
Making Belnap’s “Useful Four-Valued Logic” Useful

Geoff Sutcliffe
Department of Computer Science

University of Miami

Francis Jeffry Pelletier
Department of Philosophy

University of Alberta

Allen P. Hazen
Department of Philosophy

University of Alberta

Abstract

In 1977 Nuel Belnap published two articles, “How a Com-
puter Should Think” and “A Useful Four-Valued Logic”, in
which he defined a four-valued logic called FDE (First De-
gree Entailment). However, FDE does not allow entailments
within statements, and no conditional connective is defined.
As such, it is not really computationally “useful”. This pa-
per proposes conditional connectives to add to FDE, and de-
scribes the implementation of a reasoning tool for FDE with
a conditional connective, with experimental results. With the
addition of a conditional connective FDE starts to become
truly computationally useful.

1 Background

In 1977 Nuel Belnap published two articles, “How a Com-
puter Should Think” (Belnap 1977b) and “A Useful Four-
Valued Logic” (Belnap 1977a).1 One of the leading ideas
was of a then-futuristic knowledge based system that would
not only retrieve explicitly stored data, but would also reason
and deduce consequences of the stored data. A further idea
was that such a knowledge base might be given contradic-
tory data to store, and that there might be topics for which no
data is stored. For example, a knowledge base about char-
acters in a TV series might be used to determine what the
script could include (e.g., live characters require words and
placement, dead characters require only placement). How-
ever, characters could be both alive and not alive (e.g, the
undead), or not in the knowledge base at all (e.g., not yet
in the series). Reasoning about these situations in classical
logic is problematic - contradictions allow any consequence
to be deduced (e.g., the existence of the undead leads to the
conclusion that dead characters need words), and in the ab-
sence of knowledge tautologies can be deduced (e.g., non-
existent characters are alive or not alive, and hence require
placement). Belnap thought that this situation called for a
four-valued logic, where the truth-values are True, False,
Both, and Neither. This logic was given the name FDE (First
Degree Entailment).

Belnap envisaged the four truth values of FDE in two lat-
tice forms, the “Truth Diamond” and the “Information Dia-
mond”, shown in Figure 1. The Truth Diamond represents
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1Most easily accessed as the merged version, (Belnap 1992).

the amount of truth in the four truth values, with T having
the most (only true) and F the least (only false). B and N are
between the two extremes of T and F, with different ways
of balancing their true and false parts, and therefore incom-
parable amounts of truth. In contrast, the Information Dia-
mond represents the amounts of information in the four truth
values, with B having the most (both true and false) and N
the least (neither true nor false). T and F are between the
two extremes of B and N with different types, and therefore
incomparable amounts, of information.

T

B N

F

B

T F

N

Figure 1: The Truth and Information Diamonds

Three logical connectives were provided for FDE: conjunc-
tion (∧), disjunction (∨), and negation (¬). The truth value
of a conjunction (disjunction) is the meet (join) of its con-
juncts (disjuncts) in the lattice, and negation inverts the lat-
tice order. Table 1 shows these as truth matrices. As usual,
the truth values are divided into those that are designated –
the values that “true” statements should have (like being T
in classical logic), and those that are undesignated. Logical
truths are those that are always designated regardless of the
truth values of their atomic components, and are the formu-
lae that a reasoning tool should be able to prove. In FDE T
and B are designated, so that N and F are undesignated.

∧ T B N F
T T B N F
B B B F F
N N F N F
F F F F F

∨ T B N F
T T T T T
B T B T B
N T T N N
F T B N F

¬
T F
B B
N N
F T

Table 1: Truth matrices for FDE’s connectives

FDE was formulated without a conditional connective,
and instead meta-theoretically allowed entailments of the
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form Γ � ϕ among statements. That way entailments could
never become embedded - it would be ill-formed to say any-
thing like (Γ � ϕ) � (Δ � ψ). Thus there is a notion of
just first-degree entailments, rather than a connective that ac-
cepts arbitrary sentences as its arguments (Dunn 1976). This
makes it impossible to state that some formula follows from
given premises, and the ability to reason and deduce conse-
quences is restricted. (Rodrigues and Russo 1998) provide
a partial solution by employing a first-order representation
of FDE in which the meta-linguistic entailment � is repre-
sented by a special conditional connective that can occur at
most once in any statement.

A second weakness of FDE is that it is not functionally
complete – only a subset of the 4(42) (= 4,294,967,296) pos-
sible binary relations among the four values is expressible in
the language of ∧, ∨, and ¬. For example, there is no truth
function that starts with all the atomic letters being assigned
N and results in an expression that has a value other than N.

The lack of a suitable conditional connective and the lack
of functional completeness need to be addressed in order for
FDE to assume the “computationally useful” role envisaged
by Belnap. This paper proposes two conditional connec-
tives to add to FDE, which makes it possible to exploit the
full range of the inferences that should be allowed in a four-
valued logic like FDE, so that it starts to become truly com-
putationally useful. The issue of functional completeness
will be addressed in future work.

2 What is a “Useful” Conditional?

In classical logic it is normal to define a conditional connec-
tive in terms of ∨ and ¬

(ϕ→ ψ) =d f (¬ϕ ∨ ψ)
Using that definition in FDE yields a conditional connective
with the truth-matrix shown in Table 2 (the antecedent value
is in the left column, the consequent value is in the top row).

→ T B N F
T T B N F
B T B T B
N T T N N
F T T T T

Table 2: Truth matrix for classical definition of→ in FDE

However, modus ponens (MP) – the central principle of
reasoning and chaining results together – fails in FDE with
this conditional connective. Let �ϕ� = TV express that the
truth-value of the formula ϕ is TV . Then, for example, if
�ϕ� = B and �ψ� = N modus ponens fails, because �ϕ�
and �ϕ → ψ� are designated but �ψ� is not. (Correspond-
ingly, unit resolution also fails in this logic: If �ϕ� = B and
�ψ� = F, then �¬ϕ� = B and �ϕ ∨ ψ� = B. Both are desig-
nated, but the unit resolvent �ψ� = F is not.) Thus a different
way of defining a conditional connective must be used. The
overarching consideration is that the conditional connective
must support MP, i.e., whenever the antecedent and the con-
ditional have designated values, the consequent must have a
designated value.

One way to ensure that MP holds is to emphasize the clas-
sical aspect of FDE. In the cases when the antecedent is des-
ignated, MP holds naturally if the value of the consequent is
assigned to the conditional. This is the case in classical logic
(T → T = T and T → F = F), and the principle can be
adopted here (e.g., B → N = N). In the cases when the an-
tecedent is undesignated MP holds vacuously, and the value
of the conditional does not matter, regardless of the value of
the consequent. In the classical two-valued case, T is the
value that is assigned to the conditional when the antecedent
is F. The corresponding idea in FDE is to assign T or B to
the conditional when the antecedent is N or F. The condi-
tional connective described in (Avron 1991), and considered
in (Hazen and Pelletier 2017), assigns T to the conditional
whenever the antecedent is undesignated. These classicality
considerations define a suitable conditional connective for
FDE, called →cmi (for classical material implication). Its
truth matrix is given in Table 3.

→cmi T B N F
T T B N F
B T B N F
N T T T T
F T T T T

Table 3: Truth matrix for→cmi

It is noteworthy that FDE with the connectives ∧,∨,¬,
but restricted to the three truth values T, N, and F, is the
“strong Kleene 3-valued logic” K3 (Kleene 1952, §64).
Similarly, FDE restricted to T, B, and F, is the “logic of
paradox” LP (Priest 1979). The investigation in (Hazen
and Pelletier 2017) shows that adding →cmi to K3 gener-
ates a logic “synonymous” (Pelletier and Urquhart 2003)
with Łukasiewicz’s three-valued logic Ł3 (in which the third
value is N) (Łukasiewicz 1920; Łukasiewicz and Tarski
1930). Similarly, adding→cmi to LP generates the logic A3
(in which the third value is B) (Avron 1991; Tedder 2015). It
is due to the ease of proving these sorts of meta-theoretic re-
sults that the →cmi conditional was chosen in (Hazen and
Pelletier 2017) to add to FDE, and why it is considered
here. A related logic is RM3 (Pelletier, Sutcliffe, and Hazen
2017), which like A3 can be built by adding a conditional
connective to LP. RM3’s conditional connective is different
to→cmi, defined by the contrapositive of→cmi

(φ→rm3 ψ) =d f ((φ→cmi ψ) ∧ (¬ψ→cmi ¬φ)).
It turns out that FDE→(FDE with either of the two condi-
tionals proposed in this paper) is a sublogic of A3, which is
a sublogic of FOL, i.e., the FDE→ theorems are a subset of
theorems of A3, which are a subset of the theorems of FOL.
The different conditional connective of RM3 places it apart
from A3 and FDE→, but RM3 is also a sublogic of FOL.
A comparison between reasoning in RM3, A3, and FDE→is
given in Section 4.

The decisions made for the →cmi connective were based
on notions adopted from classical logic. These formed some
constraints on possible values for the connective values,
from which intuitively desirable values were selected. This
principle of using constraints was further developed in this
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research, to the point where there were only four choices
left, for which “obvious” decisions were made. This re-
sulted in a second (but similar) conditional connective for
FDE, called →con (for constrained). The following are the
constraints that were used to produce→con, in our perceived
order of plausibility.

1. Modus Ponens: If the antecedent is designated, and the
consequent is undesignated, then the conditional is un-
designated.

2. Classicality: If the antecedent and consequent are ei-
ther T or F then the conditional must agree with classical
logic. Thus

T→con T = T T→con F = F
F→con T = T F→con F = T

3. False Implies True: If the antecedent is F or the conse-
quent is T then the conditional is T. Thus

F→con B = T F→con N = T
B→con T = T N→con T = T

4. Undesignated Antecedent: If the antecedent is undesig-
nated then the conditional is designated. Thus

N→con B = T or B N→con N = T or B
N→con F = T or B

5. Designated Antecedent in a Diamond: If the antecedent
is designated, and above or equal to the consequent in
the Truth Diamond or the Information Diamond, then the
value of the conditional is that of the consequent. Thus

T→con B = B T→con N = N
B→con B = B B→con N = N
B→con N = N

6. Non-equivalence: With the biconditional φ ↔ ψ defined
as (φ → ψ) ∧ (ψ → φ), for distinct truth values TV1 and
TV2, TV1 ↔ TV2 � T. Thus

N→con F = B

These constraints define all values for →con except
N →con B and N →con N, each of which can be T or B,
i.e., there are four possibilities.2 For N →con N the obvi-
ous choice is T, as that makes N ↔con N = T. Then be-
lieving that N →con B should be different from N →con N,
N→con B = B. The resultant matrix for→con is given in Ta-
ble 4. There are only two differences from→cmi, for which
N→ B and N→ F are T. These are boldfaced in Table 4.

→con T B N F
T T B N F
B T B N F
N T B T B
F T T T T

Table 4: Truth matrix for→con

Constraints 2-6 alone ensure that MP is satisfied, so that
the Modus Ponens constraint is not necessary for ensuring
that the conditional connective is MP-compliant. Some of

2The second author does not subscribe to Non-equivalence, so
for him there are eight possibilities.

the constraints confirm what earlier constraints had already
required, e.g., Classicality requires F →con T = T, which
is also required by the subsequent constraints False Implies
True and Undesignated Antecedent.

There are also other properties that a good conditional
connective should have, and do hold for →con. These in-
clude:

• Deduction Theorem: If the fact that the antecedent is des-
ignated can be used to prove that the consequent is des-
ignated, then it is possible to prove that the conditional is
designated.

• Chained Implication: If φ→ ψ and ψ→ σ are designated
then φ→ σ is designated.

• Contraction: (φ→ (φ→ ψ))→ (φ→ ψ) is designated.

• Thinning: φ→ (ψ→ φ) is designated.

• Designated Antecedent: If the antecedent is designated
then the value of the conditional is that of the consequent
(see, e.g., (Arieli and Avron 1998)).

Some properties of a good conditional connective do not
hold for→con, e.g.,

• Contraposition: (φ→ ψ)↔ (¬ψ→ ¬φ)

The process of producing the final four possible condi-
tional connectives was automated by encoding ∧, ∨, ¬, the
diamonds, and the constraints in first-order logic. The en-
coding was passed to the automated reasoning system Vam-
pire 4.2 (Kovacs and Voronkov 2013), configured to find a
finite model. The finite model produced includes the val-
ues for a conditional connective. Iteratively, the negation
of each such conditional connective found was added to the
encoding so that the next run would produce a different con-
ditional connective. The encoding plus the negations of the
four possible conditional connectives was found to be un-
satisfiable, indicating there are no more possible conditional
connectives that meet the constraints.

Adding →cmi (→con) to FDE produces the logic FDE→cmi

(FDE→con ). Even though →cmi and →con and their corre-
sponding biconditionals are different, it is heartening to
note that they are very similar: The conditionals differ only
when the antecedent is N, and the consequent is B or F. The
biconditionals differ only when one side is N and the other
side is B or F. In all cases the difference is only in which
of the designated or undesignated values the conditional or
biconditional produces

N→cmi B = T N→con B = B (designated)
N→cmi F = T N→con F = B (designated)
N↔cmi B = N N↔con B = F (undesignated)
N↔cmi F = T N↔con F = B (designated)

This demonstrates that the meta-theoretic bases for→cmi
closely mirror the constraints on a good conditional that pro-
duced→con. In Sections 3 and 4 the two logics FDE→cmi and
FDE→con are referred to generically as FDE→ when the re-
sults and comments apply to both variants.

Although→cmi and→con are the same in terms of desig-
nation, FDE→cmi and FDE→con have different theorems. This
can be seen in Problems 4 and 11 of Table 6 in Section 4,
which might make FDE→con unacceptable to some classical
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logicians. Another stark difference is between their bicondi-
tionals for N ↔ F. While FDE→cmi claims that N and F are
truly equivalent, FDE→con says N and F are both equivalent
and non-equivalent. This leads to counterintuitive possibil-
ities in FDE→cmi . For example, a paramodulation-like infer-
ence rule that replaces a formula by a truly equivalent for-
mula could replace a formula that is N by one that is F. This
counterintuitive replacement would not occur in FDE→con .

3 Implementation

In (Pelletier, Sutcliffe, and Hazen 2017) two translations
from the logic RM3 to classical first-order logic (FOL) were
presented, providing an indirect theorem proving method for
RM3. The “truth evaluation” translation has been adopted to
produce an indirect theorem proving method for FDE→.

A recursive translation function trs is defined for formu-
lae in FDE→, resulting in formulae in FOL. The translation
function takes an FDE→ formula and a target FDE→ truth
value (one of T, B, N, or F) as arguments, and translates
the formula, either directly for atoms, or recursively on the
subformulae for non-atoms, to produce a FOL formula. In-
tuitively, the translation captures the necessary and sufficient
conditions for the FDE→ formula to have the target truth
value. The translation rules are shown in Table 5. The re-
cursion terminates by translating an FDE→ atom to a FOL
atom. Equality is treated classically, so that for a target truth
value of B or N an equality atom is translated to the FOL
constant F. Non-equality atoms are translated to a FOL atom
that captures what it means for the atom to have the target
truth value. A FDE→ atom Φ that has predicate symbol P
and arity n, is translated to a FOL atom with the predicate
symbol PT or PB or PN or PF , corresponding to the target
truth value, also with arity n, applied to the same arguments
as P in Φ. Definition Axioms are added to relate each pred-
icate symbol PT , PB, PN , and PF to atoms that correspond
to the two truth values T and F of FOL. The axioms intro-
duce two new predicate symbols, PcT and PcF (for classical
True and False) for each predicate symbol P in the FDE→
problem. The axioms are:
∀x1 ··∀xn (PT (x1, ··xn)↔ (PcT (x1, ··xn)∧¬PcF(x1, ··xn)))
∀x1 · ·∀xn (PB(x1, · · xn)↔ (PcT (x1, · · xn)∧PcF(x1, · · xn)))
∀x1··∀xn (PN(x1, ··xn)↔ (¬PcT (x1, ··xn)∧¬PcF(x1, ··xn)))
∀x1 ··∀xn (PF(x1, ··xn)↔ (¬PcT (x1, ··xn)∧PcF(x1, ··xn)))

Finally, Exhaustion Axioms are added to enforce that each
FDE→ atom takes on exactly one of the four truth values.
The axioms are:
∀x1 · ·∀xn (PT (x1, · · xn) ∨ PB(x1, · · xn) ∨

PN(x1, · · xn) ∨ PF(x1, · · xn))
The exclusive disjunction of the four disjuncts follows from
these axioms and the definition axioms.

For a set of formulae φ, let de f (φ) be the set of defini-
tion axioms, and exh(φ) the set of exhaustion axioms, for
the predicate symbols that occur in φ. Since the designated
values of FDE→ are T and B, define

des(φ) = trs(φ,T) ∨ trs(φ,B)
For a problem φ � ψ define

trans(φ) = des(φ) ∪ exh(φ ∪ {ψ}) ∪ de f (φ ∪ {ψ})
Then φ �FDE→ ψ iff trans(φ) �FOL des(ψ). A

F trs(F,T)
φ = ψ φ = ψ
Φ ΦT

¬φ trs(φ,F)
φ ∧ ψ trs(φ,T) ∧ trs(ψ,T)
φ ∨ ψ trs(φ,T) ∨ trs(ψ,T) ∨

(trs(φ,B) ∧ trs(ψ,N) ∨ (trs(ψ,B) ∧ trs(φ,N)
φ→cmi ψ trs(φ,F) ∨ trs(ψ,T) ∨ trs(φ,N)
φ→con ψ trs(φ,F) ∨ trs(ψ,T) ∨ (trs(φ,N) ∧ trs(ψ,N))
φ↔cmi ψ (trs(φ,T) ∧ trs(ψ,T) ∨

((trs(φ,N) ∨ trs(φ,F)) ∧ (trs(ψ,N) ∨ trs(ψ,F)))
φ↔con ψ (trs(φ,T) ∧ trs(ψ,T)) ∨ (trs(φ,N) ∧ trs(ψ,N)) ∨

(trs(φ,F) ∧ trs(ψ,F))
∀x φ ∀x trs(φ,T)
∃x φ ∃x trs(φ,T)
F trs(F,B)
φ = ψ F

Φ ΦB

¬φ trs(φ,B)
φ ∧ ψ (trs(φ,B) ∧ trs(ψ,B)) ∨ (trs(φ,B) ∧ trs(ψ,T) ∨

(trs(φ,F) ∧ ¬trs(ψ,B))
φ ∨ ψ (trs(φ,B) ∧ trs(ψ,B)) ∨ (trs(φ,B) ∧ trs(ψ,F)) ∨

(trs(φ,F) ∧ trs(ψ,B))
φ→cmi ψ (trs(φ,T) ∨ trs(φ,B) ∧ trs(ψ,B)
φ→con ψ ((trs(φ,T) ∨ trs(φ,B) ∨ trs(φ,N)) ∧ trs(ψ,B)) ∨

(trs(φ,N) ∧ trs(ψ,F))
φ↔cmi ψ (trs(φ,T) ∧ trs(ψ,B)) ∨ (trs(φ,B) ∧ trs(ψ,T)) ∨

(trs(φ,B) ∧ trs(ψ,B))
φ↔con ψ (trs(φ,T) ∧ trs(ψ,B)) ∨ (trs(φ,B) ∧ trs(ψ,T)) ∨

(trs(φ,B) ∧ trs(ψ,B)) ∨ (trs(φ,N) ∧ trs(ψ,F)) ∨
(trs(φ,F) ∧ trs(ψ,N))

∀x φ ∃x trs(φ,B) ∧ ¬∃x trs(φ,F)
∃x φ ∃x trs(φ,B) ∧ ¬∃x trs(φ,T)
F trs(F,N)
φ = ψ F

Φ ΦN

¬φ trs(φ,N)
φ ∧ ψ (trs(φ,N) ∧ trs(ψ,N)) ∨ (trs(φ,T) ∧ trs(ψ,N)) ∨

(trs(φ,N) ∧ trs(ψ,T))
φ ∨ ψ (trs(φ,N) ∧ trs(ψ,N)) ∨ (trs(φ,N) ∧ trs(ψ,F)) ∨

(trs(φ,F) ∧ trs(ψ,N))
φ→ ψ (trs(φ,T) ∨ trs(φ,B)) ∧ trs(ψ,N)
φ↔cmi ψ (trs(φ,N) ∧ (trs(ψ,T) ∨ trs(ψ,B))) ∨

(trs(ψ,N) ∧ (trs(φ,T) ∨ trs(φ,B)))
φ↔con ψ (trs(φ,T) ∧ trs(ψ,N)) ∨ (trs(φ,N) ∧ trs(ψ,T))
∀x φ ∃x trs(φ,N) ∧ ¬∃x trs(φ,F)
∃x φ ∃x trs(φ,N) ∧ ¬∃x trs(φ,T)
F trs(F,F)
φ = ψ φ � ψ
Φ ΦF

¬φ trs(φ,T)
φ ∧ ψ trs(φ,F) ∨ trs(ψ,F) ∨ (trs(φ,B) ∧ trs(ψ,N)) ∨

(trs(φ,N) ∧ trs(ψ,B))
φ ∨ ψ trs(φ,F) ∧ trs(ψ,F)
φ→ ψ (trs(φ,T) ∨ trs(φ,B)) ∧ trs(ψ,F)
φ↔cmi ψ ((trs(φ,T) ∨ trs(φ,B)) ∧ trs(ψ,F)) ∨

((trs(ψ,T) ∨ trs(ψ,B)) ∧ trs(φ,F))
φ↔con ψ ((trs(φ,T) ∨ trs(φ,B)) ∧ trs(ψ,F)) ∨

((trs(ψ,T) ∨ trs(ψ,B)) ∧ trs(φ,F)) ∨
(trs(φ,B) ∧ trs(ψ,N)) ∨ (trs(φ,N) ∧ trs(ψ,B))

∀x φ ∃x trs(φ,F)
∃x φ ∀x trs(φ,F)

Table 5: FDE→ truth evaluation translation
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theorem prover for FDE is simply implemented by
submitting trans(φ) �FOL des(ψ) to a FOL theo-
rem prover such as Vampire. The implementation
can be used online in the SystemOnTPTP interface, at
www.tptp.org/cgi-bin/SystemOnTPTP. The system is
called JGXYZ FDEJ-01 for FDE→cmi , and JGXYZ FDEG-01
for FDE→con

4 Results
The implementation of FDE→ (both the FDE→cmi and
FDE→con variants) has been tested on a set of problems,
mostly from (Pelletier, Sutcliffe, and Hazen 2017) where
they were used to study the differences between reasoning
in FOL and RM3. They have been reused here, with a cou-
ple of new problems, to gain insights into the differences
between reasoning in FOL, RM3, A3, and FDE→. Table 6
gives the results of the testing. All the problems are valid
in FOL. The (translations of the) problems marked “Yes”
were proved with Vampire, and the entries marked “No” had
countermodels generated by Vampire in finite model finding
mode.

There are differences in the provability-status between
RM3 and A3, as expected. Because of their different con-
ditional connectives, some non-theorems of RM3 are theo-
rems of A3, as seen in Problems 2, 5, and 12. In Problem 2,
if �q� is B and �p� is T then �p → q� is F in RM3 (hence
not a theorem) but B in A3 (hence a theorem). In Problem 5,
�q∨¬q� = T or B, i.e., valid in both RM3 and A3 (as shown
by Problem 1). However, if �p� is T and �q∨¬q� is B, then
the conjecture is F in RM3 but B in A3.

In FDE→ the additional truth value N results in some RM3
and A3 theorems becoming non-theorems, as seen in Prob-
lems 1 and 5. In Problem 1, if �p� is N then �p ∨ ¬p� = N,
and hence undesignated (not a theorem) in FDE→. In Prob-
lem 5, if �p� is T and �q� is N then �p → (q ∨ ¬q)� = N.
These assignments can’t happen in RM3 or A3, since there
is no N value. Problems 4 and 11 show that neither FDE→cmi

nor FDE→con is a sublogic of the other. In Problem 4, if �p�
is N and �q� is B then in FDE→cmi it’s a theorem, but in
FDE→con �¬(p → q)� = B - the assignment is a counter-
model and it’s not a theorem. In Problem 11, if �p� is N and
�q� is F then in FDE→con it’s a theorem, but in FDE→cmi the
formula is N and the assignment is a countermodel.

Problems 16-19 are interesting both from a historical and
also a contemporary point of view of the foundations of
mathematics. They represent some of the motivating claims
that drove the modern development of axiomatic set theory
and mathematics. Read the relation E(x, y) as saying that x
is an element of (set) y. Then each formula represents a cru-
cial part of the various paradoxes of set theory. For example,
Russell’s paradox is in part captured by Problem 16, which
says that there cannot be a set (y) all of whose members (x)
are not members of themselves. Problem 17 represents a
further paradox that is involved with one of the attempts to
provide a solution to the Russell paradox, saying that if set
membership is restricted so that a set being defined must be
a subset of an already-established set, then there cannot be
a universal set (a set that contains all sets). Problem 18 says
there can’t be a set that contains “circularly-contained” sets.

Problem 19 says that if there is set that contains all and only
those sets that are members of themselves, then not every set
can have a complement. From a modern point of view, there
is a small (but vocal!) movement to re-establish the valid-
ity of a “naı̈ve comprehension” principle, the presumption
of which is generally thought to be the source of these and
other paradoxes. If a dialetheic logic such as RM3 or A3 or
FDE→ were to be adopted, then perhaps the naı̈ve compre-
hension principle could be retained. In (Pelletier, Sutcliffe,
and Hazen 2017) we were excited to discover that RM3 did
not prove Problem 17, and that a counter-model was found
in terms of the three-valued logic. However, Table 6 shows
that Problems 16, 18, and 19 remain provable in RM3 and
A3, showing that adding the third value B does not solve all
the difficulties of naı̈ve set theory. However, those problems
are invalid in FDE→, which might indicate that FDE→ could
be a suitable basis for naı̈ve set theory. Some of the steps
were taken by (Tedder 2015) in the context of A3, and per-
haps those same constructions could be adapted to FDE→.

Problem 20 was not one of the problems considered for
the RM3 study because it involves identity, which was not a
part of RM3 as developed in (Pelletier, Sutcliffe, and Hazen
2017). Classical identity has since been added to that sys-
tem, and the result is given in Table 6. This problem consid-
ers the possibility of an infinite descending chain of mem-
berships within a given class (set) a, that is, an infinite se-
quence · · · ∈ bn ∈ · · · ∈ b2 ∈ b1 ∈ a. A set is grounded
if it does not exhibit such an infinite chain, and intuitively,
all sets are grounded. (Kalish and Montague 1964, p.226)
present this as a homework problem within first order logic.
The argument concerning the notion of a grounded set goes
like this: If the set of all grounded sets, call it g, is grounded,
then · · · ∈ g ∈ · · · ∈ g and hence g is not grounded. On the
other hand, if g is not grounded, then there is some set k,
such that g ∈ k and all members of k are grounded (since g
is the set of all the grounded sets). But then it follows that
g would have to be grounded. So g is a paradoxical set - it
both is and isn’t grounded. This is quite a difficult problem
to prove, especially in A3 where it took 345s of CPU time
for Vampire to prove. The paradox does not occur in FDE→.

5 Conclusion and Future Work

This research has extended Belnap’s “Useful Four-Valued
Logic” with conditional connectives, and an automated the-
orem prover for the resulting logic has been implemented
by translation to classical first-order logic. The addition of
a conditional connective starts to make FDE truly computa-
tionally useful.

Future work on the theoretical side includes examining
ways to overcome the functional incompleteness of FDE,
e.g., by adding constants for the four truth values. On
the practical side, further study on the use of FDE→cmi and
FDE→con might reveal which is the most useful in applica-
tions, and a data driven framework for creating automated
reasoning systems for these kinds of logics is planned.
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# Axioms � Conjecture RM3 A3 FDE→cmi FDE→con

1 � p ∨ ¬p Yes Yes No No
2 q � p→ q No Yes Yes Yes
3 ¬p � p→ q No No No No
4 ¬(p→ q) � p Yes Yes Yes No
5 � p→ (q ∨ ¬q) No Yes No No
6 � p→ (p ∨ ¬p) Yes Yes Yes Yes
7 � (p ∧ ¬p)→ q No No No No
8 p ∨ q,¬p � q No No No No
9 � (¬p ∨ q)↔ (p→ q) No No No No

10 � (p↔ q)↔ ((p ∧ q) ∨ (¬p ∧ ¬q)) No No No No
11 � ((p→ q) ∧ (q→ p))→ (p ∨ q ∨ ¬(p→ q) ∨

¬(q→ p) ∨ ((¬p→ ¬q) ∧ (¬q→ ¬p))) Yes Yes No Yes
12 H(a) � ∃x G(x)→ H(a) No Yes Yes Yes
13 � ∃x (G(x) ∧ ¬G(x))→ H(b) No No No No
14 ∃x (G(x) ∨ H(x)),¬∃y G(y) � ∃z H(z) No No No No
15 H(a) � ∀x (H(x)→ G(x))↔

∀x ((H(x) ∧G(x)) ∨ (¬H(x) ∧G(a))) No No No No
16 � ¬∃y∀x (E(x, y)↔ ¬E(x, x)) Yes Yes No No
17 � ∀z∃y∀x (E(x, y)↔ (E(x, z) ∧ ¬E(x, x)))

→ ¬∃w∀u E(u,w) No No No No
18 � ¬∃y∀x (E(x, y)↔

¬∃z (E(x, z) ∧ E(z, x)) Yes Yes No No
19 � ∃y∀x (E(x, y)↔ E(x, x))→

¬∀x∃y∀z (E(z, y)↔ ¬E(z, x)) Yes Yes No No
20 ∀y∃z∀x (E(x, z)↔ x = y)

� ¬∃w∀x (E(x,w)↔ ∀u (E(x, u)→
∃y (E(y, u) ∧ ¬∃z (E(z, u) ∧ E(z, y))))) Yes Yes No No

Table 6: Example Axiom-Conjecture pairs and their provability status
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