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Abstract

Mapping percepts to actions is at the heart of the agents
metaphor. However, little work has investigated this mapping
from a stream-based perspective. Inspired by previous work
on the foundations of stream processing, we analyze proper-
ties of window-based percept processing and identify prop-
erties of stream-processing agents with representation theo-
rems. The resulting axiomatizations help us to deepen the un-
derstanding of agents that can be safely implemented.

1 Introduction

Rational agents (Russell and Norvig 1995) acting in a dy-
namic environment have to be equipped with stream pro-
cessing capabilities for streams of different types and lev-
els of inputs. These may be streams of percepts, but also
streams of internal representations produced from lower-
level streams: streams of symbolic representations of per-
cepts, of agent’s beliefs on the state of the world, of actions
be carried out or decisions to be taken in order to reach a goal
etc. Moreover, in many cases the agent has to process not a
single stream but multiple streams that have to be combined
and cascaded, thereby producing streams of a possibly dif-
ferent type. In the setting we consider, the stream capabili-
ties are represented as stream queries, i.e. functions mapping
(one or more) input streams to an output stream. A simple
example stream query Q is one outputting every time a new
element arrives the last two elements of the input-stream. So,
e.g., Q would map the stream of letters a, b, c, d, e, f . . . to
ab, bc, cd, de, ef . . . .

The kind of “stream reasoning” we consider here is basic
reasoning on streams of percepts w.r.t. two main challenging
aspects: the potential infinity of streams and the policy that
the stream has to be processed in a one-pass fashion using
small time and space resources. This basic reasoning is a
prerequisite to realize higher-order reasoning on plans where
the next best action is chosen (w.r.t. some cost function) on
the basis of the percept streams and other internal streams.

The usual solution to handle the potential infinity is to
apply a window function, i.e., a function which grabs only
a finite portion of the stream at every time point. A formal
justification for the use of windows can be derived from a
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result of Gurevich and colleagues (Gurevich, Leinders, and
Van Den Bussche 2007) which states that all stream func-
tions depending only on finite prefixes of the input can be de-
fined as an iterative application of a window function—and
vice versa. Following the foundational work of Gurevich and
others, but emphasizing the axiomatic and representational
aspects, this paper investigates stream processing from an
input-output perspective—formalizing the stream capabili-
ties as stream queries. This enables a formal description of
the properties that an agent’s reasoning engine should posses
by axioms constraining its input-output behaviour.

We consider different properties a stream query might
or should have and state them as axioms. Then we show
which stream queries actually fulfill these axioms. In par-
ticular we show: Stream queries that are defined on infinite
streams only—and not on both, finite and infinite streams
as in (Gurevich, Leinders, and Van Den Bussche 2007)—
and that are prefix-determined can be represented as itera-
tive applications of a window function. In this general result,
the window function is allowed to refer to the whole stream
history. But this is not in accordance with the one-pass and
small space policy. Hence, as a special case, we also investi-
gate stream queries induced by constant-width windows and
show how to characterize them axiomatically with a gener-
alization of the distribution property.

The axiomatic characterizations given in this paper are
on a basic phenomenological level—phenomenological, be-
cause only observations regarding the input-output behavior
are taken into account, and basic, because no further proper-
ties regarding the structure of the data stream elements are
presupposed. However, an axiomatic understanding of this
basic form of stream reasoning lays the ground for an am-
bitious axiomatic characterization of rational agents where
also the properties of various higher-order streams of states
such as beliefs or goals are taken into account.

The paper is structured as follows: After this introduction
we discuss related work in comparison to ours. In Section
3 we introduce necessary technical terminology. The main
results of the paper are developed in Section 4, which de-
scribes axiomatic characterizations of genuine stream func-
tion, stream functions based on constant-size windows, and
stream functions respecting time constraints. Section 5 gives
a short summary and an outlook.
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2 Related Work

The work presented here is based on the foundation of
stream processing according to (Gurevich, Leinders, and
Van Den Bussche 2007) which considers streams as finite or
infinite words. The research on streams from the word per-
spective is quite mature and the literature on infinite words,
language characterizations, and associated machine models
abounds. The focus in this paper is on representational as-
pects for functions from words to words. For all other inter-
esting topics and relevant research papers on infinite words
we refer the reader to (Perrin and Pin 2004).

The approach of this paper is axiom based. An example of
an axiom-based approach for stream processing is given in
(Rabinovich 2003), but in (Rabinovich 2003) the emphasis
is on temporal streams with a continuous time domain.

In this paper, streams are considered in an abstract way,
with stream elements over an arbitrary domain D. In higher-
level stream processing, where the domain elements have
a certain semantics according to specifications in a knowl-
edge base or an ontology (as in ontology-based stream ac-
cess) further aspects related to semantics become relevant:
correct window semantics w.r.t. the given domain semantics
(Özçep, Möller, and Neuenstadt 2014), reasoning aspects
(Heintz, Kvarnström, and Doherty 2010) or equivalence of
stream queries (Beck, Dao-Tran, and Eiter 2016) etc.

We consider the aspect of performant processing on
streams in the context of constant-width windows. In (Arasu
et al. 2004) syntactical criteria for memory-boundedness in
data-stream management systems are considered.

The function-oriented consideration of stream queries in
this papers lends itself to a pipeline-style functional pro-
gramming language on streams. One approach showing the
practical realizability of such a programming language is de-
scribed in (Cowley and Taylor 2011).

3 Preliminaries

We use the following simple definition of streams of words
over an alphabet D. We call alphabets D also domains.

Definition 1. The set of finite streams is the set of finite
words D∗ over the alphabet D. The set of infinite streams
is the set of ω-words Dω over D. The set of (all) streams is
denoted D∞ = D∗ ∪Dω .

The basic definition of streams above is general enough to
capture all different forms of streams (in particular temporal
streams) that are considered in the approaches mentioned in
the section on related work.

D≤n is the set of words of length maximally n. For any
finite stream s the length of s is denoted by |s|. For infinite
streams s let |s| = ∞ for some fixed object ∞ /∈ N. For
n ∈ N with 1 ≤ n ≤ |s| we let s=n be the n-th element in
the stream s. For n = 0 let s=n = ε = the empty word. s≤n

denotes the n-prefix of s, s≥n is the suffix of s s.t. s≤n−1 ◦
s≥n = s. For an interval [j, k], with 1 ≤ j ≤ k, s[j,k] is the
stream of elements of s such that s = s≤j−1 ◦s[j,k] ◦s≥k+1.
For a finite stream w ∈ D∗ and a set of streams X the term
w◦X or shorter wX denotes the set of all w-extensions with
words from X: {s ∈ D∞ | There is s′ ∈ X s.t. s = w◦s′}.

The finite word s is a prefix of a word s′, for short s � s′,
iff there is a word v such that s′ = s ◦ v. If s � s′, then
s′ −� s is the suffix of s′ when deleting its prefix s. If all
letters of s occur in s′ in the ordering of s (but perhaps not
directly next to each other) then s is called a subsequence
of s′. If s′ = usv for u ∈ D∗ and v ∈ D∞, then s is
called a subword of s′. We are going to write streams in the
word notation, sometimes mentioning the concatenation ◦
explicitly. For a function Q : D1 −→ D2 and Y ⊆ D2 let
Q−1[Y ] = Q−1(Y ) = {w ∈ D1 | Q(w) ∈ Y }.

4 Streams in the (Infinite) Word Perspective

The main aim of this paper is to axiomatically characterize
different classes of functions of the form Q : D∞1 −→ D∞2 .
So the focus is on total functions which map a finite or in-
finite stream over a given domain D1 to a finite or infinite
stream on a domain D2. In this paper we are going to assume
without loss of generality the same domain D = D1 = D2

for inputs and outputs. All functions of this form will be
named “stream queries” and will be denoted by Q or primed
and indexed variants of Q.

By considering the union of finite and infinite streams
as potential domains and ranges of stream queries we are
following the approach of (Gurevich, Leinders, and Van
Den Bussche 2007). Later we also consider—thereby fol-
lowing (Weihrauch 2000)—functions where the domain
(resp. the range) is either the set of finite streams D∗ or the
set of infinite streams Dω . The more general definition of a
stream query according to Gurevich and colleagues allows
to cover different scenarios that have found interest in Com-
puter Science. In particular, allowing for finite streams as
potential inputs of stream queries allows to cover scenarios
where an agent is allowed to stop processing a query after a
finite number of steps. It also covers the case where the agent
gets informed about the fact that the input stream is finite:
You can stop processing because there is no element to come
anymore. A framework for implementing such “informed”
stream processing is developed under the term “punctuation
semantics” in (Tucker et al. 2003).

We note that in the framework of (Gurevich, Leinders,
and Van Den Bussche 2007) multiple streams can be han-
dled by attaching to the domain elements tags with prove-
nance information, in particular information on the stream
source from which the element originates. This tag-approach
is too simple in the sense that there is no control on how to
interleave the stream inputs—as is, e.g., the case in state-of-
the art stream query languages following a pipeline archi-
tecture. But the framework of (Gurevich, Leinders, and Van
Den Bussche 2007) can be extended to handle functions of
the form Q : D∞ × · · · × D∞ −→ D∞ similar to the ap-
proach of (Weihrauch 2000).

4.1 Genuine Stream Queries are Window-Based

Though any function Q : D∞ −→ D∞ is termed a stream
query, only those queries that produce their outputs succes-
sively by considering one input element after the other, have
to be accepted as genuine stream queries. This intuition on
the continuous, successive production of the output can be
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formalized by the constraint that the output is determined by
finite prefixes of the input. This is the content of the follow-
ing axiom denoted (FP∞).

(FP∞) For all s ∈ D∞ and all u ∈ D∗: If Q(s) ∈ uD∞,
then there is a w ∈ D∗ s.t. s ∈ wD∞ ⊆ Q−1[uD∞].

As a further aspect of stream processing we consider data-
driveness: The actions of the agent that processes the stream
(to be read as: the outputs produced by the function Q in
this abstract setting) are triggered by the input stream and
not by the agent itself—modulo a finite output production
before the streaming starts. In particular, this means that fi-
nite streams are allowed to be mapped only to finite streams.
We state this condition as further axiom:

(F2F) For all s ∈ D∗ it holds that: Q(s) ∈ D∗.

The dual constraint says that infinite streams must be
mapped to infinite streams.

(I2I) For all s ∈ Dω it holds that Q(s) ∈ Dω .

Already axioms (FP∞) and (F2F) can be represented by
a class of operators based on the notion of abstract com-
putability (Gurevich, Leinders, and Van Den Bussche 2007).
The very general notion of an abstract computable stream
function is that of a function which is incrementally com-
puted by calculations of finite prefixes of the stream w.r.t. a
function called kernel. Formally: Let K : D∗ −→ D∗ be
a function from finite words to finite words over D. Then
one defines the stream query Repeat(K) : D∞ −→ D∞

as Repeat(K) : s 
→ ©|s|
j=0K(s≤j). So, Repeat(·) takes the

kernel function K and applies it to the growing input stream,
consuming one stream element after the other.

Definition 2. A query Q is abstract computable (AC) iff
there is a kernel K such that Q(s) = Repeat(K)(s).

Using a more familiar speak from the stream processing
community, the kernel function is a window function—and
henceforth we refer to K as a window function. But note,
that the window content is allowed to grow.

An important aspect for the usability of queries is that
queries can be cascaded, or—formally—that they can be
composed. This is indeed the case for AC (and also for SAC
queries, see below) as shown in (Gurevich, Leinders, and
Van Den Bussche 2007).

The definition of abstract computable queries is quite gen-
eral and, in fact, it does not say anything about the com-
putability of K. The main idea for this definition stems from
the theory of computability on real numbers, termed “theory
of type-2 effectivity” as outlined in (Weihrauch 2000). The
representation theorem mentioned above treads as follows:

Theorem 1 ((Gurevich, Leinders, and Van Den Bussche
2007)). AC queries represent the class of stream queries ful-
filling (F2F) and (FP∞).

The proof can be found in (Gurevich, Leinders, and Van
Den Bussche 2007). We mention here only that for the proof
of the direction from (F2F) & (FP∞) to abstract computabil-
ity the following window construction is used: K(ε) = ε and
K(sa) = Q(sa)−� Q(s) for s ∈ D∗, a ∈ D. With axioms

(F2F) and (FP∞) it can be shown that K is well-defined and
gives the right window.

This theorem underlines the importance of the window
concept because it shows that any stream query implement-
ing the core idea of an incremental, continuous operation on
the ever growing prefix of incoming stream elements can be
represented as a window-based query. So it is no surprise
that most of the literature on streams has a discussion of
window functions in one form or another. Moreover, this
representation theorem can be used by the agent engineer
to check easily whether a query is AC.

A simple fact following from Theorem 1 is, that if Q maps
finite streams to finite streams and is continuous, then for all
finite streams s and letters u we have Q(s) � Q(su), i.e.,
monotonicity holds. Concretely, we say that a stream query
Q is monotone iff it fulfills the following axiom:

(MON) For all finite streams s′ ∈ D∗ and all (finite and
infinite) streams s ∈ D∞: If s′ � s, then Q(s′) � Q(s).

Proposition 1. (FP∞) and (F2F) together entail (MON).

Theorem 1 corresponds exactly to Theorem 9 of (Gure-
vich, Leinders, and Van Den Bussche 2007) with the only
difference that the authors talk of continuity w.r.t. a topol-
ogy instead of postulate (FP∞). Indeed, the sets of the form
wD∞ for w ∈ D∗ can be considered as open balls on top of
which open sets and continuity (as usual) can be defined.

The idea of a window as the main core of stream pro-
cessing on streams has been justified by the characterization
in Theorem 1. This still should be true when considering
stream queries Q : Dω −→ Dω which are defined on infi-
nite streams only and that output infinite streams only. The
finite prefix statement then has the following form:

(FPω) For all s ∈ Dω and all u ∈ D∗: If Q(s) ∈ uDω , then
there is a w ∈ D∗ such that s ∈ wDω ⊆ Q−1[uDω].

Clearly, any query Q : Dω −→ Dω that is generated as
Repeat(K) for a window function K fulfills (FPω). But does
the converse hold, too? At least this is not obvious from The-
orem 1 because a closer inspection of the proof (which we
mentioned directly after the statement of Theorem 1) shows
that the constructed window K relies on Q being defined
also on finite streams. But, fortunately, using a different win-
dow construction also yields the desired representation the-
orem, our first axiomatic contribution in this paper.
Theorem 2. AC queries of the form Q : Dω −→ Dω repre-
sent the class of stream queries fulfilling (FPω).

Proof. The proof that AC queries Q : Dω −→ Dω fulfill
(FPω) proceeds exactly in the same way as for functions Q :
D∞ −→ D∞ in the proof of Theorem 1.

For the other direction assume that Q : Dω −→ Dω ful-
fills (FPω). Let s be any infinite stream s ∈ Dω . Consider
an ordering of all growing prefixes ui of Q(s) with u0 = ε
and ui = (Q(s))≤i. According to (FPω) there is, for each
ui, a w ∈ D∗ such that s ∈ wDω ⊆ Q−1[uiD

ω]. We may
assume that for each ui we choose its w as the smallest such
word w w.r.t. the prefix order. We call the sequence of result-
ing words (ws

i )i∈N. Because of the minimality it follows that
the sequence is increasing w.r.t. the prefix order. It may be
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the case that ws
i = ws

i+1. So we consider the set of indexes
H ⊆ N such that for all j ∈ H it holds that wj � wj+1 but
wj �= wj+1, for short: wj � wj+1. Assume that H is given
as a family H = (ik)k∈Y where Y = N or Y = {1, . . . , n}
for some natural number n. Now we define the following
function Ks for all words v � s. The word v can be of
the following form: It is some word where there is a proper
growth from wj to wj+1, i.e., it is a word of the form wik or
it is a word of the form wj where no change happens, than it
has one of the form wik+1, wik+2, . . . , wik+1−1. Or v is not
represented as a wj .

K
s
(w

s
j ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uik+1−1 if

j ∈ {i0, i0 + 1, . . . , i0+1 − 1} & k ≥ 1

uik+1−1 −� K(ws
ik−1

) if

j ∈ {ik, ik + 1, . . . , ik+1 − 1} & k ≥ 1

K
s
(w

s
ju) = ε if u ∈ D

∗ and w
s
j � w

s
ju � wj+1

Then by definition Repeat(Ks)(s) = Q(s). Of course this
is still not the window K we are looking for as Ks still de-
pends on the stream s. But, using some detailed case analy-
sis, which we leave out here, it can be shown that for other
streams s′ the generated Ks′ gives the same value for the
same word w: Ks(w) = Ks′(w).

4.2 Constant-width Windows

The window characterization in the theorems above allow
for unbounded windows K, that is windows that refer to
the whole streaming history. The aim of this section is to-
wards characterizing stream queries based on non-growing,
i.e., constant-width windows.

We start with a simple, stricter version of the monotonic-
ity axiom, which we call (DISTR) (for distribution). It actu-
ally characterizes queries that are completely determined by
their outputs for finite streams of length 1.

(DISTR) ∀s ∈ D∗ with |s| ≥ 1: Q(s) ∈ D∗ and for all
s′ ∈ D∞ with |s′| ≥ 1: Q(s ◦ s′) = Q(s) ◦Q(s′).

Proposition 2. Any stream query Q fulfilling (DISTR) ful-
fills: For all s ∈ D∞: Q(s) = ©|s|

i=1Q(s=i). In particular
such stream queries are AC queries and hence fulfill (FP∞).

Proof. We skip the proof here, as it is similar to the proof of
Prop. 7 (see below).

In particular, distributive queries are monotone.

Proposition 3. (DISTR) entails (MON) and (F2F).

In order to proof a generalization of Prop. 2 we introduce
the general notion of an n-window which corresponds to the
notion of a finite window of width n.

Definition 3. A function K : D∗ −→ Y that is determined
by the n-suffixes (n ∈ N), i.e., that fulfills for all words
w, u ∈ D∗ with |w| = n the condition K(uw) = K(w)
is called an n-window. If additionally K(s) = ε, for all
s with |s| < n, then K is called a normal n-window. The
set of stream queries generated by an n-window for some
n ∈ N are called n-window abstract computable stream
queries, for short n-WAC operators. The union WAC =

⋃
n∈N n-WAC is the set of window abstract computable

stream queries.

The following proposition is an immediate consequence
of Def. 3.

Proposition 4. 1. 0-windows are constant functions on D∗
with K(w) = K(ε) for all w ∈ D∗.

2. Every i-window with i ≤ j is also a j-window.
3. Stream queries fulfilling (DISTR) can be generated by a

1-window. Conversely, if a stream query is generated by a
1-window with K(ε) = ε, then it fulfills (DISTR).

A property for stream queries related to (DISTR) is the
filter property. Roughly, the filter property states that Q fil-
ters out elements from the input stream thereby outputting a
subsequence. The following axiom gives a possible instanti-
ation of this property:

(FILTER) Q(ε) = ε; and for all s ∈ D∞, u ∈ D:
Q(us) = u ◦Q(s) or Q(us) = Q(s).

The following proposition follows immediately.

Proposition 5. All operators fulfilling (FILTER) are AC.

A stricter version of (FILTER) can be termed time-
invariant filter, abbreviated by (TI-FILTER). According to
this axiom, the decision whether to incorporate the element
u into the output stream does not depend on the position of
u in the input stream, it is time-invariant.

(TI-FILTER) Q(ε) = ε; and for all s ∈ D∞, u ∈ D,w ∈
D∗: Either Q(wus) = Q(w) ◦ u ◦ Q(s) or Q(wus) =
Q(w) ◦Q(s).

An immediate consequence of the definition is that all time-
invariant filter queries are also distributive.

Proposition 6. (TI-FILTER) entails (DISTR).

From the formulation of (DISTR), it is a small step to-
wards more specific axioms (FACTOR-n) that, for each
n ∈ N, capture exactly the n-window stream queries.

(FACTOR-n) ∀s ∈ D∗: Q(s) ∈ D∗ and

1. if |s| < n, Q(s) = ε and
2. if |s| = n, for all s′ ∈ D∞ with |s′| ≥ 1: Q(s ◦ s′) =

Q(s) ◦Q((s ◦ s′)≥2).

The axiom (DISTR) does not exactly correspond to
(FACTOR-1) due to the special case of the empty stream.
But the axiom (DISTR-1) defined below does.

Now we can show results corresponding to propositions
derived for axiom (DISTR), namely a proposition on the fac-
torization of the query result and the representability by a
window-based query.

Proposition 7. For any n ∈ N with n ≥ 1, a stream query
Q : D∞ −→ D∞ fulfilling (FACTOR-n) can be written for
|s| ≥ n as Q(s) = ©|s|−n+1

j=1 Q(s[j,n+j−1]).

Proof. Assume Q : D∞ −→ D∞ fulfills (FACTOR-n).
Let |s| ≥ n and let s = r ◦ s′ with |r| = n. Then
Q(r ◦ s′) = Q(r) ◦ Q((r ◦ s′)≥2). On the right factor one
can apply again the factorization according to (FACTOR-n).
Applying this repeatedly (using induction) gives the desired
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representation. (With underlinings we indicate those formu-
lae that are evaluated to give the next equation, resp.)

Q(s) = Q(r ◦ s′) = Q(r) ◦Q((r ◦ s′)≥2)

= Q(r) ◦Q((r ◦ s′)[2,n+1]) ◦Q(((r ◦ s′)≥2))≥3

= Q(r[1,n]) ◦Q((r ◦ s′)[2,n+1]) ◦Q(((r ◦ s′)≥3))

= Q(s[1,n]) ◦Q(s[2,n+1]) ◦Q(((r ◦ s′)≥3))

= Q(s[1,n]) ◦Q(s[2,n+1]) ◦Q(s[3,n+2]) ◦
Q(((r ◦ s′)≥4)) = . . .

= Q(s[1,n]) ◦Q(s[2,n+1]) ◦ · · · ◦Q(s[|s|−n,|s|])

= ©|s|−n+1
j=1 Q(s[j,n+j−1])

For infinite s the assertion follows for that from finite s.

Proposition 7 can be used to prove the following repre-
sentation proposition.
Proposition 8. For any n ∈ N with n ≥ 1, a stream query
Q : D∞ −→ D∞ fulfills (FACTOR-n) iff it is induced by a
normal n-window K.

Proof. Let n ≥ 1. Assume that Q fulfills (FACTOR-n).
Define K by K(w) = ε for |w| < n. For w ≥ n let
K(w) = Q(w≥|w|−n+1) = Q-value of n-suffix of w. Then
Q(s) = ©|w|

j=0K(s≤j) = ε for words s with |s| < n by
definition of K. For s ≥ n one has by Proposition 7

Q(s) = ©|s|−n+1
j=1 Q(s[j,n+j−1])

= ©|s|−n+1
j=1 K(s≤n+j−1) = ε ◦©|s|

j=nK(s≤j)

= ©n−1
j=1K(s≤j) ◦©|s|

j=nK(s≤j)

= ©|s|
j=0K(s≤j)

The other direction (namely, n-window induced functions
fulfill (FACTOR-n) and monotonicity) is clear.

Though this proposition is simple, it is important because
it characterizes the input-output behaviour of n-window-
based queries by a periodic factorization of the output.

Intuitively, the class of WAC stream queries is a proper
class of AC stream queries because the former consider only
fixed-size finite portions of the input stream whereas for AC
stream queries the whole past of an input stream is allowed
to be incorporated for the production of the output stream.
A simple example for an AC query that is not a WAC query
is the parity query PARITY : {0, 1}∞ −→ {0, 1}∞ defined
as Repeat(Kpar) where Kpar is the parity window function
K : {0, 1}∗ −→ {0, 1} defined as Kpar(s) = 1, if the num-
ber of 1s in s is odd and Kpar(s) = 0 else. d The window
Kpar is not very complex, indeed one can show that Kpar

is memory bounded. More concretely, it is easy to find a
finite automaton with two states that accepts exactly those
words with an odd number of 1s and rejects the others. In
other words: parity is incrementally maintainable. But finite
windows are “stateless”, they cannot memorize the actual
parity seen so far. Formally, it is easy to show that any finite-
window function is AC0 computable, i.e., computable by a

polynomial number of processors in constant time. On the
other hand it is well known by a classical result (Furst, Saxe,
and Sipser 1984) that PARITY is not in AC0.

Axioms (FACTOR-n) are not direct generalizations of the
axiom (DISTR) as the ◦-factors do not factor disjoint parts of
the input stream. A more intuitive set of axioms generalizing
(DISTR) are the axioms (DISTR-n) defined as follows:

(DISTR-n) ∀s ∈ D∗: Q(s) ∈ D∗; and if |s| < n, then
Q(s) = ε; and if |s| = n, then for all s′ ∈ D∞ with
|s′| ≥ 1: Q(s ◦ s′) = Q(s) ◦Q(s′).

Operators fulfilling (DISTR-n) give the following factoriza-
tion representation of the output stream:

Proposition 9. For any n ∈ N with n ≥ 1, a stream query
Q : D∞ −→ D∞ fulfilling (DISTR-n) can be written for
|s| ≥ n as Q(s) = ©|s|

j=1Q(s[nj−n+1,nj]).

Proof. As above by induction.

All stream queries fulfilling (DISTR-n) can be character-
ized by tumbling n-windows which are defined as functions
K : D∗ −→ D∗ such that

K(w) =

⎧⎨
⎩

ε if |w| < n or if |w| is not a multiple of n
K(v) if |w| is a multiple with w = uv

and |v| = n

According to this definition stream queries induced by
tumbling windows consider only the last n elements and
wait n elements before the content is updated. In words
of the streaming community: The window has width n and
slide n. According to this definition, in between times i and
i+ n nothing is outputted to the output stream.

Proposition 10. For any n ∈ N with n ≥ 1, a stream query
Q : D∞ −→ D∞ fulfills (DISTR-n) and Q(s) = ε for
all s ∈ D∗ with |s| < n iff it is induced by a tumbling n-
window.

Proof. Follows with Prop. 9.

The above considerations can be generalized to capture
sliding windows with slides greater than 1. Due to space re-
strictions we leave out the details here.

4.3 Considering Time in the Word Model

A refined notion of abstract computability considered by
Gurevich and colleagues (Gurevich, Leinders, and Van
Den Bussche 2007) is that of synchronous abstract com-
putability, SAC for short, which adds to the condition of ab-
stract computability the condition that K maps the empty
stream to the empty stream and that for all other streams the
window maps to a finite stream of length 1.

Definition 4. A query Q is synchronous abstract computable
(SAC) iff there is a window K with K(ε) = ε and |K(s)| =
1 for all s �= ε such that Q(s) = Repeat(K)(s).

The authors give an axiomatic characterization of SAC
queries (Gurevich, Leinders, and Van Den Bussche 2007,
Prop. 18), this time using a property they call “non-
predicting”. The original definition (Gurevich, Leinders, and
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Van Den Bussche 2007, (Def. 17)) says that Q is non-
predicting iff for all streams s, s′ and all t ∈ N \ {0} such
that s≤t = s′≤t one has Q(s)=t = Q(s′)=t.

Regarding the reading of the definition it has to be stated
explicitly that if s and s′ have at least length of t and are the
same up to t, then the outcomes Q(s) and Q(s′) are also de-
fined up to t and are the same up to t. So, in particular, a non-
predicting operator maps infinite streams to infinite streams,
i.e., being non-predicting entails (I2I). The authors also as-
sume that being non-predicting entails that finite streams are
mapped to finite streams. As we cannot find a plausible read-
ing of non-predictability that entails this fact we rephrase
their proposition by explicitly mentioning (F2F).

Proposition 11 (Adaptation of (Gurevich, Leinders, and Van
Den Bussche 2007)). SAC queries are the non-predicting
queries that fulfill (F2F).

“Non-prediction” is too weak a notion to capture the prop-
erty stated under this term. The reason is that also a stream
query Qa that maps every nonempty stream to the finite
stream a and the empty stream to itself does not produce
streams by looking into the future—and hence should be
called non-predicting in an intuitive sense. But surely Qa

is not SAC as it maps infinite streams to a finite stream.
Hence, we consider the following notion of no-dilation

computability: A query Q is no-dilation computable, for
short: NDAC iff it is AC with a window K such that K(ε) =
ε and K(s) ≤ 1 for all s ∈ D∞ with s �= ε. Then query
Qa from above is an NDAC query (choosing K(ε) = ε and
K(s) = a for s �= ε).

The property corresponding to NDAC is a weakening of
non-predictability (and a strengthening of FP∞):

(FP∞ND) For all s ∈ D∞ and all u ∈ D∗: If Q(s) ∈
uD∞, then there is a w ∈ D∗ such that s ∈ wD∞ ⊆
Q−1[uD∞] and |w| ≤ |u|.

We get the following simple characterization.

Proposition 12. NDAC queries are exactly the queries ful-
filling (FP∞ND).

Proof. See window construction in proof of Theorem 2.

5 Conclusion

As stream processing is an important aspect of the agent
paradigm, a formal foundation of streams is of outmost im-
portance for any agent-based model and application. With
the general (infinite) word-based framework we considered
a sufficiently general, yet simple model of streams which
allowed us to specify properties of stream queries and to
characterize them. In setting up the stream (reasoning) ar-
chitecture of an agent, the engineer can rely on these results
in order to ensure a specific input-output behaviour when us-
ing particular classes of stream queries. Table 1 summarizes
the representation results discussed in this paper.

Future work concerns an in-depth axiomatic treatment of
memory-bounded stream queries, topological characteriza-
tions of SAC and WAC queries as well as modeling multi-
ple stream queries without tag annotations—the overall aim

Stream query Q Axioms
AC of form
Q : D∞ −→ D∞ (F2F) & (FP∞)
Q : Dω −→ Dω (FPω)

normal n-window (FACTOR-n)
tumbling n-window (DISTR-n)
SAC non-predicting & (F2F)
NDAC (FP∞ND)

Table 1: Representation Results

being an axiomatization of belief-state changes in belief-
revision style and grounding these in changes of streams of
percepts.
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