
Non-Linear Quest Generation

Alex Stocker
Bradley University

astocker@bradley.edu

Chris Alvin
Bradley University
calvin@bradley.edu

Abstract

This paper presents a method for generating game quests sup-
porting concurrency and user-choice. We formalize the notion
of a quest in the form of a directed hypergraph and algorithms
for generating such quests over a user-defined set of verbs and
nouns. Our experimental results demonstrate the complexity
and diversity of the quest space. We then compare the rich-
ness of our generated quests with a corpus of existing quests.

1 Introduction
We describe an ideation technique for non-linear quest gen-
eration supporting concurrency in player activities, paral-
lelism for user choice of activity, and dependence between
activities. We accomplish this goal using a many-to-one hy-
pergraph (Berge 1989) as our representative structure. Our
technique operates in four steps. We first construct a set
of ‘actions’ using noun-verb pairings. Given this set of ac-
tions, we construct a linearization that captures dependence
among the action set. Then, we construct a directed hyper-
graph where hypernodes indicate concurrency of activities.
Last, we may replace one-to-one edges with parallel sub-
hypergraphs. The result is a set of hypergraphs that can be
analyzed for game quest structures.

As an example generation, we begin with a set of collo-
quially interpreted verbs (e.g., talk, collect, etc.) and a set
of nouns (e.g., rope, ogre, etc.). Using the set of verbs and
nouns, we construct individual actions consisting of a verb
and noun; Figure 1 has five sample actions. We then con-
struct a linear ordering of the actions. To do so, we heed any
explicit dependencies specified by the user; such a depen-
dence is indicated as a dashed edge between “Trap Ogre”
occurring before “Return To Elder” as shown in Figure 1.
These ordered actions correspond directly to the nodes in a
directed hypergraph (Berge 1989). We then construct the set
of hyperedges by traversing the linear ordering of nodes in
reverse: we select a consequent node and a set of antecedent
nodes. In Figure 1, there are two resulting one-to-one edges
and a single two-to-one hyperedge. We interpret this hyper-
edge as allowing the player to complete action “Collect Mar-
ionberry” and “Collect Rope” in any order. The resulting hy-
pergraph representation of the quest is a single hyperpath

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Phase 1 of Quest Generation: Base Quest

Figure 2: Phase 2 of Quest Generation: Adding Parallelism

(Berge 1989) and serves as the required set of actions which
a user must complete.

The second phase of quest generation adds parallel paths
to a linear quest (e.g. Figure 1 into Figure 2). For each one-
to-one edge in the Phase 1 hypergraph, we may we insert
parallel paths; for example, between “Trap Ogre” and “Re-
turn To Elder” in Figure 2 we inject two distinct hyperpaths.
What results is the quest in Figure 2 that provides concur-
rency among actions and path selection. The rest of this pa-
per will define explicitly our quest generation technique.

2 Preliminaries
Actions. Players perceive quests as a sequence of isolated
steps. A single step often involves an ‘action’ that consists
of, in simplest form, a verb applied to a noun. For exam-
ple, given the verb ‘talk’ and the noun ‘Elder,’ we may con-
struct the action “Talk to Elder” as shown in Figure 2. We
informally refer to the terms verb and noun as the English-
language based interpretation and intuition of those terms.
For a verb v and noun n, an action is a pair 〈v, n〉 a player
may carry out as a step to complete a quest.

Some verb-noun pairings are nonsensical according to
their interpretation in the English language (e.g. verb ‘steal’
and noun ‘Elder’). We define two classes for both verbs and
nouns: C = {living, static}. ‘Steal’ is an example of a
static verb since we will not ‘steal’ a living noun (although
we might ‘kidnap’) whereas a living verb like ‘talk’ may be

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

213

Table 1: Sample Equivalence Relation of Verbs
Representative Verb Synonyms

kill { assassinate, execute, murder }
steal { take, thieve, pilfer}

convince { persuade, sway}

applied to a living noun. We further divide the classes of
static nouns into subclasses {object, location} because it
does not make sense to ‘steal’ a place. Classes of verbs and
nouns prohibit meaningless combinations (e.g., “Steal El-
der”) while allowing other combinations (e.g. “Steal book”).
We define constr (v, n) to return true or false whether verb
v may be combined with noun n into an allowable action.

Without context, “Convince Elder” and “Persuade Elder”
can be interpreted as synonymous actions. For verbs v1, v2
and nouns n1, n2, we say v1 ≡ v2 (resp. n1 ≡ n2) if the
verbs (resp. nouns) are colloquially equivalent. Two actions
〈v1, n1〉 ≡ 〈v2, n2〉 if and only if v1 ≡ v2 and n1 ≡ n2.

We may then construct a verb equivalence relation con-
sisting of a representative set of verbs and the correspond-
ing synonyms; see Table 1. For a verb equivalence relation
V , we acquire the representative set of verbs from V using
function rep (V). The verb equivalence relation will guaran-
tee generation of unique actions.
Action Sets and Linear Ordering. Structurally, a viable
quest is a directed acyclic graph (DAG) with single sink
node acting as the goal action of the quest. We say an action
set A is a DAG of actions and an action set linear ordering
(or linearization) LA is a topological ordering of an action
set A. For an action set A, LA refers to the collection of
linearizations. We note |LA| ∈ [1, |A|!].
Action Sets and Linear Ordering. For an action set A, we
use a directed hypergraph (Berge 1989) data structure where
a hypernode (a set of nodes) captures the concurrency of ac-
tions and a directed hyperedge captures the sequential na-
ture of actions. In our model, hyperedges consist of a set of
antecedent nodes and a single consequent node: a many-to-
one relationship. For example, there is a single hyperedge
in Figure 2 with two actions (“Collect Rope” and “Collect
Marionberry”) in the antecedent set and “Trap Ogre” as the
consequent action. We call our model an action hypergraph.

Definition 1. An action hypergraph is a directed hypergraph
HA (N,E) where each n ∈ N corresponds to an action a ∈
A and each directed hyperedge S

f→ t ∈ E where S ⊆ N is
the antecedent set of actions, t ∈ N is the consequent action,
and each hyperedge is labeled as a user-defined dependence
by f : E → {true, false}.

Let A be an action set. A quest is an acyclic action hyper-
graph HA (N,E). Since a quest corresponds to an acyclic
many-to-one directed hypergraph, we may analyze the cor-
responding structure using various measures. We refer to the
length of a quest as the number of actions from source action
to the sink action. The minimum (resp. maximum) length
refers to the number of actions in the shortest (resp. longest)
path. We call the number of non-one-to-one hyperedges in
a quest the concurrency count and the concurrency factor is

Algorithm 1 Quest Generation
Require: BL: Global quest length upper bound,

1: BA: Global antecedent upper bound,
2: BP : Global parallel depth upper bound,
3: BW : Global number of parallel paths upper bound,
4: AGV,N : Action Generator
5: function MAIN(AGV,N)
6: A ← AGV,N .GENUNIQUE(BL)
7: return QUESTGEN(A,AGV,N , 0)

8: function QUESTGEN(A, AGV,N , b)
9: LA ← LINEARIZATIONGEN(A)

10: HA ← BASEQUESTGEN(LA)
11: if b < BP then PATHS(HA, AGV,N , b+ 1)
12: return HA

the measure of concurrency count divided by the minimal
length. The concurrency factor is a measure that permits us
to compare the relative amount of concurrency in quests with
respect to the minimum number of actions required to com-
plete a quest. Last, we say the path complexity is the number
of possible paths in a quest’s action hypergraph.

3 Action Hypergraph Construction
In this section we describe our recursive procedure for con-
structing quests via action hypergraphs; we briefly consider
the MAIN function in Algorithm 1. The quest search space
is vast. Hence, Algorithm 1 defines upper bound constants
allowing the user to refine the quest space and limit features
of resulting quests: length (BL), concurrency (BA), paral-
lel depth (BP), and the number parallel paths (BW). The
first step in the procedure (Line 10) involves constructing an
acyclic action hypergraph sans parallel paths we call a base
quest. If requested (Line 11), we recursively construct par-
allel hyperpaths in the base quest.
Generating Actions and Ordering. For simplicity in com-
municating our algorithms, we introduce an Action Gener-
ator, AGV,N : a factory-based data structure that generates
actions on-demand based on a verb equivalence relation V
and a set of nouns N . We treat the action generator as the
single input structure in our algorithms starting with Algo-
rithm 1 on Line 5.

We construct an arbitrary action set in an action gen-
erator using class-based constraints on each verb-noun
pairing as {〈v, n〉 | v ∈ V ∧ n ∈ N ∧ ¬constr (v, n)}. Sim-
ilarly, {〈v, n〉 | v ∈ rep (V)∧ n ∈ N ∧ ¬constr (v, n)}
generates a unique action set because they are constructed
using representative set of verbs in V ; we do so using
GENUNIQUE in Algorithm 1 on Line 6.

Given a set of actions S, we introduce the user-defined
dependencies thus creating an action set DAG A. For quest
generation purposes, we are not interested in a single lin-
earization of the action set. Experimentally (§4), we generate
a diverse subset of all linearizations, LA (Varol and Rotem
1981), by choosing maximally distant linearizations using
the Levenshtein string metric.
Base Quest. Our goal is to generate an acyclic action hyper-
graph (such as Figure 1) as defined in Algorithm 2.

214

Algorithm 2 Base Quest Generation
Require: LA: Linearization

1: function BASEQUESTGEN(LA)
2: HA : Action Hypergraph
3: HA.ADDNODES(A)
4: for i ← |LA| downto 1 do
5: if ¬LA.HASEDGE(i− 1, i) then
6: ia ← i− 1
7: if HA.HASANTECEDENT(i) then
8: ia ← MIN (HA.EDGES(i).antecedent)− 1

9: |ante| ← MIN(RANDOM (1, BA) , ia)
10: ante ← LA [ia − |ante| , ia]
11: HA.ADD(ante

false→ LA[i])

12: else HA.ADD(LA[i− 1]
true→ LA[i])

13: return HA

Nodes. Given a linearization LA, we add the correspond-
ing nodes to an action hypergraph HA (Line 3, Algorithm 2).

Hyperedges. In Algorithm 2, we traverse LA from sink
node to source node (Line 4). If the user defined a depen-
dence between two adjacent nodes in LA (HASEDGE on
Line 5), we add a corresponding edge to HA with a true an-
notation. Otherwise, for the node at index i as consequent,
we construct a hyperedge and ensure an acyclic hypergraph
by choosing a proper antecedent set. We default to an in-
dex of a preceding node i − 1 (Line 6), but on Line 7 the
node at index i may be an antecedent in some other hyper-
edge. If it is, on Line 8, using function EDGES in HA, we
acquire the set of all hyperedges for which the node at in-
dex i is an antecedent. Of this hyperedge set we choose the
smallest invalid antecedent node index; subtracting 1 results
in the largest, valid antecedent index for our new hyperedge.
We then choose a random-sized antecedent set size (Line 9)
bounded by user-defined BA and the number of remaining
valid antecedent nodes indicated by ia. Last, on Line 11, we
construct the hyperedge with false annotation indicating a
constructed hyperedge. Precise construction of hyperedges
results in an acyclic base quest (Stocker and Alvin 2018).

For each linearization, Algorithm 2 results in a single cor-
responding hypergraph. To avoid undue complexity, we have
presented a simplified, one-to-one algorithm. Instead of ran-
dom antecedent sizes presented in Algorithm 2, we construct
and report in §4 all possible action hypergraphs.
Parallel Hyperpaths. Our goal is to now add unique choices
via parallelism. In Algorithm 3, we take as input an action
hypergraph (HA), an action generator (AGV,N) and the re-
cursive bound for the depth of parallelism (b). The goal of
PATHS is to determine if and where to insert parallel paths in
HA. To maintain the dependent structure of the linear set of
actions A in HA, we generate and insert parallel paths only
between (one-to-one) edges (Line 2) regardless of annota-
tion. For each edge a → c on Line 3, we may add parallel
paths; experimentally (§4), we generate both options. If we
generate parallel paths, we call GENPATHS (Line 4) and on
Line 5 insert each distinct path p between a and c into HA.

GENPATHS in Algorithm 3 recursively generates a set of

Algorithm 3 Parallel Path Generation
Require: HA: Base Action Hypergraph, AGV,NBL: Ac-

tion Generator, b: Current Parallelism Depth
1: procedure PATHS(HA, AGV,N , b)
2: for all a → c ∈ HA do � one-to-one edges
3: if RANDOM(true, false) then
4: for all p ∈ GENPATHS(AGV,N , b) do
5: HA.INSERT(a, p, c)

6: function GENPATHS(AGV,N , b)
7: P ← ∅
8: Ar ← AGV,N .GENREP(n ∈ N,BW)
9: for all ar ∈ AR do

10: AP ← {aR} ∪AGV,N .GENUNIQUE(BL)
11: P ← P ∪ {QUESTGEN(AP , AGV,N , b)}
12: return P

Table 2: Characteristics of 82 Quests from Skyrim

Characteristic Min Mean
(Std.Dev.)

Median
(IQR) Max

Action Count 3 11.57(6.71) 10 (8.5) 38
Minimal Length 3 10.09 (5.11) 9 (7) 29
Maximal Length 3 10.71 (5.55) 9.5 (7) 29

Concurrency
Count 0 0.17 (0.41) 0 (0) 2

Concurrency
Factor 0 0.01 (0.03) 0 (0) 0.17

Path Complexity 1 3.09 (10.13) 1 (1) 90

unique parallel paths P ; |P | is bounded by BW (Line 8).
We ensure uniqueness in each path by having at least one
unique action (Line 8) by fixing a noun (n ∈ N) and us-
ing it to generate a representative set of actions AR based
on the representative set of valid verbs, rep (V) using the
GENREP function of the action generator. For each paral-
lel path (Line 9), we construct a set of actions AP consist-
ing of a unique representative action aR and another set of
unique actions (Line 10). For the action set AP , Line 11 calls
QUESTGEN to recursively generate a base quest with deeper
parallelism as indicated by the increasing variable b.

We refer to Figure 1 into Figure 2 as a simple example
of parallel path generation. In Figure 1, we select the dashed
edge between square actions “Trap Ogre” and “Return to El-
der”. With noun ‘Ogre’, we generate two paths with repre-
sentative actions “Kill Ogre” and “Persuade Ogre”, inserting
both paths into the hypergraph between the original edge.
See (Stocker and Alvin 2018) for more complex sub-quest
and sub-parallelism examples.

4 Experimental Results
Experimental Setup. Fundamentally, our quest synthesis
algorithm is based on a set of nouns, verbs, and user-defined
dependencies among actions, if any. Each parameter de-
scribed in §2 and §3 can be tuned. Each execution of our
quest synthesis algorithm takes these factors into account.
Characteristics of Existing Quests. As a contrast to our
technique, we analyzed a corpus of 82 of the approximately

215

400 quests from The Elder Scrolls V: Skyrim (Skyrim); see
Table 2. While Skyrim is only one AAA game, it is a good
representation of RPGs as it boasts concurrency and par-
allelism in quests commensurate with other AAA titles.
The distribution describing the number of actions in Skyrim
quests is slightly skewed having more ‘middle’-range quests
with around 11 actions. The mean and median of path com-
plexity characteristic describe a strongly skewed distribu-
tion indicating little to no choice intra-quest. We also con-
clude that the ability for a player to pursue concurrent ac-
tivities intra-quest in Skyrim is limited. We conclude that
most quests in Skyrim are strictly linear, but recognize that
choice is offered via switching back and forth among multi-
ple quests.
Quest Generation. We generated a sample of 590 quests
using a range of 4-13 actions without any parallelism (thus
path complexity of 1). The concurrency count mean was
3.81 (std. dev. 2.01) and median 4 (IQR 3) with concurrency
factor mean 0.40 (std. dev. 0.15) and median 0.41 (IQR 0.2).
We computed a 99% confidence interval of the concurrency
factor (0.40 ± 0.02) and thus conclude our technique guar-
antees strong concurrency in quests compared to existing
games (Table 2) even for quests with few actions.

For quests with parallelism, we wish to show that with
a limited number of actions and levels of parallelism we
achieve a large number of quests. We restrict our base quest
to between 3 to 5 actions and parallel actions from 6 to 12 ac-
tions. We also restrict a maximum of 2 parallel paths inserted
into the base quest, parallel depth 2, and limit of 3 antecedent
actions per hyperedge. In the extreme case of 5 base quest
actions and 12 parallel actions, we generated 612,000 quests
in 344 seconds. The resulting quests had a path complexity
mean of 25.0 indicating an average of 25 different ways to
complete the resulting quest. Interestingly, the mean mini-
mum length was 7.81 compared to maximum length 12.01
indicating some paths are expeditious and some are labored.
For concurrency factor, we observed 0.20 in this experiment
and refer to this result as indicating strong concurrency. We
note that with our algorithms, parallelism is constructed be-
tween one-to-one edges. That is, with increased parallelism,
there is bound to be less concurrency (contrasting 0.40 from
our earlier experiment). We note that this experiment is re-
stricted due to the exponential growth in the space, but with
other experimental constraint configurations we arrive at the
same conclusions.

5 Related Work
Some approaches (Doran and Parberry 2011) share the fact
that only linear, single path quests are generated, having
no parallelism or concurrency. The technique developed by
Sullivan, et al. (Sullivan, Mateas, and Wardrip-Fruin 2009)
takes in user input phrases like locations or objects and pro-
duces related concepts from a database rather than a se-
quence of actions for a player to perform. This provides
ideas, but leaves quest structure to the quest designer.

Our work is in the spirit of Dormans (Dormans 2010)
who describes ‘mission’ (quest) generation using generative
graph grammars. Both Dormans’ and our techniques gen-
erate parallel paths, but we choose to represent quests us-

ing a richer structure: the hypergraph. Although (Dormans
2010) discusses real and generated examples, they do not
discuss the resulting space of quests. (Doran and Parberry
2011) generates quests given the motivation of the origi-
nating NPC, a set of rules, and a categorized collection of
verbs. The motivation restricts the quest to one path (set of
terminals from grammar-based generation) and limits the us-
able actions. Strict grammar-based generation (using graph
grammar or otherwise) does not guarantee particular plot-
points in a resulting quest. Our approach defines a natu-
ral means of using a linearization as a set of discrete plot
points prior to sub-quest generation. Contrasting existing
techniques, we describe a method of quest construction us-
ing only a collection of categorized verbs and nouns as input
and automatically provide structure. In addition, our directed
hypergraph structure facilitates unique player experiences
through concurrency and path selection while maintaining
any specified dependencies. We feel an appropriate genera-
tion scheme would strike a balance between the rule-based
approach of generative graph grammars and our structure-
driven approach.

6 Conclusions
We have formalized a representation of a game quest sup-
porting concurrency and parallelism as an acyclic directed
hypergraph. We have presented an effective and efficient
technique for generating such quests. Last, we demonstrated
the efficacy of our approach comparing to existing quests in
a AAA commercial game.

7 Acknowledgments
This work was supported in part through a Special Empha-
sis Award from Bradley University as well as the Bradley
University College of Liberal Arts and Sciences.

References
Berge, C. 1989. Graphs and hypergraphs, volume 45.
North-Holland Mathematical Library; ELSEVIER SCI-
ENCE PUBLISHERS B.V.
Doran, J., and Parberry, I. 2011. A prototype quest generator
based on a structural analysis of quests from four mmorpgs.
In Workshop on Procedural Content Generation in Games.
ACM.
Dormans, J. 2010. Adventures in level design: Generat-
ing missions and spaces for action adventure games. In
Workshop on Procedural Content Generation in Games,
PCGames ’10, 1:1–1:8. New York, NY, USA: ACM.
Stocker, A., and Alvin, C. 2018. Non-linear quest gener-
ation. http://hilltop.bradley.edu/ calvin/papers/flairs-2018-
full.pdf.
Sullivan, A.; Mateas, M.; and Wardrip-Fruin, N. 2009.
Questbrowser: Making quests playable with computer as-
sisted design. In In Proceedings of the Digital Arts and Cul-
ture Conference.
Varol, Y. L., and Rotem, D. 1981. An algorithm to generate
all topological sorting arrangements. Comput. J. 24(1):83–
84.

216

