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Abstract

The research on human mobility has mostly focused on the
scaling laws of movement. While important to construct bet-
ter models, such relationships hardly tell anything about in-
dividuals. Furthermore, there is a growing evidence that the
observed scaling relationships are actually the result of the
convolution of multiple distributions originated by the het-
erogeneity of the users. Hence, it is important to build tools
that are able to disentangle aggregated patterns and provide
information at a finer granularity. In this work, we introduce
a framework for the analysis of users’ GPS trajectories. We
show that hourly and daily features extracted from GPS tra-
jectories can be used for an unsupervised characterization of
the users. We found the existence of distinct classes of users
who exhibit substantially different spatio-temporal patterns.

Introduction

The study of human mobility has experienced a massive
growth with the recent availability of cell phone Call De-
tail Records (CDRs) and large localized datasets from social
networking sites. Large mobile phone Call Detail Records
(CDRs) data were instrumental in identifying and model-
ing fundamental patterns of human mobility. For instance:
the regular schedules and travel displacement (Gonzalez, Hi-
dalgo, and Barabasi 2008), the tendency of people to go back
to previously-visited locations (Song et al. 2010a), the high
predictability of people movements (Song et al. 2010b), the
tendency of people to go back to recently-visited locations
(Barbosa et al. 2015), and the connection between mobil-
ity and individuals’ social networks (Karamshuk et al. 2011;
Toole et al. 2015). Furthermore, part of the human mobil-
ity research tried to classify people in groups based on the
characteristics of their movement such as the characteristic
displacement (Pappalardo et al. 2015) or the similarity of the
user’s trajectories (Xiao et al. 2014).

The data from Location Based Social Networks (LBSNs)
have the advantage, compared to CDRs, to have contextual
information associated with geographical positions. Scien-
tists have been able to identify users’ information such as
relevant locations of individual users (Mamei, Colonna, and
Galassi 2016) to give recommendations on future locations
to visit based on location history (Zheng and Xie 2010;
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Yang et al. 2013). The trajectories augmented with infor-
mation related to the activity performed or the purpose of
movement allowed researchers to get better modeling of
intra-urban mobility (Wu et al. 2014) and to identify urban
mobility patterns and anomalies (Gabrielli et al. 2014). LB-
SNs also include data on the social network of the users
and thus they allow the exploration of how social ties
and human mobility are intertwined (Cheng et al. 2011;
Scellato et al. 2011).

Yet, there are two gaps in the current literature. First,
while identifying the fundamental scaling laws of human
mobility is important to build better models, such rela-
tionships hardly tell anything about single individuals or
group of individuals. Furthermore, there is a growing ev-
idence that the observed scaling relationships are actually
the result of the convolution of multiple distributions origi-
nated by the heterogeneity of the users (Gonzalez, Hidalgo,
and Barabasi 2008; Xiao et al. 2014; Toole et al. 2015;
Pappalardo et al. 2015). Second, most techniques use ad-
ditional data from multiple sources in order to annotate tra-
jectories, which inherently limits the applicability of such
methods as those sources might not be available everywhere
and/or with the same accuracy. In this work, we introduce
a framework to disentangle aggregated mobility and reveal
specific patterns through the use of hourly and daily spatio-
temporal features (popular-hours, popular-days, hourly and
daily entropy) extracted from users’ trajectories collected
from LBSNs and online social networking sites (e.g. Twit-
ter). The methods and techniques presented do not rely on
any additional data and can be consistently and reliably ap-
plied to any source of geo-located trajectories data.

Methods and Data

Data Preprocessing

GPS data do not tell the nature of the location visited by
users. Therefore to appropriately recreate user’s trajectories
for each dataset, we extracted the Points of Interest (POIs)
from the geo-located records by applying HDBSCAN clus-
tering to the GPS coordinates of the data (Jenson et al. ).
Moreover, when analyzing users’ trajectories we must care-
fully curate the data (see Figure 1). In fact, there are at least
two sources of population-level heterogeneities in the data
which can significantly impact results: the characteristic ac-
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tivity of the specific data source (e.g. Twitter) and the users’
mobility. We want to eliminate the effects of specific sources
of data, hence we selected only those users with a level of
activity which allows for a reliable analysis of the trajectory
properties.

We removed users with anomalous movement speeds
(over 80m/s) and anomalous number of records. Then we se-
lected users who have generated records in at least 2 distinct
locations (e.g. home and work), so that the trajectory entropy
is non zero. We also impose an average activity of one record
per day, so users have a comparable level of activity. Fur-
thermore, we re-sampled the trajectories in 30-minutes in-
tervals to mitigate the burstiness in human dynamics (Myers
and Leskovec 2014). The re-sampling process also avoids
artificially lowering the entropy and skewing the radius of
gyration of the trajectory disproportionately towards those
locations where the bursty behavior happened. We also did
a basic interpolation by carrying over the location identifier
of the location visited in the previous half hour if we did not
have data for an immediately consequent interval. This step
assumes it is very likely the user did not move to another lo-
cation in such a short time span. Finally, we removed users
who were present in more than one dataset, retaining only
the trajectories from where the users appeared the first time;
this step avoids relating trajectories that were collected tem-
porally far apart.
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Figure 1: The data of the trajectories need to be processed
to remove invalid users (e.g. robots) and select those tra-
jectories with enough data to guarantee a reliable analysis.
The re-sampling and interpolation step is also important to
mitigate the bursty behavior of human activities. Once the
datasets are curated, we can extract the feature vectors to
cluster and characterize the users.

Datasets

We used 3 datasets of geo-located tweets collected over the
Manhattan (NYC) area, henceforth called D1, D2, D3 (Ta-
ble 1). Each tweet represents a record of data with GPS co-
ordinates and timestamp. D1 was collected between August
28 and September 29, 2014 and contains 108,341 users. D2

is comprised of 154,198 users collected between June 17
and November 4, 2016. D3 is comprised of 149,944 users
collected between April 5 and September 11, 2017. After

the preprocessing step, we ended up with 4,185 users in D1,
861 users in D2, and 933 users in D3 who met the aforemen-
tioned criteria. Hence we conducted the users analysis on a
total of 5,979 unique users.

Table 1: Mobility datasets used for the user characterization.
D1 D2 D3

# of users 108,341 152,671 147,942
# of tweets 1,022,286 1,068,939 1,179,389
# clustered users 4,185 861 933
Date range Aug 28–Sep 29 Jun 17–Nov 4 Apr 5–Sep 11
Year 2014 2016 2017

Feature Extraction and User Clustering

The possible classes of users is not known a priori, hence
it is not possible to assign labels to the users for a super-
vised learning process. Instead, we rely on similarity met-
rics to discover and group users in similar classes. We ap-
plied the spectral clustering algorithm on the users’ feature
vectors extracted from the GPS trajectories. We then used
the Bayesian Information Criteria (BIC) and silhouette score
to identify the optimal number of clusters. Furthermore, we
analyze only those clusters which contain at least 5% of the
users in order to be able to draw reliable conclusions as a
small sample would be too sensitive to noise. One aspect
that needs to be defined is how to represent the users through
some descriptors (i.e. the feature vectors) which are able to
discriminate different types of users. We decided to focus
our attention on two types of features: popular-times and
popular-days histograms and hourly and daily entropies.

The popular-times and popular-days histograms are the
amount of records generated by the user when her trajectory
is aggregated by hour of the day and by day of the week over
the observation period. The two histograms are concatenated
and standardized to form a 31-dimensional (24 + 7) feature
vector for each user. We applied a one-dimensional Gaussian
filter over the histograms to smooth the distribution and fill
in missing data and normalized by applying standardization.
The analysis of the spectral clustering of the popular-times
and popular-days feature vectors returned k = 8 clusters
with at least 5% of the users represented. The assumption
is that people have strong habits (Neal, Wood, and Quinn
2006) and such behavior property implies that the effect ac-
cumulates over time reinforcing the hours and days at which
a person is mostly active. For example, someone who is very
active on the weekends and late hours might represent a
younger person profile when compared with someone who
follows a 9-to-5 routine; consequently, even the type of loca-
tions and the movement patterns should differ substantially.

The hourly entropy and the daily entropy (Figure 2) are
similar to the popular-times and popular-days histograms
where the quantity computed on the trajectory aggregated
per hour or per day is the Lempel-Ziv estimate Sest of the en-
tropy of the sequence of locations visited by the user (Song
et al. 2010b)

Sest =

(
1

N

∑
i

Λi

)−1

lnN, (1)
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where N is the number of distinct locations visited by a user
and Λi is the length of the shortest substring starting at po-
sition i which does not appear in positions 1 to i − 1. Un-
like Shannon entropy, Sest does not depend on the trajectory
length (as long as it is long enough to provide a good es-
timate of the entropy), but only on the sequence itself, and
therefore it is possible to compare sequences with a differ-
ent length (Amigó et al. 2004; Zhang et al. 2009). The 31-
dimensional feature vectors are then normalized and clus-
tered. The analysis of spectral clustering of the hourly and
daily entropy feature vectors returned k = 4 clusters with at
least a 5% users’ representation. This type of features is es-
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Figure 2: The hourly entropy is computed on all the loca-
tions visited by the user, in order of appearance, per hour
bin over the whole dataset. The daily entropy is computed
similarly, but aggregating per day of the week.

pecially powerful because it captures at the same time both
the spatio-temporal activity of the user’s movement per unit
of aggregation and the longitudinal recurrent patterns. For
instance, if we observe a user exhibits every Monday a se-
quence of the type {Home → Coffee shop → Work}, her
entropy on Monday will be lower than someone who does
not show recurrent habits (both in the same day and across
the day of the week over the period of observation). Finally,
it should be noted that we do not need to know the exact type
of the locations, just that they are the same locations (as per
the clustering applied to identify the POI), and therefore the
methodology offers great generality.

User Type Characterization

Since the labels assigned by a clustering algorithm do not
have any real-world equivalent, we need to characterize
those classes indirectly. For this purpose we study several
properties for each class both from a statistical and descrip-
tive point of view. There are two metrics that are especially
important in human mobility: the radius of gyration, which
considers only the spatial aspect of the trajectory, and the
entropy, which captures temporal correlations. The radius of
gyration rg is defined as

rg =

√√√√ 1

N

N∑
i=1

(ri − rcm)2,

where ri represents the i = 1, . . . , N positions recorded for
the user and rcm = 1/N

∑N
i=1 ri is the center of mass of

the user’s trajectory. rg has been found to follow a truncated
power law distribution (Gonzalez, Hidalgo, and Barabasi
2008). Such broad distribution is the result of the hetero-
geneity of users’ mobility and it is a strong indicator of
multiple classes of users being aggregated together. The en-
tropy S of a user trajectory can be estimated using Equa-
tion (1) and is strongly related to the user’s trajectory max
predictability Πmax

S =− [Πmax log2 Π
max+

(1−Πmax) log2(1−Πmax)]+

(1−Πmax) log2(N − 1).

(2)

The lower the entropy, the higher the predictability of a user.
At the same time, the larger the radius of gyration, the more
likely a user has visited more distinct locations and conse-
quently the higher the entropy.

We tested the radius of gyration, the entropy, and the
predictability distributions of different classes in two ways.
First, by using the two-sample Kolmogorov-Smirnov (KS)
test (Young 1977) with the underlying hypothesis that differ-
ent classes should exhibit different distributions for the con-
sidered trajectory properties. The KS statistic can be used
to test whether two underlying one-dimensional probabil-
ity distributions differ, i.e. it checks the null hypothesis H0
that the two data samples come from the same distribution.
Given two samples of size n and m, the two sample KS
statistic is defined as

Dn,m = sup
x

|F1,n(x)− F2,m(x)| ,

where F1,n and F2,m are the empirical distribution functions
of the first and the second sample. The null hypothesis H0 is

rejected at a confidence p if Dn,m > c(p)
√

n+m
nm where

c(p) =
√−1/2 ln(p/2) equals to 1.36 for a 95% confi-

dence. To study each cluster we run this test for all the possi-
ble combinations of cluster labels (which for n clusters, they
are the combinations of two elements of the first n integers.
The number of such combinations is

(
n
2

)
). We further test

that the distributions of the quantities under study are effec-
tively not the same by using the k-sample Anderson-Darling
(AD) test (Scholz and Stephens 1987). It tests the null hy-
pothesis H0 that k samples are drawn from the same popu-
lation without having to specify the distribution function of
that population.

Next, we characterized the classes using the content of
the tweets posted by the users to associate a qualitative de-
scription, a label, to specific spatio-temporal properties of
the user’s trajectories. We focused on the study of the pro-
file of locations visited by the users inside each cluster,
that is the distribution of the type of locations. Location
types are obtained by parsing the text of the tweets for a
Foursquare check-in from which we extract the type of the
location. Foursquare and Twitter actively prevents “crawl-
ing” of their website, therefore we extracted location only
from a random sample of 20% of the tweets from each class.
We collected a total of 1,987 check-ins. We also consoli-
dated the name of similar categories following the hierarchy
used by Foursquare1. The final categories are: Restaurant

1https://developer.foursquare.com/docs/resources/categories
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& Food, Nightlife Spot (e.g. bars, pubs, nightclubs), Coffee
Shop (originally it was listed under restaurant & food, but
we kept it separately as it is usually popular at any time of
the day), Arts & Entertainment (e.g. events, concerts, muse-
ums, monuments), Outdoors & Recreation (e.g. gyms, parks,
scenic views), Shop & Service (e.g. stores, markets), Travel
& Transport (e.g. hotel, motel, bus/train/metro stations), Pro-
fessional & Other Places (e.g. offices, schools, hospitals,
private homes). The distribution of the check-ins categories
shows the restaurant and food category being the most pop-
ular, as expected (Table 2).

Table 2: Foursquare Check-ins Category Distribution
Category Size (%)

Restaurant & Food 22.395571
Nightlife Spot 16.809260
Outdoors & Recreation 16.758933
Shop & Service 11.373931
Professional & Other Places 10.317061
Travel & Transport 7.498742
Arts & Entertainment 6.894816
Coffee Shop 5.938601

The distribution of types of places is expected to vary sig-
nificantly for example between locals, who have a typical
home-work routine, and tourists who will visit mostly mon-
uments and attractions. One caveat is that restaurants, bars,
and coffee places are perceived as generally popular among
every user category. Also, we should note that while such
characterization would not be possible on a dataset of only
GPS points and associated timestamps, in the context of this
work the additional data extracted from the text of the tweets
are solely used to get a better understanding of the efficacy
of the methodology we introduced.

Experimental Results

Popular-times and Popular-days

In each of the clusters of users we can clearly observe typical
hourly and daily patterns (Figure 3). For instance, there are
groups of users with peaks early in the morning, at noon,
at 8pm, and at 1 am. Weekly activity is more balanced with
only few clusters showing a clear week-day versus weekend
patterns.

The KS statistic confirms that most users’ clusters exhibit
significantly different distributions for the quantities of in-
terest (compactly represented using boxplots in Figure 4).
The AD statistic for the 8 samples from the clusters sup-
ports the KS statistic (p ≈ 10−10 for the radius of gyration,
p ≈ 10−66 for the estimated entropy, and p ≈ 10−29 for
the max predictability). However, there are pairwise excep-
tions for the KS statistic. The radius of gyration distribution
does not vary much between users probably due to the lim-
ited area from which the data was collected. For example
clusters 0 and 4 (p � 0.50), clusters 4 and 12 (p ∼ 0.60),
and clusters 7 and 15 (p � 0.45). There are also exceptions
for the entropy, such as clusters 1 and 12 (p � 0.13) and 1
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Figure 3: Average popular-times (top) and popular-days
(bottom) feature vectors for each cluster of users. The la-
bels in the legend represent the cluster ID. Distinct hourly
and daily patterns are visible.

and 15 (p � 0.14). Finally, clusters 4 and 12 (p � 0.52) and
clusters 7 and 12 (p � 0.64) did not reject H0 for the max
predictability.

We then conducted the analysis of the type of places vis-
ited by the users of each cluster using the Foursquare check-
ins (Figure 5). We observed that every cluster with a late-
hour activity peak (0, 1, 6, 15) has restaurant and nightlife
spot as popular categories. Cluster 1 is an exception hav-
ing peaks for travel, transport and outdoor. The anomaly of
cluster 1 can be explained by the fact it is possible that late
at night people tweet on their way back home. Clusters with
morning or afternoon activity (4 and 12) have a high activ-
ity of shops, professional places and outdoor. This confirms
that hourly and daily peak activities reflect into the type of
locations visited by a user and it is strongly related to the
mobility.

Hourly and Daily Entropy

We can observe distinctive hourly and daily patterns (Fig-
ure 6). Clusters 1 and 2 are associated with higher entropy
in the weekends and late at night. Cluster 5 is associated with
lower entropy during the weekends and a sudden increase of
entropy at noon. Cluster 6 resembles the typical average be-
havior (notice the circadian rhythm) of the population as a
whole.

Once again, most of the pairwise KS statistic reject the
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Figure 4: The distributions of the radius of gyration, en-
tropy estimate and predictability of the trajectories among
the clusters resulting from popular-times and popular-days.
Some of the clusters of users exhibit significant differences
pointing to potentially fundamentally different movement
patterns between types of users.
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Figure 5: Each plot represents the breakdown (%) of loca-
tion categories for the corresponding cluster (identified by
the label in the top right corner). There are distinctive distri-
butions of categories characterizing each cluster of users.

null hypothesis with a 95% degree of confidence, with the
sole exception of the pair of clusters 1 and 5 with regard
to the radius of gyration. The 4 sample AD statistic is also
strongly in agreement (p ≈ 10−41 for the radius of gyration,
p ≈ 0 for the entropy, and p ≈ 10−161 for the predictabil-
ity). A compact representation of the cluster distributions of
the radius of gyration, the entropy, and the max predictabil-
ity is represented in Figure 7. We observe cluster 1 has very
low entropy with several outliers (resulting from a bimodal
distribution which for lack of space cannot be represented
here), and cluster 6 has a much higher entropy (lower pre-
dictability) than the other clusters.

The analysis of the distribution of the types of locations
inside of the clusters could shed some light on the observed
patterns (Figure 8). Cluster 1 location representation has a
bimodal distribution; a high representation of nightlife and
restaurant (nocturnal activities) is combined with the art and
entertainment category (diurnal activity). Cluster 2 is mainly
linked to activities in the evening and night. Cluster 5 shows
a high representation of outdoors activities, which could ex-
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Figure 6: Average hourly entropy (top) and daily entropy
(bottom) feature vectors for each cluster of users. The labels
in the legend represent the cluster ID. Distinct hourly and
daily patterns are visible.

plain the unusually high entropy rate in the morning, and
shop service and professional places, which could explain
the low entropy in the weekends. Finally cluster 6 has no
clear pattern being a mix, which would explain the “aver-
age” behavior.

Discussion and Conclusion

We have shown how the popular-times and popular-days
along with the hourly and daily entropies are powerful fea-
tures which can be built from simple GPS trajectories with-
out any additional data. The benefit of such approach is its
generality and applicability to datasets coming from differ-
ent and heterogeneous sources. Such features made possi-
ble to identify classes of users that can then be compared
using well-understood human mobility metrics and non-
parametric statistical tools. The classes of users showed sig-
nificantly different spatio-temporal patterns associated with
the time and day of activity. The efficacy of the methods
were further verified by studying the distribution of the cat-
egories of the visited locations inside each cluster.

The ability to discern specific characteristics of the users
and analyze mobility patterns is important to further the un-
derstanding of human mobility and it also finds application
in industry such as in location-based recommendation sys-
tems (Zheng and Xie 2010; Yang et al. 2013). One question
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which remains open is how these user types can be repre-
sented by human mobility modeling tools and which impact
they have on human dynamics.

References
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