
Improved Manipulation Algorithms
for District-Based Elections

Ramoni O. Lasisi
Department of Computer and Information Sciences

Virginia Military Institute
LasisiRO@vmi.edu

Abstract

District-based elections where voters vote for a district repre-
sentative and those representatives in turn vote to determine
the overall winner are vulnerable to a manipulation called
gerrymandering. Gerrymandering occurs when the outcome
of a district-based election is manipulated by changing the
locations and/or borders of districts in the election. A recent
work shows that the problem of gerrymandering in district-
based election is NP-complete. This previous work also pro-
posed a manipulation algorithm that is polynomial in the pa-
rameters (number of voters, candidates, and districts) of the
election. However, the algorithm suffers from a high running
time. We propose in this work, three improved manipulation
algorithms for this problem. We then show that the three al-
gorithms are also polynomial in these parameters, albeit, with
lower running times compared to the previous work.

1 Introduction

Voting protocols are commonly used for preferences ag-
gregation. Bartholdi, Tovey, and Trick (1989) define a vot-
ing protocol as an algorithm that takes as input a set C of
candidates and a set P of preferences that are strict (ir-
reflexive and antisymmetric), transitive, and complete on
C. The algorithm outputs a subset of C (allowing for
ties), who are the winners. Voting protocols, including plu-
rality, Borda, Copeland, veto, and sequential runoff, are
some widely studied voting schemes. See for example (Fal-
iszewski, Hemaspaandra, and Schnoor 2010; Lasisi 2016;
Lasisi and Lasisi 2017).

Unlike the above voting schemes where elections are
completed in a single stage, district-based elections that we
study in this work are conducted in two stages. In a district-
based election, voters vote for a district representative and
those representatives (from each of the districts) further vote
to determine the overall winner of the election. District-
based elections have real-life applications ranging from
human societies, artificial intelligence, to multi-agent sys-
tems. For example, the Electoral College of the United
States for electing the US president uses the district-based
election scheme where voters in the general elections elect
members of the Electoral College who afterwards vote to de-
termine the next president. Also in many companies, share-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

holders vote at annual general meetings to elect board of
directors, the board then vote amongst her members to elect
a chair for the board. Furthermore, consider a multi-sensor
network environment where several sensor agents jointly de-
cide on strategies to track targets in their fields of view. De-
pending on the complexity of the networks (e.g, several sub
networks) and target types (e.g., multiple or moving targets),
decisions taken by the independent sub networks may then
be aggregated to decide the overall best strategy for the net-
work. The sensor agents model the voters while the sub net-
works model districts in a district-based election.

The ideal of a society is that a candidate emerging as a
winner in an election be as widely and socially acceptable
as possible. As useful and widely applicable as the district-
based election scheme is, it is not immune from the vulner-
ability of manipulation in the election process. In particular,
this scheme is vulnerable to a type of manipulation referred
to as gerrymandering. Gerrymandering occurs when the out-
come of a district-based election is manipulated by changing
the locations and/or borders of districts in the election. Ger-
rymandering has been widely studied from different areas
of research, including political science (Feix et al. 2004;
Miller 2014), history (Butler 1992; Engstrom 2006), and
the social choice community (Guillermo and Bernard 1988;
Bachrach et al. 2016).

A recent work (Lewenberg, Lev, and Rosenschein 2017)
considers the computational complexity of gerrymandering
while using the plurality protocol in district-based elec-
tions. The authors show that the problem of gerrymander-
ing in district-based elections is NP-complete in the worst
case. However, they propose a greedy manipulation algo-
rithm, referred to as Greedy Gerrymanderingplurality , for
the problem. The algorithm was used to uncover collections
of districts in simulated and real-world elections data (from
the 2015 Israeli and UK elections) to demonstrate how ger-
rymandering could affect elections outcomes. The work thus
shows that there are instances of the elections that may be
manipulated using the algorithm. Although the proposed al-
gorithm is polynomial in the parameters (number of voters,
candidates, and districts) of the election, it suffers from its
high running time. This running time may become a source
of concern, especially when the parameters are large.

We propose in this work three improved manipula-
tion algorithms for district-based elections. These algo-

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

44

rithms together advance the state of the art by extend-
ing a recent work of Lewenberg, Lev, and Rosenschein
(2017). Our first algorithm corrects an inefficiency in the
Greedy Gerrymanderingplurality algorithm that is due to an
expensive computation which is not necessary. The second
and third algorithms are based on dynamic programming and
randomization techniques, respectively.

We show that the three algorithms are polynomial
in the parameters of the district-based elections, al-
beit, with lower running times compared to the Greedy
Gerrymanderingplurality algorithm. For the case of the ran-
domized algorithm, we also account for the number of sam-
ples required for a given accuracy and the probability of
missing the accurate value of the number of district ballot
boxes for a target candidate to achieve plurality of the bal-
lot boxes. The implication of these new results is that al-
though gerrymandering in district-based elections using the
plurality voting protocol is NP-complete in the worst case,
nonetheless, it may be achieved with some instances of the
district-based elections with little computational efforts.

2 Preliminaries

Definitions and Notation

Let k, l,m, n, z ∈ N. Let C = {c1, . . . , cz} be a set of z can-
didates in an election. Let V = {v1, . . . , vn} be a set of n vot-
ers. Let π(C) be the set of preference orders over C. Thus,
π(C)n = {π1, . . . , πn}, defines the preference orders of V
over C. We define a relation, �, for each πi. We say that a
voter vm ∈ V ranks candidate ci over candidate cj denoted,
ci � cj , if vm prefers ci to cj in her preference order πm.
Definition 1. Voting Rule

A voting rule f : π(C)n → C is a function that maps the
voters’ preferences to candidates in an election.
Definition 2. Plurality Voting

Plurality is a voting rule in which each voter casts one vote
for her most preferred candidate. It is only the first choice
candidate of the voters’ preferences that are considered in
determining the winner. This scheme requires a voter to in-
dicate only her first choice candidate and not the entire order.
Definition 3. District-based Election

A district-based election involving voters V and candi-
dates C consists of a partition of V into m disjoint districts
V1, . . . , Vm, such that V =

⋃m
i=1 Vi, with each district Vi

having a ballot box bi. Let B = {b1, . . . , bm} be the set of
the ballot boxes in all districts. An election is conducted by
applying a voting rule to each of the districts. A candidate
who wins the highest number of districts is the winner. We
assume the existence of some tie-breaking rules. We employ
the plurality voting rule in this paper since the work we ex-
tend and compare our results to also used plurality.
Definition 4. (Lewenberg, Lev, and Rosenschein 2017) The
Gerrymanderingplurality Problem

The Gerrymanderingplurality is a district-based election
with additional parameters l and k, such that l ≤ k ≤ m
and a target candidate p ∈ C. We are asked whether there
is a subset of k ballot boxes B′ ⊂ B, such that they define

a district-based election, in which every voter votes at their
closest ballot box in B′, the winner at every ballot box is
determined by plurality, and p wins in at least l ballot boxes.

As noted in (Lewenberg, Lev, and Rosenschein 2017) and
upon which the authors’ greedy algorithm is based on, Def-
inition 4 is equivalent to “. . . find[ing] a partition to k dis-
tricts such that p wins plurality of districts . . . ” We adopt
this equivalency too in designing our proposed algorithms.
Definition 5. Problem Inputs and the pluralitycb Procedure

We restate the inputs to the problem we attempt to ad-
dress in this paper. We are given sets V of n voters, C of z
candidates, B of m ballot boxes in m districts Vi, a target
candidate p ∈ C, and a constant k.

Also, we define a procedure called pluralitycb that will be
used in the three proposed gerrymandering manipulation al-
gorithms for the district-based elections. pluralitycb is used
to check whether a candidate c ∈ C wins a plurality election
in a district with ballot box b ∈ B:

pluralitycb =

{
1 if c wins in a district with a ballot box b

0 otherwise

Finally, it is widely known that determining a winner in
a plurality election with n voters and z candidates takes
O(z+n) time. In our case, plurality elections are conducted
in each district (with voters Vi). Without loss of generality,
we assume that there are equal number of voters in each dis-
trict. This assumption has also been used elsewhere in the
literature. See for example (Bachrach et al. 2016). Let the
number of voters in each district i.e, |Vi| be a. Since the
same set C of z candidates are featured in each of the dis-
tricts, then, pluralitycb for any candidate c in a district with
a ballot box b takes O(z + a) time to compute.

3 Greedy Gerrymanderingplurality Algorithm

The Greedy Gerrymanderingplurality algorithm of Lewen-
berg, Lev, and Rosenschein forms the benchmark for our
work, so we reproduce it here. The pseudocode is shown in
Algorithm 1. We also provide an analysis of the algorithm1.

Greedy Gerrymanderingplurality starts by setting B′ to
set B of the original ballot boxes in the district-based elec-
tion. The algorithm then continuously removes ballot boxes
b from B′ one at a time until |B′| = k. The objective of the
algorithm at every elimination step is to maximize the ratio
between the number of ballot boxes won by the target can-
didate p to that of the number of ballot boxes won by any
other candidate c ∈ C.

Analysis of Greedy Gerrymanderingplurality
Theorem 1. Greedy Gerrymanderingplurality algorithm
runs in O(zm · (z + a) · (m− k + 1)2) time.

Proof. We consider the FindRatio procedure first. Clearly
from the while loop, |B′| is at most m since |B| = m orig-
inally. Finding a plurality winner in the numerator or de-
nominator of the return statement in line 18 takes O(z + a)
time. However, the denominator of the statement computes

1This analysis was not given in Lewenberg et al.

45

Algorithm 1 : GreedyGerrymanderingplurality

1: procedure GREEDYGERRYMANDERING(V,B, k, p)
2: B′ ← B
3: while |B′| > k do
4: for all b ∈ B′ do
5: fb ← FINDRATIO(B′, b, V, p)
6: end for
7: b← argmaxb∈B′ {fb}
8: B′ ← B′ \ {b}
9: end while

10: if p wins a plurality of ballot boxes then
11: return True
12: else
13: return False
14: end if
15: end procedure
16: procedure FINDRATIO(B, b, V, p)
17: B′ = B \ {b}
18: return

|{b̃∈B′:p wins in b̃}|
maxc∈C,c �=p |{b̃∈B′:c wins in b̃}|

19: end procedure

the maximum number of wins among all the z candidates
(except p) in a plurality election for all ballot boxes b̃ ∈
B′. Thus, FindRatio takes a total of O(zm · (z+ a)) time.

Now for the Greedy Gerrymanderingplurality procedure,
it is clear that each of the loops starting from lines 3−4 takes
O(m− k+1) time since the while loop in line 3 terminates
when |B′| = k. Also, FindRatio is called each time in the
nested loops in lines 3 − 4. Thus, the overall running time
of the Greedy Gerrymanderingplurality algorithm is O(zm ·
(z + a) · (m− k + 1)2).

4 The GreedyGerrymandering+plurality

We present GreedyGerrymandering+plurality algorithm
that removes an expensive computation that is not necessary
in the FindRatio procedure of Algorithm 1. FindRatio is
called for every ballot box b ∈ B′, and for each of these
calls, FindRatio recomputes the number of plurality wins
for each candidates c ∈ C in the set B′ of ballot boxes under
consideration. We make the following observations:

• The set B′ of ballot boxes examined in the FindRatio
procedure at some step s differs from that at the next step
s+ 1 by a single ballot box, where 1 ≤ s ≤ |B′| − 1.

• Since each ballot box induces a district, the plurality win-
ner, say, c ∈ C in a particular district Vi with a ballot box,
say, b is the same across all steps 1 ≤ s ≤ |B′| of the
FindRatio procedure for district Vi.

These two observations lead us to avoid recomputation
of the plurality winners in FindRatio for every call from
the Greedy Gerrymanderingplurality procedure. Rather, we
compute the plurality winners in the original ballot boxes
B once and then update as appropriate. Using pluralitycb
with c ∈ C, we partition B into disjoint sets of ballot
boxes won by each candidate. This partition can be main-
tained in a HashMap data structure with the candidates and

their corresponding sets of ballot boxes won as a key/value
pair. Each disjoint set can be maintained by a HashSet data
structure. E.g., we can use the following structures in Java:

Map<Candidate, Set<BallotBoxes>> partition
Set<BallotBoxes> ballotBoxes

The key/value pairs of information stored by these struc-
tures can be represented in table form using some arbitrary
candidates and ballot boxes as shown in Table 1.

Table 1: Arbitrary key/value pairs of candidates and their
sets of plurality ballot boxes won represented in a table form

Candidates Ballot Boxes Won
c1 {b2, b3, b6}
c2 {b4, b5, b7, b8, b11}
p {b1, b9, b10}

Let procedure CreatePartition(V,C,B) be an algo-
rithm that creates this partition as shown in Algorithm 2.

Algorithm 2 : CreatePartition

1: procedure CreatePartition(V,C,B)
2: Map < C, Set < B >> partition
3: Set < B > ballotBoxes
4: for all c ∈ C do
5: ballotBoxes← ∅
6: for all b ∈ B do
7: if pluralitycb = 1 then
8: ballotBoxes.add(b)
9: end if

10: end for
11: partition.put(c, ballotBoxes)
12: end for
13: return partition
14: end procedure

Lines 2 and 3 of Algorithm 2 create two data structures, a
HashMap, partition, and a HashSet, ballotBoxes. In lines
4 to 12, for each candidate c ∈ C, we determine the plu-
rality ballot boxes that c wins and stores c and her corre-
sponding set of plurality ballot boxes (ballotBoxes) won as
a key/value pair in partition at line 11.

We now define a different method for computing the ratio
between the number of ballot boxes won by the target candi-
date p to that of the maximum number of ballot boxes won
by any other candidate c ∈ C. The method is illustrated in
procedure ComputeRatio(partition, C, b, p) as shown in
Algorithm 3 and a description provided in Lemma 1.

46

Algorithm 3 : ComputeRatio

1: procedure ComputeRatio(partition, C, b, p)
2: pBallotBoxes← partition.getV alue(p)
3: pBallotSize← pBallotBoxes.size()
4: if pBallotBoxes.contains(b) then
5: pBallotSize← pBallotSize− 1
6: end if
7: maxPluralityWins← 0
8: for all c ∈ C and c 	= p do
9: ballotBoxes← partition.getV alue(c)

10: ballotSize← ballotBoxes.size()
11: if ballotBoxes.contains(b) then
12: ballotSize← ballotSize− 1
13: end if
14: if ballotSize > maxPluralityWins then
15: maxPluralityWins← ballotSize
16: end if
17: end for
18: return pBallotSize

maxPluralityWins

19: end procedure

We modify Algorithm 1. The pseudocode of the new al-
gorithm, GreedyGerrymandering+plurality is shown in
Algorithm 4. It is similar to Algorithm 1 except it avoids re-
peated computations of the number of times each candidate
wins plurality elections in the set of ballot boxes to find max-
imal ratios between a target candidate p and any other candi-
date c, using CreatePartition and ComputeRatio. Then,
we update partition in lines 9 − 16: if the reference ballot
box b is won by a certain candidate c, we remove b from its
set of ballot boxes. This has the same effect as the statement
B′ ← B′ \ {b} in line 8 of Algorithm 1.

Algorithm 4 : GreedyGerrymandering+plurality

1: procedure GreedyGerrymandering+(V,C,B, k, p)
2: partition← CreatePartition(V,C,B)
3: B′ ← B
4: while |B′| > k do
5: for all b ∈ B′ do
6: fb ← ComputeRatio(partition, C, b, p)
7: end for
8: b← argmaxb∈B′ {fb}
9: for all c ∈ C do //partition update: B′ ← B′\{b}

10: ballotBoxes← partition.getV alue(c)
11: if ballotBoxes.contains(b) then
12: ballotBoxes← ballotBoxes.remove(b)
13: partition.remove(c)
14: partition.put(c, ballotBoxes)
15: end if
16: end for
17: end while
18: if p wins a plurality of ballot boxes then
19: return true
20: else
21: return false
22: end if
23: end procedure

Correctness of GreedyGerrymandering+plurality

Lemma 1. For any set B of ballot boxes, ComputeRatio
correctly computes the maximal ratios between a target can-
didate p and any other candidate c ∈ C.

Proof. FindRatio (in Algorithm 1) is passed the original
ballot box B in the very first call to it. Then, it returns the
ratio of the number of ballot boxes won by p in B to the
highest number of ballot boxes won by any other candi-
date c ∈ C, c 	= p, while excluding a reference ballot box
b. The set B is updated for subsequent calls. We provide a
matching description for FindRatio as implemented in the
ComputeRatio procedure. First, we create a partition struc-
ture, partition, that keeps track of all the disjoint sets of the
ballot boxes won by each c ∈ C in the original set B of bal-
lot boxes. Using partition, we obtain pBallotSize, the size
of the set of ballot boxes won by p, then run through for each
c 	= p to obtain the largest size, maxPluralityWins, of the
set of ballot boxes won by one of the candidates. Also, for
both cases we exclude the reference ballot box b, in confor-
mity with a similar step (line 17) in FindRatio. Then, we
return the ratio, pBallotSize

maxPluralityWins . There is clearly a cor-
respondency between the number of ballot boxes won by p
and c 	= p in FindRatio and the sets sizes pBallotSize
and maxPluralityWins of ComputeRatio.

Theorem 2. GreedyGerrymandering+plurality returns
exactly the same result as Greedy Gerrymanderingplurality
when both algorithms are given the same set of inputs.

Proof. This is obvious since the two algorithms use exactly
the same set of instructions except for how the maximal ra-
tios are computed, which Lemma 1 clarifies.

Analysis of GreedyGerrymandering+plurality

Theorem 3. GreedyGerrymandering+plurality algo-
rithm runs in O(max(zm(z + a), z(m− k + 1)2) time.

Proof. We first note that all of the operations in a HashSet
or HashMap data structure can each be completed in con-
stant time. Consider the CreatePartition procedure: there
is a loop of size |B| = m nested in another loop of size
|C| = z. This nested loop calls the pluralitycb procedure
each time. Thus, the running time of CreatePartition is
O(zm(z + a)). CreatePartition is completed once in
GreedyGerrymandering+plurality . On the other hand,
it takes O(z) time to complete ComputeRatio proce-
dure. Now, in Algorithm 4, each of the loops starting from
lines 4 − 5 of the GreedyGerrymandering+plurality al-
gorithm takes O(m − k + 1) time since the while loop in
line 4 terminates when |B′| = k. This nested loop calls the
ComputeRatio procedure each time, for a running time of
O(z(m − k + 1)2). Since any of the district-based election
parameters may be arbitrarily large, we conclude that the to-
tal running time of the GreedyGerrymandering+plurality

algorithm is O(max(zm(z + a), z(m− k + 1)2).

47

5 The Dynamic Programming Algorithm

We now describe the dynamic programming (DP) algo-
rithm. Let bi with 1 ≤ i ≤ m, be the ith ballot box in the set
of ballot boxes B. Let 1 ≤ j ≤ l ≤ k. Denote by W (i, j) the
number of plurality ballot boxes won by candidate p when
asked: how many ballot boxes does p wins given a subset of
k ballot boxes B′ ⊂ B? The base case and the recurrence
for the DP table are shown in Algorithm 5.

Algorithm 5 : GerrymanderingDP (V,B, k, l, p)

Base case: W (i, 0) = 0 0 ≤ i ≤ m
W (0, j) = 0 0 ≤ j ≤ k

Recurrence: for all (i, j) such that i ≥ j,

W (i, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x if j > i

W (i − 1, j) if W (i − 1, j) ≥ j

w + pluralityp
bi

if W (i − 1, j) < j and flag = 0

w if W (i − 1, j) < j and flag = 1

where x = max{W (i, j − 1),W (i − 1, j − 1)}, w =
max{x,W (i − 1, j)}, flag = 0 means pluralitypbi is not
yet called, and flag = 1 means it is already called for bi.

The correctness of the algorithm is obvious as we com-
pute the number of plurality wins for cell (i, j) by checking
if p wins a plurality election for the current ballot box bi and
then update the score based on the maximum score from pre-
viously computed subproblems in cells (i, j−1), (i−1, j−
1), (i−1, j). We continue until we compute the score for cell
(m, k), where we report true if W (m, k) ≥ l, i.e., p wins a
plurality of at least l ballot boxes, or false otherwise. Note
that we call pluralitypbi once per row of the DP table.
Theorem 4. The GerrymanderingDP algorithm runs in
O(mk(z + a)) time.

Proof. The size of the ballot boxes is m and the number of
ballot boxes of interest for p is l ≤ k. We call pluralitypbi
once per row to compute the value of each cell. Thus, the
running time for this algorithm is O(mk(z + a)).

6 The Randomized Algorithm

Our randomized method is based on an approach in
(Bachrach et al. 2008) for approximating power indices in
weighted voting games. The method in our case involves
random selection of ballot boxes and checking whether can-
didate p ∈ C wins in at least l districts. A natural question to
ask then is: what is the amount of random selections needed
to achieve at least l wins assuming such enough winning
ballot boxes are present in the set B of all ballot boxes?

We approximate this number by doing large enough ran-
dom selections of the ballot boxes. Similar to Bachrach et
al., our proposed method determines the number η of ran-
dom selections required for a given approximation accuracy
ε > 0 and probability δ of missing the accurate value of the
number of wins for candidate p in the elections.

We define a random selection procedure. The procedure
first generates a random number i corresponding to a ballot
box bi. Then calls pluralitypbi to check if p wins plurality

with ballot box bi. We abuse notation and let the procedure
return {1, bi} if p wins and {0, bi} otherwise. Let proce-
dure RandomSelect(V,C,B, p) randomly selects a ballot
box as shown in Algorithm 5. This procedure models the
Bernoulli distribution. Let Xi be Bernoulli random variables
associated with different trials of the RandomSelect proce-
dure in which Xi is 1 if p wins plurality election and 0 other-
wise. The Bernoulli random variable is defined with param-
eter ρ, where P (Xi = 1) = ρ and P (Xi = 0) = 1− ρ.

Algorithm 6 : RandomSelect

1: procedure RandomSelect(V,C,B, p)
2: i← generate a random number between 1 and |B|
3: select ballot box bi for district Vi ⊂ V from B
4: if pluralitypbi = 1 then

5: return {1, bi}
6: else
7: return {0, bi}
8: end if
9: end procedure

Consider η independent repetitions of such trials. Let X
be the number of successes. X =

∑η
i=1 Xi is said to

have a Binomial distribution with parameters η and ρ, de-
noted X ∼ B(η, ρ). Observe that ρ is unknown. Since
X ∼ B(η, ρ) then the estimate for ρ, is ρ̂ = X

η , and is
known to be unbiased. We now estimate the amount of dis-
trict elections that candidate p wins. We employ a special-
ized version of the well-known Hoeffding’s inequality (Ho-
effding 1963), referred to as the Chernoff’s bound to obtain
a relationship among η, ε, and δ.
Theorem 5. (Hoeffding’s inequality). Let X1, . . . , Xη be in-
dependent random variables on R such that ai ≤ Xi ≤ ci
with probability one. If X =

∑η
i=1 Xi then for all ε > 0

Pr(|X − E[X]| ≥ ε) ≤ 2e
− 2ε2∑

(ci−ai)
2 (1)

Hoeffding’s inequality specializes to Chernoff’s bound as
follows. If Xi are independent and identically distributed
Bernoulli random variables, then ai = 0, ci = 1, and
X ∼ B(η, ρ). Since E[X] = ηρ, Chernoff’s bound is:

Pr

(∣∣∣∣1η
η∑

i=1

Xi − ρ

∣∣∣∣ ≥ ε

)
≤ 2e−2ηε2 (2)

which simplifies to the following

Pr

(∣∣∣∣Xη − ρ

∣∣∣∣ ≥ ε

)
≤ 2e−2ηε2 (3)

Pr(|ρ̂− ρ| ≥ ε) ≤ 2e−2ηε2 . (4)

We ensure that the Chernoff’s bound given in Equation
4 does not exceed the probability δ of missing the accurate
value of the number of wins for p in all district-based elec-
tions, and simplify the expression as follows:

Pr(|ρ̂− ρ| ≥ ε) ≤ 2e−2ηε2 ≤ δ

−2ηε2 ≤ ln
δ

2
.

48

We obtain η ≥ 1
2ε2 ln

2
δ . Thus, the number of random selec-

tions for a given accuracy ε > 0 and probability δ of missing
the accurate value of the number of wins is at least ln 2

δ

2ε2 .
Let RandomGerrymandering(V,C,B, l, p, ε, δ) be

our randomized manipulation algorithm for district-based
elections. RandomGerrymandering randomly selects
ballot boxes using RandomSelect. The algorithm starts
with an empty value for a HashSet data structure, namely,
found. found is continuously updated with ballot boxes
corresponding to new districts that p wins plurality elections
in. RandomGerrymandering continues to select ballot
boxes until we have enough number of selections, i.e., when
η ≥ ln 2

δ

2ε2 . The algorithm returns true if the number of dis-
tricts won by p is l, i.e., |found| = l, otherwise, false. The
pseudocode of the algorithm is shown in Algorithm 7.

Algorithm 7 : RandomGerrymandering

1: procedure RandomGerrymandering(V,C,B, l, p, ε, δ)
2: counter ← 0
3: found ←− ∅
4: repeat
5: counter ← counter + 1
6: if RandomSelect(V,C,B, p) = {1, bi} then
7: found ←− found ∪ {bi}
8: if |found| = l then
9: return true

10: end if
11: end if
12: B ← B \ {bi}
13: unitl counter ≤ 1

2ε2
ln 2

δ
14: return false
15: end procedure

The correctness of the RandomGerrymandering algo-
rithm follows from the determination of sufficient number η
of random selections for a given approximation accuracy ε
and probability δ of missing the accurate value of the num-
ber of wins for candidate p as demonstrated using the Cher-
noff’s bound. Having obtained this bound we biased our se-
lection process by excluding any already selected ballot box
in subsequent selections, thus increasing the probability of
plurality ballot boxes win for p.

Analysis of RandomGerrymandering Algorithm

Theorem 6. The RandomGerrymandering algorithm
runs in O((z + a) · ln 2

δ

2ε2) time.

Proof. We have a single loop that runs for ln 2
δ

2ε2 times and
calls RandomSelect (which costs O(z+a)) each time.

7 Conclusions

District-based elections where voters vote for a district rep-
resentative and those representatives in turn vote to deter-
mine the overall winner have real-life applications ranging
from human societies to artificial intelligence. We consider
district-based elections and a form of manipulation, referred
to as gerrymandering that is associated with the scheme. We
extend a recent work of (Lewenberg, Lev, and Rosenschein

2017) which shows that the problem of gerrymandering in
district-based elections is NP-complete, but also proposed a
manipulation algorithm for the problem.

We propose three improved algorithms for this problem,
and show that the proposed algorithms are polynomial in the
parameters of the district-based elections with lower run-
ning times compared to the algorithm of Lewenberg, Lev,
and Rosenschein. The implication of these results is that
although gerrymandering in district-based elections is NP-
complete in the worst case, it may be achieved with some
instances of the elections with little computational efforts.

8 Acknowledgment

This research work is partially supported by the Virginia
Military Institute’s Professional Travel Funds.

References

Bachrach, Y.; Markakis, E.; Procaccia, A. D.; Rosenschein,
J. S.; and Saberi, A. 2008. Approximating power indices. In
7th AAMAS Conference, 943–950.
Bachrach, Y.; Lev, O.; Lewenberg, Y.; and Zick, Y. 2016.
Misrepresentation in district voting. In 25th International
Joint Conference on Artificial Intelligence, 81–87.
Bartholdi, J. J.; Tovey, C. A.; and Trick, M. A. 1989. The
computational difficulty of manipulating an election. Social
Choice and Welfare 6(3):227–241.
Butler, D. 1992. The redrawing of parliamentary boundaries
in Britain. British Elections and Parties Yearbook 2(1).
Engstrom, E. J. 2006. Stacking the states, stacking the
house: The partisan consequences of congressional redis-
tricting in 19th century. APSR 100(1):419–427.
Faliszewski, P.; Hemaspaandra, E.; and Schnoor, H. 2010.
Manipulation of Copeland elections. In 9th AAMAS Confer-
ence, 367–374.
Feix, M. R.; Lepelley, D.; Merlin, V. R.; and Rouet, J.-L.
2004. The probability of conflicts in a U.S. presidential type
election. Economic Theory 23(2):227–257.
Guillermo, O., and Bernard, G. 1988. Optimal partisan ger-
rymandering. Political Geography Quarterly 7(1):5–22.
Hoeffding, W. 1963. Probability inequalities for sums of
bounded random variables. Journal of the American Statis-
tical Association 58(301):13–30.
Lasisi, R. O., and Lasisi, A. A. 2017. Improved heuristic
for manipulation of second-order Copeland elections. In 3rd
Global Conference on Artificial Intelligence, 162–174.
Lasisi, R. O. 2016. Manipulation of second-order Copeland
elections: Heuristic and experiment. In 29th FLAIRS Con-
ference, 68–73.
Lewenberg, Y.; Lev, O.; and Rosenschein, J. S. 2017. Divide
and conquer: using geographic manipulation to win district-
based elections. In 16th AAMAS Conference, 624–632.
Miller, N. R. 2014. The house size effect and the referen-
dum paradox in u.s. presidential elections. Electoral Studies
35:265–271.

49

