UPPER-ENVELOPE-AT-T(S, di);
9 RU (t) := RU (di) for all t ∈ [di, di+1);

10 RU (t) := R(d|L|) for all t ∈ [d|L|,+∞);
11 RU (t) := 0 for all t ∈ [0, d1);
12 return RU ;

70 minutes and should start after dinner time, e.g., 8:00pm,
but before the end of the day. The water heater boils wa-
ter between 40 and 45 minutes and must finish boiling (thus
producing a certain amount of hot water) before any of the
washer, the dishwasher or the rice cooker starts running. All
appliances use electricity when they are running and the to-
tal electricity power is limited. The washer, the dishwasher,
and the rice cooker also use hot water as a resource.

For a planner or scheduler that generates the flexible
schedule in Figure 3, the execution monitor can construct
the upper and lower resource envelopes for it as shown in
Figure 4a. If certain exogenous information such as an elec-
trical power limit of 1350 watts becomes available only at
execution time, the execution monitor can use the lower re-
source envelope and generate an alert. In particular, it can
inform the planner or scheduler that there exists a schedule
with a total demand of electrical power greater than the elec-
trical power limit within the time interval [1200,1440]. The
planner or scheduler can then “retask” the schedule and con-
strain it further using the temporal constraint indicated by
the dashed line in Figure 3. The upper and lower resource en-
velopes are recomputed by the execution monitor as shown
in Figure 4b. Since the lower resource envelope is above the
electrical power limit, no alert is generated until new exoge-
nous information becomes available at execution time.

Application in the Food Delivery Domain

One potential application of resource envelopes is in the
food delivery domain. In recent years, thanks to the emer-
gence of Internet-based food delivery services, the food de-
livery industry has grown fast and is expected to continue
to grow (Pigatto et al. 2017; Bajaj and Mehendale 2016).
Most food delivery companies, such as GrubHub and deliv-
ery.com, follow the traditional strategy for delivering, i.e.,
they first take orders from customers and then deliver food
to them. However, this traditional strategy often necessitates
customers to wait for a long period of time after they place
their orders.

40

X0 (0,0)

Heater starts
(-400,0)

Heater ends
(400,300)

Washer starts
(-500,-70)

Washer ends
(500, 0)

Dryer starts
(-600, 0)

Dryer ends
(600, 0)

Refrigerator starts
(-100,0)

Refrigerator ends
(100,0)

Refrigerator starts
(-100,0)

Refrigerator ends
(100,0)

Rice Cooker starts
(-100,-3)

Rice Cooker ends
(100,0)

Dishwasher starts
(-1200,-100)

Dishwasher ends
(1200,0)

Xf (0,0)

[0,+∞
]

[30,35]
[5,30]

[45,50]
[0,+∞

]

[0,0]

[0
,+

∞
]

[0
,4

0]
[0

,+
∞

]

[0,+∞]

[20,30]

[1020,1080]

[0,+∞
]

[50,70]

[0,+∞]

[0,240]

[0,0]

[0
,+
∞]

[40,45]

[0
,+
∞][0,+∞

]

[0,+∞]

[0,+∞]

Figure 3: Shows the STNR representing an example appli-
cation instance in the smart home domain. The meanings
of the symbols are similar to those in Figure 1, except that
each node is associated with two different types of resources
(electrical power in watts and hot water in liters) as shown
inside the braces in it. The bounds in the temporal con-
straints are in minutes. X0 represents the beginning of the
day, i.e., 12:00am. Xf represents the end of the day, i.e., the
very moment before 12:00am of the next day. An implicit
temporal constraint between X0 and Xf (with both upper
and lower bounds being 1440, the number of minutes in a
day) is omitted in the figure. The temporal constraint repre-
sented by the dashed line indicates how the schedule should
be further constrained in recognition of an alert generated by
resource envelopes as shown in Figure 4.

To avoid long waiting times, a new real-time food de-
livery strategy has recently emerged. In this new strategy,
food delivery cars roam the neighborhoods of a city, carry-
ing popular menu items in anticipation of nearby customers
placing orders. When an order is placed, a nearby driver car-
rying this menu item is assigned to deliver it. This proac-
tive strategy achieves shorter waiting times. A real-world
example is Uber’s “instant delivery” service (Dave 2016;
van Grove 2016).

Despite the arguments in favor of this new strategy, prac-
tical issues have rendered it unviable. For example, Uber’s
“instant delivery” service did not last long (Said 2016;
Sidman 2016). In this section, we propose the use of re-
source envelopes to be used in a hybrid strategy that com-
bines the traditional and proactive real-time food delivery
strategies.

We assume that a fraction of the customers order food be-
fore the food delivery cars are en route. We refer to these
orders as pre-orders. Orders placed by the rest of the cus-
tomers when the food delivery cars are en route are referred
to as post-orders. For pre-orders, a central planner makes an
individual plan for each car. These plans are susceptible to

(a) The upper and lower resource envelopes of electrical power
consumption without the dashed line temporal constraint in Fig-
ure 3.

(b) The upper and lower resource envelopes of electrical power
consumption with the dashed line temporal constraint in Figure 3.

Figure 4: Shows the resource envelopes for the example in
Figure 3. The meanings of the symbols are similar to those
in Figure 2. We assume that the total electrical power limit
is 1350 watts.

exogenous factors such as traffic conditions, but are also re-
quired to adhere to customer satisfaction requirements. Due
to such exogenous factors, there are simple temporal con-
straints between pickup and delivery events in each individ-
ual plan. To satisfy post-orders, nearby cars should be able
to deviate from their current individual plans. This food de-
livery strategy therefore calls for a forward projection of the
current world state to identify imminent shortages of popular
menu items in individual cars. For this reason, we propose
the use of resource envelopes to monitor the amount of food
in each car in the context of its current plan and nearby post-
orders.

Specifically, we model the individual plan of each car
as an STNR. In such an STNR, each pickup and delivery
event is a node. The change in the amount of popular menu
items in the car during a pickup or delivery event is the re-
source level associated with the corresponding node in the
STNR. In this model, monitoring the amount of popular
menu items in each car can be done by computing the re-
source envelopes.

Figure 5 shows an example in the food delivery domain.
r1 and r2 represent restaurants’ locations where pickup
events occur and c1, c2, . . . , c6 represent customers’ loca-
tions where delivery events occur. If the food delivery car
does not have to cater to any post-orders, the best path for
it is [r1, c1, c2, c3, r2, c4, c5, c6]. The corresponding resource

41

r1 c1 c2 c3

c6 c5 c4 r2

Figure 5: Shows a food delivery example. The grid repre-
sents a street network. Each horizontal and vertical edge has
a unit length. The car is represented by the dark circle and
is initially located at the bottom-left corner. We assume that
the car takes 1 to 2 time units to traverse 1 unit length. r∗ and
c∗ are the locations of pickup events (restaurants) and deliv-
ery events (customers), respectively. r1 has a production of
4 and r2 has a production of 5. All c∗’s have a production of
-1.

envelopes are shown in Figure 6a. However, in anticipation
of post-orders, if we require the car to hold at least 2 units
of menu items after its first pickup event, this path would
exhibit the risk of being low on the amount of menu items in
the time interval [4,10]. Nonetheless, if the planner adjusts
the path to be [r1, c1, c2, r2, c3, c4, c5, c6], the corresponding
resource envelopes, as shown in Figure 6b, indicate that this
new plan would not exhibit this risk.

Application in Service Management Domain

Another potential application of resource envelopes is in
scheduling and managing services during the startup of op-
erating systems. Typically, when an operating system boots,
it starts a set of programs, called services, that persistently
wait for and process incoming requests, but mostly remain
idle in the background. During system boot, starting a ser-
vice uses some resources such as CPU cores, RAM and ex-
ternal equipment, and may also depend on the availability of
other services. For example, let us suppose that starting ser-
vice A depends on the availability of service B: A could be
a web server and B could be a database management system
that allows SQL queries via a socket connection; or, A could
depend on the availability of files in a partition of the disk,
which is made available by a filesystem mounting service B.

In modern system and service managers, such as sys-
temd (Poettering, Sievers, and Others 2017), to achieve a
fast system boot, this dependency is often not required to be
strictly chronological. In the first previous example, when
A is a web server and B is a database management system,
both A and B can start simultaneously. But this can lead to
a situation where A needs to send an SQL query to B while
B is still not ready to process the SQL query. In such a sit-
uation, the system and service manager can buffer the SQL
query and forward it to B after B is ready. In the second pre-
vious example, when A depends on B for a disk partition,
once again, A and B can start simultaneously. But, here too,
A may need to access files before B finishes mounting that
disk partition. In such a situation, the system and service
manager can suspend A temporarily until B mounts the disk
partition.

Although dependencies are not strictly chronological,
they need to respect some temporal constraints. Typically

(a) The upper and lower resource envelopes of the amount of
menu items in the car from the example in Figure 5 for the path
[r1, c1, c2, c3, r2, c4, c5, c6].

(b) The upper and lower resource envelopes of the amount of
menu items in the car from the example in Figure 5 for the path
[r1, c1, c2, r2, c3, c4, c5, c6].

Figure 6: Shows the resource envelopes for two different
paths of the car from the example in Figure 5. The mean-
ings of the symbols are similar to those in Figure 2.

these constraints are simple temporal in nature. Continuing
the first previous example, A itself may report a timeout er-
ror if its waiting time for a response to the SQL query from
B exceeds a limit. Continuing the second previous exam-
ple, A may report a file IO error if its waiting time to ac-
cess the file exceeds a limit. These timeout constraints can
be modeled as simple temporal constraints. Violating these
constraints leads to failure of starting services.

In this application domain, there are two types of con-
straints: (a) the simple temporal timeout constraints and (b)
the resource capacity constraints such as CPU cores, RAM
and access to external equipment. Both temporal and re-
source constraints must be satisfied for a successful system
boot. Resource envelopes can be used to analyze the interac-
tions between temporal and resource constraints. The impli-
cation of tightening or relaxing a temporal constraint on the
resource requirement can be quickly quantified. This allows
informed strategies of scheduling. For example, in Figure 7,
an examination of the lower envelope allows us to recognize
the risk of not having enough CPU cores in the time interval
[15,45]. An intelligent way to resolve this risk is to postpone
the starting time of A and B to some time after C begins.

Conclusions and Future Work

In this paper, we formalized the STNR, a combinatorial
structure that allows us to jointly reason about the temporal

42

X0 : 2

A1 begins : -1

A1 ends : 1

A2 begins : -1

A2 ends : 1

B1 begins : -1

B1 ends : 1

B2 begins : -1

B2 ends : 1

C begins : -1

C ends : 1

Xf

[0,+∞
] [0,+∞]

[0,+∞
]

[15,15]
[0,10]

[2
0,

20
]

[0
,1

0]

[40,40]

[0,+∞
] [0,+∞]

[10,10] [1
5,

15
]

[0,+∞] [0,+∞
]

Figure 7: Illustrates an STNR modeling a system boot sce-
nario. In this scenario, services A and B depend on service
C. Both A and B require connection to C at some time in-
stants while starting. We refer to the segments of A/B before
and after the connection as A1/B1 and A2/B2, respectively.
The beginning of A2 and B2 would depend on C. A1, B1

and C terminate within fixed time spans. The whole system
boot must finish in 60 time units (this temporal constraint be-
tween X0 and Xf is not shown in the figure). The resource
is the two CPU cores available at the beginning. The upper
panel shows the STNR and the bottom panel shows the cor-
responding resource envelopes.

aspects of a plan as well as the resource profiles of its indi-
vidual actions. We then defined the problem of computing
the upper and lower resource envelopes for a given STNR.
We reviewed the algorithms that compute upper and lower
resource envelopes for STNRs. We used the polynomial-
time algorithms for computing these resource envelopes for
alert generation with look-aheads. This enables early detec-
tion of failures in execution monitoring and therefore pro-
vides more time for retasking or replanning. We demon-
strated the usefulness of resource envelopes in many appli-
cation domains, including the smart home domain, the food
delivery domain, and the service management domain. In fu-
ture work, we intend to use resource envelopes in interleaved
planning and scheduling and in an integrated framework for
planning and execution monitoring.

Acknowledgment This material is based upon work sup-
ported by the Air Force Research Laboratory (AFRL) and
the Defense Advanced Research Projects Agency (DARPA)
under Contract No. HR0011-15-C-0138. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the official views or policies of the Department of
Defense or the U.S. Government.

References
Bajaj, K., and Mehendale, S. 2016. Food-delivery start-ups : In
search of the core. Prabandhan: Indian Journal of Management
9(10):42–53.
Dave, P. 2016. UberEats launches in Los Angeles, aiming to suc-
ceed where others have failed. Los Angeles Times March 15.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49(1–3):61–95.
Dechter, R. 2003. Constraint Processing. Morgan Kaufmann, 1st
edition.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Planning:
Theory and Practice. Morgan Kaufmann, 1st edition.
Ji, M.; He, Y.; and Cheng, T. 2007. Single-machine scheduling
with periodic maintenance to minimize makespan. Computers &
Operations Research 34(6):1764–1770.
Knight, S.; Rabideau, G.; Chien, S.; Engelhardt, B.; and Sherwood,
R. 2001. Casper: space exploration through continuous planning.
IEEE Intelligent Systems 16(5):70–75.
Kumar, T. K. S.; Wang, Z.; Kumar, A.; Rogers, C. M.; and
Knoblock, C. A. 2018. Load scheduling of simple temporal net-
works under dynamic resource pricing. In the AAAI Conference on
Artificial Intelligence.
Kumar, T. K. S. 2003. Incremental computation of resource-
envelopes in producer-consumer models. In the International Con-
ference on Principles and Practice of Constraint Programming,
664–678.
Pecora, F., and Cirillo, M. 2009. A constraint-based approach for
plan management in intelligent environments. In the Workshop on
Scheduling and Planning Applications at ICAPS.
Pettersson, O. 2005. Execution monitoring in robotics: A survey.
Robotics and Autonomous Systems 53(2):73–88.
Pigatto, G.; de Camargo Ferraz Machado, J. G.; dos Santos Negreti,
A.; and Machado, L. M. 2017. Have you chosen your request?
Analysis of online food delivery companies in Brazil. British Food
Journal 119(3):639–657.
Poettering, L.; Sievers, K.; and Others. 2017. systemd, version
235. https://www.freedesktop.org/wiki/Software/systemd/.
Russell, S., and Norvig, P. 2009. Artificial Intelligence: A Modern
Approach. Pearson, 3rd edition.
Said, C. 2016. Uber kills ultrafast instant option for UberEats. San
Fransisco Chronicle October 3.
Sidman, J. 2016. UberEats ditches instant food delivery service.
Washingtonian September 28.
van den Briel, M.; Scott, P.; and Thibaux, S. 2013. Randomized
load control: A simple distributed approach for scheduling smart
appliances. In the International Joint Conference on Artificial In-
telligence, 2915–2922.
van Grove, J. 2016. Uber now delivering food in San Diego. The
San Diego Union-Tribune June 14.

43

