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Abstract

Mining spatiotemporal data is a challenging task since time
and space bring two complex variables to the mining anal-
ysis. Traditional classifiers consider the individual data in-
stances alone disregarding the time and spatial correlations.
This leads to a lessening of the analysis potential of the
traditional mining to an analysis solely of a given time or
space. In this paper, we propose a Spatiotemporal Associa-
tive Classifier, called SAC, able to catch time and spatial cor-
relations in the classification task. To perform spatiotemporal
classification SAC employs, as the learning model, Thematic
Spatiotemporal Association Rules (TSAR). TSAR are asso-
ciation rules that track the relations of time and space and
the evolution of the thematic attributes values. We employed
SAC and TSAR to mine Satellite Image Time Series (SITS)
in order to predict sun flares events. However, a TSAR has
a difficult understanding, not treated previously in the litera-
ture. In this sense, this paper also employs the proposed clas-
sifier to improve its understanding by the domain specialist.
The results presented high accuracies and are promising ac-
cording to the domain specialists.

Introduction

The knowledge extraction from Satellite Image Time Series
(SITS) is a challenging task. The SITS is a spatiotemporal
and multidisciplinary data that includes image and text min-
ing. Recently, the knowledge extraction from SITS has be-
come more relevant due to the increase in its available data.
Recent works have been proposed to extract patterns from
this domain (Traore, Kamsu-Foguem, and Tangara 2017)
and (Zhang et al. 2015), but the mined patterns still do not
suit the domain-expert perspective. SITS are spatiotemporal
data and most methods disregard time and spatial correla-
tions. In order to support spatiotemporal mining of SITS,
supporting the domain specialist, we proposed an Associa-
tive Classifier, called Spatiotemporal Associative Classifier
(SAC). SAC has association rules as inputs and classifies the
images features from SITS according to its spatiotemporal
relations and frequency.

A TSAR is an association rule that shows an event evo-
lution and its relation to other close events, often used for
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spatiotemporal data (Rao, Govardhan, and Rao 2012). How-
ever, a TSAR has a difficult understanding, not treated previ-
ously in the literature. In this sense, this paper also employs
the proposed classifier to improve its understanding by the
domain specialist.

That way, our hypotheses are: (a) the usage of TSAR as
the learning model for an associative classifier makes the
classifier able to treat spatiotemporal data, and; (b) the pro-
posed classifier makes feasible the understanding of TSAR
extracted from Solar SITS.

Our hypothesis is supported by the fact that Associative
Classifiers are often used to make feasible data mining in do-
mains composed of images, as the literature suggests. More-
over, it can be extended to spatiotemporal images domain as
shown in this paper.

Background and Related Work

An associative classifier is a classifier whose learning model
is a set of association rules (Atzmueller et al. 2015), (Thab-
tah 2007). Our proposal is an associative classifier based on
votes that was introduced by (Ma and Liu 1998). An asso-
ciative classifier based on votes counts how many times an
item from the test instance occurs in the association rules
set.

Formally, let ai be an itemset from the database db; bi be
an item that represents a class label; and R be a set of associ-
ation rules of the form ri : ai → bi and ri ∈ R. Given a new
test instance c = {c1, ...cj , ...cn}, an associative classifier,
based on votes, counts how many times the items ai ∈ cj
was associated with bi for all cj in c and i in R. The class
label bi with the highest count value is given to the instance
c as its label for the classifier.

Associative Classification based on votes is often used for
image classification (Watanabe et al. 2010b). In that case, the
idea is to associate the feature vector values extracted from
images with the image classes. In (Watanabe et al. 2010b),
(Watanabe et al. 2010a), and (Watanabe et al. 2012), asso-
ciative classification based on vote are used in monographs
domain. The authors had good results classifying tumors as
benign or malignant or not-present.

(Alizadehsani et al. 2016) use an associative classifier
to detect coronary artery disease. The authors proposed a
model that is able to predict for each artery the chances of

The Thirty-First International Florida  
Artificial Intelligence Research Society Conference (FLAIRS-31)

104



a coronary disease. The authors also claim that with this ap-
proach they have the best-predicted rate of the literature.

(Jiménez-Hernández et al. 2017) proposed an approach to
creating classification models extensible for any domain -
including images. The approach uses the concept of linear
independence and probabilistic independence to create and
optimize the models and the result is a framework able to
classify new data. That work was not applied to spatiotem-
poral data; even though it is a generic approach.

The main difference between the previously presented
works and our proposed approach is that they do not handle
spatiotemporal data and do not consider the spatiotemporal
correlations in the mining process. Our proposal increases
the State of the Art since it is able to handle spatiotemporal
data employing TSARs as the learning model of the associa-
tive classifier.

(Tucker et al. 2005) introduced a Bayesian classification
method for visual characteristics with spatiotemporal rela-
tionships. To validate the proposal, a spatiotemporal oph-
thalmic database of glaucoma medical exams was used.
Similarly, (Zahradnik and Skrbek 2013) propose two ap-
proaches for spatiotemporal data classification using neural
networks: the first approach is based on MLP network and
the second one is based on RBF network with two layers.
Both works were not designed to handle the time variation
in the classification task. That way, the labeled class repre-
sents the current data state and it cannot be used to predict
the data behavior as we propose in this paper.

Spatiotemporal Associative Classifier

The Spatiotemporal Associative Classifier (SAC) is a Vote-
based Associative Classifier developed to classify SITS im-
ages. First, the test image is submitted to a feature extrac-
tor, being represented by a feature vector. SAC returns the
most likely label associated with the feature vector accord-
ing to its learning model composed of TSARs (Thematic
Spatiotemporal Association Rules).

The learning model of SAC is composed of r crisp TSARs
of the form:

r : a → b < sup, conf, time, space >

Where a and b are spatiotemporal itemsets not necessary dis-
jointed; sup and conf are the value of rule support and con-
fidence; time is the average period between the occurrence
of a and the occurrence of b, and; space is the average spa-
tial distance between the items in a and the items in b.

Algorithm 1 presents the SAC algorithm. At Line 2,
Counter is set as empty. Counter is hashmap data struc-
ture where the key is an image feature vector and the value
is another hashmap, called sub-hashmap. The sub-hashmap
key is a label that is associated with the feature vector and
its value, and it is a quintuple: counter, support, confidence,
delta time and delta space, which are information that comes
from the association rules.

At Line 3, a loop is performed over each rule in the input
set (Rules), where each rule is called r. At Line 4, feature
receives the feature vector in the antecedent of the rule r. If
there is not any feature vector in the r antecedent then the
loop is performed over the next rule.

At Line 5, feature is checked to see if it is already in
Counter. If it is, in Line 6 the algorithm calls update to
the sub-hashmap (also called node) of feature. Otherwise,
in Line 8, a sub-hashmap is created and initialized as empty
and update is called over this new sub-hashmap. At the end
of this loop, all rules are processed, and Counter has re-
quired information about the Rules.

At Line 11, the output Map is initialized as empty. At
Line 12, the rule iterates over the Counter getting each sub-
hashmap (node), called n.

At Line 13, c is created getting the most voted label.
I.e. c gets the tuple that has the highest count value (see
the Algorithm 2 explanation). his operation is performed by
mostV oted function. From Line 14 to 17, the values of sup-
port, confidence, delta space and delta time are updated. The
averages of those values are also calculated (by update func-
tion). At Line 18, c is added to the output Map.

Data: Rules : Set of TSARs (Thematic Spatiotemporal
Association Rules)

Result: Map : Feature values and their class labels
1 begin
2 Counter ← ∅ ;
3 for rule r ∈ Rules do
4 feature ← featureIn(r.antecendent) ;
5 if feature ∈ Counter then
6 update(Counter.get(feature), r) ;
7 else
8 update(Counter.new(feature), r) ;
9 end

10 end
11 Map ← ∅ ;
12 for node n ∈ Counter do
13 c ← mostV oted(n) ;
14 c.sup ← c.sup

c.count
;

15 c.conf ← c.conf
c.count

;
16 c.time ← c.time

c.count
;

17 c.space ← c.space
c.count

;
18 Map ← Map

⋃
c ;

19 end

20 end

Algorithm 1: The Spatiotemporal Associative Classifier
(SAC).

Algorithm 2 presented the update function. It takes the
node (sub-hashmap) that will be updated and the rule, rule
that is updating the node.

At Line 2, it makes a loop over rule’s consequence get-
ting all labels, called l during the loop. A label is a non-
feature vector item. If there rule has non label in its conse-
quence, update function does update node. Otherwise, Line
3, it will check if l is already part of node. If it is, Line 4, sn
receives a reference for the quintuple (sub-hashmap value).
If it is not, Line 6, a quintuple is created and initialized with
zero in each value and it is associated with the l. At Line 8,
the vote is updated, adding one to sn.count. From Line 9 un-
til 12, the values of support, confidence, delta time and delta
space is accumulated to sn. Those values came directly from
the thematic spatiotemporal association rule called rule. At
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Line 13, node is updated.

Data: node : Map node to be updated. rule : rules.
1 begin
2 for label l ∈ rule.consequence do
3 if l ∈ node then
4 sn ← node.getSubnode(l) ;
5 else
6 sn ← newSubnode(node, l) ;
7 end
8 sn.count ← sn.count+ 1 ;
9 sn.sup ← sn.sup+ rule.sup ;

10 sn.conf ← sn.conf + rule.conf ;
11 sn.time ← sn.time+ rule.time ;
12 sn.space ← sn.space+ rule.space ;
13 node ← node

⋃
sn ;

14 end

15 end

Algorithm 2: Update Function for the Map node.

The mostV oted-function, in Algorithm 1 find the most
voted (highest count) associated with the image feature vec-
tors. This step is also called SAC Low- Level Image Classi-
fication because it produces rules that show the most com-
mon associations for the training images according to their
feature vectors.

Consider as an example of the set Rules in Algorithm 1
the set: {r1 : va → la, r2 : vb → vc la, r3 : va vb la → lb}.
Where ri are rules, vj are feature vectors and lk are labels.

For r1, feature receives va that is not in Counter (since
it is the first iteration, it is empty). A new sub-hashmap is
created in the update-function and la is added to that. Its
count starts with one. The support, confidence, delta time,
and delta space are updated with r1 values.

The same processing happens to r2. However, r2 has vc in
its consequent, Counter(vb) will not have vc since it is not
a label. The processing of r3 updates va and vb, adding one
to lb in each va,b. As the result, since va,b has the same votes
for la,b, Map has the association va : la, va : lb, vb : la, and
vb : lb.

At last step, a test image feature vector is submitted to the
SAC Low- Level Image Classification rules and the conse-
quent of the rules satisfied by the test image are employed to
label it.

Experiments, Results, and Discussion

In this section, we present three sets of experiments, for
each database pre-proceed with different feature extractors:
Histogram, Haralick (Haralick, Shanmugam, and Dinstein
1973), and SURF (Bay, Tuytelaars, and Van Gool 2006).

We employed a set of TSARs previously extracted em-
ploying Minimum support of 1%; Minimum confidence of
75% and maximum of spatial distance of 150 by 10, 000
parts of the solar disk, and; maximum of time variance of
20 days.

The input TSARs have the format a → b, where a-itemset
occurs before b-itemset.

The database is composed of 10300 sunspots records split
by day, in the period from August 25, 2007, to August 24,

Figure 1: Example of one-day images of NOAA Satellite.

Figure 2: Example of Textual Data for the images.

2016. It is represented by 70000 processed feature vectors.
Figure 1 and Figure 2 present an example of one-day data

from NOAA Satellite. For each day, 6 images from the Solar
Disk are taken with 6 different wavelengths. In addition, the
Solar Disk can present several sunspots. The data (feature
vector and textual data) of each sunspot are the input data
for the TSARs mining and the SAC method.

The NOAA Satellite data are also composed of textual
data that describes each sunspot, as presented by Figure 2.
In the textual data, the sunspot is classified by its radioac-
tive intensity (Hale Class) and by its morphology (McIntosh
Class). Due to Hale is a subclass that can be extracted from
McIntosh, we only employed the McIntosh Class.

The three experiments were performed over the same data
however with different types of feature vectors, on a ma-
chine with 8 GB of RAM memory, 500 GB of HD and pro-
cessor Intel Due Core 2.53 GHz. Java version 8 was used to
implement the method. The operational system was an Arch
Linux 64 bits.

Figure 3, 6 and 7 present the low-level classifications
of solar image features generated by SAC using respectively
the following low-level features: histogram, Haralick texture
and SURF shape.

In Figure 3, the C1-classification rule presents
an association of the visual characteristic
(3627361.000; 3632207.000),
(3113326.000; 3119009.000) with Cao-McIntosh. The
support average of the rules having this association is 19.4%
and the confidence average of these rules is 78.9%. These
rules present a variation in the average time of 5.067 days
between the antecedent (cause) and consequent. In addition,
there is a variation in the distance between the sunspots that
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C1:

(3627361.000;3632207.000],(3113326.000;

3119009.000], 0010 : Cao

sup=0.194 conf=0.789 time=5.067 space=62.813

C2:

(3853748.000;3856799.000],(2894258.000;

2897071.000], 0010 : Axx

sup=0.019 conf=0.83 time=3.781 space=72.814

C3:

(3590618.000;3597197.000],(3150223.000;

3154539.000], 0060 : Cro

sup=0.023 conf=0.778 time=6.64 space=3.598

Figure 3: Result of the SAC low-level classification of visual
features using histogram.

are associated with 62,813 on the mean. Figure 4 presents
an image being classified by the of C1-classification rule.
The 12201-sunspot at November 3rd, 2014 has the visual
feature of C1 antecedent and two other sunspots close to
an average of 62.813 parts of the solar disk, 12200-sunspot,
and 12204-sunspot. The C1 rule says that in at the average
of 5 days the sun image will have two close sunspots of
Cao-McIntosh with the Cao-McIntosh classification, what
really occurred in the image of November 6th, 2014.

The C2-classification rule presents an association of the
visual characteristic (3853748.000; 3856799.000),
(2894258.000; 2897071.000) of a sunspot whose size is 10
parts of the solar disk with Axx-McIntosh. The rules sup-
port average that contributed to this association is 1.9% and
the trust is 83%. The average of time occurrence is 3,781
days and the average of space is 72.814 parts of the solar
disk. Figure 5 presents an example of C2-classification. The
12643-sunspot at March 26th, 2017 has the visual character-
istic of C2 and another sunspot close to an average of 72.814
parts of the solar disk, 12644-sunspot. The rule C2 says that
in 3.7 days a sunspot of Axx-McIntosh class should occur.
That really occurs on March 29th, 2017, when the 12643-
sunspot presents the classification Axx-McIntosh; also, the
12644-sunspot is still close to 12643-sunspot.

The C3-classification rule presents an association of the
visual characteristic (3590618.000; 3597197.000),
(3150223.000; 3154539.000) of a sunspot whose size is 60
parts of the solar disk with Cro-McIntosh. The average sup-
port of the rules that contributed to this association is 2.3%
and the trust is 77.8%. The mean time is 6.64 days and space
is 3,598 parts of the solar disk on average.

In Figure 6, the C4-classification rule presents
an association of the visual characteristic
(−0.350; 0.341), (9.764; 23.692),
(30339.404; 31432.453), (4949.939; 4952.800) ldots of a
sunspot whose size is 30 parts of the solar disk with Dso
-McIntosh. The average support of the rules that contributed
to this association is 18.2% and the confidence average is
76.7%. The time is 2,609 days and space is of 44,885 parts
of the solar disk on average.

The C5-classification presents an association of the visual

characteristic (−0.350; 0.341], (9.764; 23.692),
(45521.675; 45809.851), (7083.643; 7088.084) ldots of a
sunspot whose size is 110 parts of the solar disk with Axx-
McIntosh. The average support of the rules that contributed
to this association is 2.2% and the confidence average is
93.8%. The time is 2,583 days and space is 69,508 parts of
the solar disk on average.

The C6-classification presents an association of the visual
characteristic (−0.350; 0.341), (9.764; 23.692),
(29061.805; 30339.404), (4964.073; 4967.090) ldots of a
sunspot whose size is 300 parts of the solar disk with Dso-
McIntosh. The average support of the rules that contributed
to this association is 17.8% and the confidence average is
81%. The time is 2,477 days and space is 73,351 parts of the
solar disk on average.

In Figure 7, the C7-classification presents
an association of the visual characteristic
(784, 896; 785, 216), (14, 534; 15, 198) . . . of a sunspot
whose size is 20 parts of the solar disk with Axx-McIntosh
is presented. The average support of the rules that con-
tributed to this association is 22.7% and the trust is 100%.
The average variation in time is 1 days and there is no
variation in space, this indicates an evolution of the spot
itself without the need to be associated with another spot for
this behavior.

The C8-classification presents an association of the visual
characteristic (776, 995; 777, 279), (14, 534; 15, 198) . . . of
a sunspot whose size is 10 parts of the solar disk with Dro-
McIntosh. The average support of the rules that contributed
to this association is 6.3% and the trust is 100%. The aver-
age variation in time is 2 days and the variation in space is
23,005 parts of the solar disk on average.

The C9-classification presents a vi-
sual characteristic association is shown
(664, 769; 665, 061), (14, 534; 15, 198) . . . of a sunspot
whose size is 30 parts of the solar disk with Axx-McIntosh.
The average support of the rules that contributed to this
association is 5.3% and the trust is 100%. The average
variation in time is 5.536 days and the variation in space is
42.423 parts of the solar disk on average.

To verify the results, we used a small database of im-
ages containing the March 2017 images -138 images with
an average of 3 sunspots each day. The precision variates
according to the feature extract used: For histogram 82.7%
of precision, for Haralick 84.1%, for SURF 87.3%. This is
a good preliminary result for SAC; however, more experi-
ments must be performed to validate SAC.

Conclusion and Future Works

Associative classification is an approach to build a classifi-
cation system from association rules. In this paper, we pro-
posed an Associative Classifier based on votes for SITS,
called Spatiotemporal Associative Classifier (SAC). SAC
differs from the state of the art works because it can track
spatial and temporal evolution in the learning model, by
using Thematic Spatiotemporal Association Rules (TSAR).
TSAR are association rules that consider the relationship
between close events and their evolving. SAC constructs a
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Figure 4: Example of the classification of the left image using the C1 classification rule.The C1 rule says that in at the average
of 5 days the sun image will have two close sunspots of Cao-McIntosh with the Cao-McIntosh classification, what really
occurred on the right image.

Figure 5: Example of the classification of the left image using the C2 classification rule. The rule C1 says that in 3,7 days a
sunspot of Axx-McIntosh class should occur, what really occurred on the right image.

learning model to perform a low-level feature vector classifi-
cation based on time and space co-occurrences of the events.
The results indicate that SAC can be used to predict the solar
behavior with high accuracy.

As future work, we will use a bigger database to vali-
date the classifier and a visualization interface will be im-
plemented allowing a better analysis of the data and the ex-
tracted patterns. It is also part of future works add support
for distributed processing aims to brings better performance
and support to fuzzy image feature vectors.

Acknowledgment. The authors thank the SolarMonitor.
org for free providing of the solar data; the Instituto Na-
cional de Pesquisas Espaciais (INPE); and, the Astrophysics
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