
Enhancing Multi-Objective Reinforcement Learning with Concept Drift

Frederick C Webber
frederick.webber@us.af.mil

Warfighter Readiness Research Division
Air Force Research Laboratory

2620 Q Street
Wright-Patterson AFB, OH 45433

Gilbert Peterson
gilbert.peterson@afit.edu

Air Force Institute of Technology
2950 Hobson Way

Wright-Patterson AFB, OH 45433

Abstract
Reinforcement learning (RL) is a particular machine learning
technique enabling an agent to learn while interacting with
its environment. Agents in non-stationary environments are
faced with the additional problem of handling concept drift,
which is a partially-observable change that modifies the envi-
ronment without notification. This causes several problems:
agents with a decaying exploration fail to adapt while agents
capable of adapting may over fit to noise and overwrites pre-
viously learned knowledge. These issues are known as the
plasticity-stability dilemma and catastrophic forgetting, re-
spectively. Agents in such environments must take steps to
mitigate both problems. This work contributes an algorithm
that combines a concept drift classifier with multi-objective
reinforcement learning (MORL) to produce an unsupervised
technique for learning in non-stationary environments, espe-
cially in the face of partially observable changes. The al-
gorithm manages the plasticity-stability dilemma by strategi-
cally adjusting learning rates and mitigates catastrophic for-
getting by systematically storing knowledge and recalling it
when it recognizes repeat situations. Results demonstrate that
agents using this algorithm outperform agents using an ap-
proach that ignores non-stationarity.

Introduction
Traditional reinforcement learning (RL) methods ignore
non-stationarity (Berro and Duthen 2001), making them ill-
suited for the real world. RL agents outside of controlled
laboratory situations face the problem of concept drift (Wid-
mer and Kubat 1996), partially observable changes that in-
validate what the agent has learned. For example, hydro-
electric dams don’t know how much rain is in the fore-
cast, impacting the trade off between retaining drinking
water and generating power; elevator controllers aren’t in-
formed of meeting schedules, leading to sub-optimal dis-
patch; and traffic controllers don’t know of route closures.
RL agents in environments such as these must be able to
react to non-stationarity caused by such partially observ-
able changes. Without a method to detect and handle non-
stationarity, agents are prone to forget what they learned or
not learn at all.

Some existing research implicitly addresses non-
stationarity by assuming it doesn’t exist. These agents

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

handle mild non-stationarity (Kaelbling, Littman, and
Moore 1996), but must continuously relearn a policy (da
Silva et al. 2006). After an agent converges to an optimal
policy, if changes in the environment force the agent to
adjust, an unintended consequence is that the agent forgets
the old policy. This is known as catastrophic forgetting.

Non-stationary environments also highlight the problem
of the plasticity-stability dilemma (Goldberg and Matarić
2003), which is the trade-off based on the learning rate.
Plasticity is the ability of RL agents to change inherent to
RL. Agents with a lower learning rate are cautious not to
overreact to noise in the data, thereby giving them stabil-
ity. Accordingly, RL algorithms that implicitly adapt to non-
stationary conditions must have a carefully tuned learning
rate because low rates prevent adaptation and high rates can
result in thrashing or over fitting to noise.

One way to detect non-stationarity is through concept
drift detection. Concept drift handles the case when non-
stationarity is not directly observable (i.e. not part of the
state description) and the agent is unable to force the envi-
ronment to behave in a certain manner. Past research has ex-
plicitly combined concept drift methods with reinforcement
learning (Choi, Yeung, and Zhang 2001; Doya et al. 2002;
da Silva et al. 2006). These methods only exploit informa-
tion from a single objective. The algorithm proposed in this
paper exploits multiple objectives.

This work presents an algorithm that combines a concept
drift classifier with multi-objective reinforcement learning
(MORL) to produce an unsupervised technique for learn-
ing in non-stationary environments. The algorithm mitigates
catastrophic forgetting and manages plasticity and stability
by strategically adjusting learning rates. It also provides a
testing method for this type of problem. Further, the algo-
rithm does not assume a small number of concepts, nor does
it use a model as in prior work (Choi, Yeung, and Zhang
2001; da Silva et al. 2006; Doya et al. 2002).

Preliminary results indicate that a drift-aware agent that
handles both catastrophic forgetting and the plasticity-
stability dilemma outperforms an agent that does not model
drift and thus handles neither situation.

Related Work
Reinforcement learning (RL) enables agents to optimize per-
formance by associating feedback signals with previous ac-

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

460



tions and observed states (Sutton and Barto 1998). As agents
experience their environment, they gain information in the
form of the tuple 〈s, a, r, s′〉 where present state s and fu-
ture state s′ are from the space S, r is a reward in the space
of possible rewards R, and actions a are selected from possi-
ble choices A. From this experience, reinforcement learning
agents learn a behavior policy, π, to optimize the expected
reward.

Reinforcement learning algorithms use the Markov as-
sumption that all an agent needs to know is the present
state and that the history of how the agent got there is
irrelevant. However, in non-stationary environments, the
Markov assumption is invalidated, requiring reinforcement
learning agents to incorporate additional techniques. Pre-
vious RL works that explicitly handle non-stationary en-
vironments are prone to catastrophic forgetting and suffer
from the plasticity-stability dilemma. The field of concept
drift provides a way for an agent to explicitly address non-
stationarity.

Concept drift is a data classification learning problem on
non-stationary temporally-ordered data involving a hidden
context or concept, such that the correct classification of data
changes over time (Gama et al. 2014; Zliobaite 2009). Con-
cept drift is relevant in environments where the concept can-
not be directly observed, but it can be estimated based on
agent history, and when the agent’s actions do not impact
the concept. Some example concepts include weather pre-
diction (Schlimmer and Granger Jr 1986); a predator iden-
tifying a rabbit that changes color each season (Schlimmer
and Granger Jr 1986); and consumer interests (Gama et al.
2014).

Reinforcement Learning in Non-stationary
Environments
RL agents can implicitly handle small amounts of non-
stationarity (Kaelbling, Littman, and Moore 1996) through
approximation or by maintaining a sufficient learning rate;
however, these approaches can amplify problems or fail to
converge. This section reviews works that attempt to explic-
itly handle non-stationarity.

Dynamic Learning Rates One way to address the
plasticity-stability dilemma is to use a changing learning
rate (Bowling and Veloso 2002). This provides stability
when performance is as expected and plasticity when per-
formance drops. One such method, the Win or Learn Fast
(WoLF) approach (Bowling and Veloso 2002), extends iter-
ative gradient ascent to learn a policy. WoLF tracks an ‘av-
erage’ behavior policy π̄ in addition to the current policy π.
When the expected result from π̄ outperforms the result from
π, the agent is not performing as well as anticipated, and so
the learning rate increases to δlosing. Otherwise, the agent is
doing well and so uses the more conservative δwinning rate.
WoLF uses policy hill climbing (PHC) (Bowling and Veloso
2002), later referred to as WinOrLearnFast-PHC.

Explicit Handling of Concept Drift Learning in RL
A few have undertaken integrating concept drift with
RL (Choi, Yeung, and Zhang 2001; da Silva et al. 2006;
Doya et al. 2002). Their algorithms use multiple models that

dynamically activate the most relevant policy. Additionally,
these approaches for single objective RL require assuming
that:
• there are a finite number of concepts (not necessarily a

known quantity) that each have distinct dynamics; and
• the concept changes infrequently.

A concept drift-aware reinforcement learning algorithm
called RL-CD detects context change using the reward pre-
diction accuracy (da Silva et al. 2006). The equation speci-
fying the instantaneous error in reward prediction accuracy
eRm for a given model m is

eRm = 1 − 2

(
ΔR2

m

Rmax − Rmin

)
(1)

where Rmax and Rmin are the maximum and minimum val-
ues, respectively, of R and ΔRm is the residual between the
expected and actual reward, weighted by the number of trips
in recent memory. The quality factors are used to compute a
total quality for the model. Because this paper only consid-
ers reward residuals, eRm is considered interchangeable with
eRm

Em = Em + ρ (em − Em) (2)

using ρ ∈ (0, 1] to weight the impact of new measurements.
If no model quality Em is above a threshold Emin, then a
new model is created.

The algorithm maintains a set of models, M, which it
adds new models to as they are created. This method does
not require assuming a baseline number of models and does
not restrict the agent based on its spatial locality (da Silva et
al. 2006).

Multi-Objective Reinforcement Learning
Agents in the real world can have multiple objectives com-
peting for attention. The problem of multi-objective opti-
mization is to find one or more solutions that minimizes a
set of functions. Such problems are multi-objective opti-
mization (MOO) problems. In interesting MOO problems,
achieving more optimal performance in one objective hap-
pens at the expense of another (Vamplew et al. 2011). Thus,
no single strategy can reduce the information to a single ob-
jective and be applicable in all circumstances.

One challenge in MOO is how to characterize solutions
in a concise manner. Because MOO solutions have multiple
objectives, scalar quantifications leave out information about
traits of the solution set. However, scalar values are easy to
compare, and so a number of indicators have been developed
to attempt to characterize the quality of a solution concisely.

Indicators that preserve dominance order relations are
Pareto compliant (Coello, Lamont, and Van Veldhuizen
2007). That is, if one solution set strictly outperforms an-
other, the superior solution set will always have a lower (bet-
ter) value than the worse set. One Pareto compliant indicator
is the R2 function. The R2 indicator uses a predetermined
set of weighted vectors to scalarize a vector of objectives.

The baseline multi-objective reinforcement learning
(MORL) algorithm for this research is multi-objective Q-
learning as done by (Van Moffaert, Drugan, and Nowé

461



2013), where expected optimal actions are identified by
computing an indicator of the expected q values �q for the
current state and proposed action.

Enhancing MORL with Concept Drift
This section presents MORL augmented with concept drift
(Algorithm 1). The proposed algorithm is based on RL-
CD, the indicator-based multi-objective Q learning algo-
rithm (Van Moffaert, Drugan, and Nowé 2013), and the
WoLF dynamic learn rate.

This new algorithm, CD-MORL, manages a collection of
models, one per unique concept. A model consists of a Q ta-
ble, the policy π, and a concept error signal, Em. One model
is active at a given time. When a concept change is detected,
the active model is replaced. If a previous model was rec-
ognized by having E greater than Emin, it is re-activated.
Otherwise, a new model is created. Model recognition and
re-initialization mitigates the catastrophic forgetting. To ad-
dress the plasticity-stability dilemma, the algorithm uses a
variable learn rate, as in Win or Learn Fast (Bowling and
Veloso 2002).

Detecting Concept Changes in MORL

The concept drift detection adapts RL-CD (da Silva et al.
2006) for multiple objectives, which maintains an error E
computed from sequential eRm samples. An agent maintains
this error signal for all concept models, including its active
concept and all stored concepts, and uses this signal both
to explicitly detect concept change and to perform concept
recognition.

The conversion to multiple objectives is not straight for-
ward. In (da Silva et al. 2006), the goal of the instantaneous
quality is to provide an indicator in the range of [+1,−1],
with +1 being best and −1 being worst prediction quality. If
the environment always returns rewards, then a normalized
scalarization function may be applied. To maintain general-
ity, the above quality method is rewritten for vector rewards
as

em = 1 − 2 scalarize

(
(ΔRm)2

(Rmax − Rmin)2

)
. (3)

The formulation is the same for both minimization and
maximization objectives. The error signal, Equation 2,
forms the basis for all concept drift detection and concept
recognition in the algorithm proposed and tested in this
work.

When the concept drift learner detects non-stationarity
through low model quality because the error signal goes be-
low the threshold Emin, the proposed CD-MORL algorithm
compares the performance residual with all saved models.
Using the state and action information and the received re-
ward, the long-term model quality is computed for all mod-
els at all time steps. If a match is found - that is, a stored
policy has an error Em that exceeds the quality threshold
Ematch - then that table is restored. Otherwise, a new model
is created. Regardless, the current model is archived.

Algorithm 1 CD-MORL
Require: tfreeze

1: mcur ← NewModel()
2: M ← mcur

3: s ← s0
4: tsincefreeze ← 0
5: repeat
6: select and take a according to πmcur

(s), Qcur(s)
7: observe s′, �r
8: tsincefreeze ← tsincefreeze + 1
9: if tsincefreeze >= tfreeze then

10: mcur ← SelectModel(s, a, �r)
11: propose a′ based on πmcur

12: end if
13: if The model wasn’t changed: then
14: Perform the Q update:
15: for all objective o do
16: Update Q(s, a, o)
17: end for
18: πmcur

(s, a) ← WinOrLearnFast-PHC()
19: else
20: tsincefreeze ← 0
21: end if
22: until s is terminal

Algorithm 2 SelectModel
Require s, a, �r
for all m ∈ M do

ΔRm ← Q(s, a) − �r

em ← 1− 2scalarize
(

(ΔRm)2

(Rmax−Rmin)2

)
Em ← Em + ρ(em − Em) according to Eq 3

end for
mcur ← argmaxm(Em)
if Emcur

< Emin then
mcur ← NewModel()
M ← M

⋃
mcur

end if
return mcur

Estimating Convergence

To allow for a policy to stabilize, the Q table needs to re-
ceive a ‘reasonable’ amount of training before it is ready to
detect drift. In (Kearns and Singh 1999), the authors estab-
lish a formula predicting the number of samples required to
have confidence that the Q table has converged. This result
assumes an exploration policy that reaches all states. The
number of samples required by this method is impractically
large.

Instead, in CD-MORL, a new concept is not permitted to
be replaced until tfreeze steps have passed. When a con-
cept is recognized and its model loaded, the concept is not
permitted to change again until a few steps have passed to
prevent thrashing.

462



Experimental Design
Testing used a multi-objective MDP generator called MER-
LIN (Deon 2015) to generate a set of directed graphs which
represent concepts. The graph is a random path connecting
discrete nodes (states) such that no states are dead ends and
all states are reachable. Tests contained 25 states with 4 ac-
tions and 3 objectives. Each action is a state transition. Each
concept, then, has different outcomes for each action, and
the 3 rewards for reaching each state are different.

Measuring MORL Performance in a
Non-stationary Environment
In non-stationary environments, an agent that performs well
in one concept may perform poorly after the environment
changes to another concept (Cruz, González, and Pelta 2011;
Nguyen, Yang, and Branke 2012). This makes comparing
the performance of agents impossible unless the concept is
controlled. In the field of evolutionary dynamic optimiza-
tion, the accuracy measure controls for when the best pos-
sible performance differs among concepts. This measure
gives, at time t, the performance of an algorithm with respect
to the best and worst performance of all tested algorithms.
The formulation, as adapted for minimization algorithms is:

accuracy
(t)
F,Algorithm = 1 − F

(t)
Algorithm − Min

(t)
F

Max
(t)
F − Min

(t)
F

(4)

where F (t) is the current reward vector; Min
(t)
F is the best

observed performance across all algorithms at time t; and
Max

(t)
F is the worst observed performance across all algo-

rithms at time t. Because of the need to know best and worst
observed, this measure must be done offline. The accuracy
measure assumes all algorithms are run in the same environ-
ment settings. For these experiments, the fitness function F
is the R2 indicator of the three objectives, in this case with a
single weight vector that averages the three objectives. Nor-
mally, the R2 indicator cannot be guaranteed to be Pareto-
compliant, meaning that agents achieving better R2 values
cannot be guaranteed to have outperformed agents with in-
ferior R2 values. However, in this case the objectives all
have the same domain and characteristics. Thus, in this spe-
cific case, an agent with a better accuracy of R2 values is
guaranteed to outperform an agent with inferior R2 values.
While the agent is minimizing on each objective, a greater
accuracy value outperforms a lesser accuracy value.

Experiment Design
Experimentation tested three different agent designs and two
agent parameterizations under varying environmental condi-
tions.

The control agent design, MORL, uses the baseline imple-
mentation patterned after (Van Moffaert, Drugan, and Nowé
2013) using the R2 indicator. The control agent never used
WoLF and never detected drift. It always used δlosing as the
policy learn rate was greater than δwinning.

The first test agent, CD-MORL init, tests the CD MORL
algorithm with only the recognition and re-initialization
component, that is, with the WoLF component disabled. The

CD-MORL agent detects drift, recognizes old concepts or
re-initializes the agent to deal with new ones, and employs
WoLF to stabilize the agent.

For the two CD-MORL agents, three parameters were
modified: the R2 value required to be deemed stable Emin,
meaning below that the agent is unstable; the R2 value
required to recognize a previous concept Ematch,−1 ≤
Ematch ≤ Emin ≤ 1; and the rate at which new information
is incorporated ρ ∈ (0, 1]. Due to space restrictions, only
two parameterizations are illustrated.

Lastly, the environment was tested under several differ-
ent designs. While each design used the MERLIN settings
described above, the graphs were randomly generated. One
graph was discarded because it was ill-suited for testing as
a dominant state looped back on itself, but otherwise all
graphs were taken as-is. For space reasons, only one con-
figuration is shown.

Concepts were on a set rotation. Within an exper-
iment, concepts were active for a fixed length of time
(tinterval ∈ {500, 1000}), though that length of time is var-
ied across experiments. Also, to assist with convergence of
the CD-MORL algorithms, these algorithms were assigned
a freeze time tfreeze ∈ {150, 250, 500} where the agent
was forbidden from performing concept recognition and re-
initialization. This time was fixed within an experiment. The
controlled parameters are the other constants: α at 0.1, γ at
0.9, δwinning at 0.01, and δlosing at 0.1.

Additionally, the random number generator was reset at
the start of a set of trials. The reset only happened when
changing between drifting and non-drifting, and WoLF and
WoLF-less. These parameters were set first, and so the reset
only happened four times. Thirty trials were evaluated at
each parameter setting.

Results
The CD-MORL agents typically outperformed the reference
MORL agent, with the complete CD-MORL agent typically
outperforming the CD-MORL init agent. This is illustrated
in Figures 1, 2, 3, and 4.

Typically, the CD-MORL agent had a greater accuracy
than the partial CD-MORL init agent, and both typically
outperformed the plain MORL agent. Results are averaged
over 30 runs and smoothed using a moving average win-
dow of nine samples. Because of the normalization in the
accuracy measure, relative performance within experiments
is comparable, but absolute performance across experiments
is not. Figure 1 shows the CD-MORL agent outperform-
ing both agents, except a little at the beginning and for one
concept near the end, when CD-MORL init is slightly bet-
ter. Both CD-MORL agents outperform the baseline MORL
the entire time. However, the agents are sensitive to pa-
rameterization, shown in Figure 2. With just Ematch and ρ
changed, the MORL agent outperforms the others one third
of the time and is comparable for another third. Figure 3
illustrates the impact of changing the freeze time tfreeze.
Increasing the freeze length appears to cause the CD-MORL
agents to perform worse than having a shorter freeze length.
Though they are generally marginally better than the base-
line MORL, MORL nearly closes the gap in one concept and

463



Figure 1: Accuracy of the three agents. Concept duration is
500, tfreeze = 150, Ematch = 0.0, ρ = 0.1.

Figure 2: Accuracy of the three agents. Concept duration is
500, tfreeze = 150, Ematch = 0.2, ρ = 0.2. The parameter
change adversely impacts the CDMORL algorithms.

Figure 3: Accuracy of the three agents. Concept duration is
500, tfreeze = 250, Ematch = 0.0, ρ = 0.1. The tfreeze
parameter adversely impacts the CDMORL algorithms.

Figure 4: Accuracy of the three agents. Concept duration is
changed to 1000, tfreeze = 500, Ematch = 0.0, ρ = 0.1.

Figure 5: Error signals for one agent. Using Emin = 0.8
and Ematch = 0.2, no concept change was ever detected. A
signal of 1 means no error, -1 means maximum error.

Figure 6: Error signals for one agent. Using Emin = 0.8
and Ematch = 0.2, seven unique concepts were detected yet
none were recognized.

464



consistently outperforms them on another. Figure 4 shows a
longer concept duration and a longer freeze time, where CD-
MORL outperforms the other two agents two out of three
concepts, but CD-MORL init performs the same or worse at
all times.

The error signal parameters of Emin, Ematch, and ρ have
a large impact on classifier performance. Two extreme ex-
amples of this are shown in Figures 5 and 6. Each figure
shows one instance of an agent, not an average. The error of
each unique concept model within that agent is shown start-
ing with its creation step up through the end of the trial. Each
unique concept has a unique color (in Figure 5, there is only
one concept to see, in Figure 6, blue is used twice). The error
signal changes suddenly each time the concept changes, but
the scale of the change is dependent on the problem and the
parameters. No smoothing was performed on the error sig-
nal plots. To illustrate parameter sensitivity, the error plots
have two horizontal lines for the thresholds of Emin = 0.2
and Ematch = 0.8.

Figure 5 shows that the agent often detected drift (any
time the signal is below the top red line) and, in this case,
never changed concepts (never went below the bottom red
line). The agent correctly ‘recognizes’ the first concept. At
the other extreme, as in Figure 6, new concepts were created
frequently. Each new concept is created at a true concept
change, as the concept changed every 500 steps. However, a
correct concept model was not recognized at any point.

Conclusion & Future Work
This work presents an algorithm to address the problem of
concept drift, a problem that autonomous agents face in
non-stationary environments. By incorporating a concept
drift classifier into a multi-objective reinforcement learning
agent, it is equipped to mitigate catastrophic forgetting and
the plasticity-stability dilemma. Results demonstrate that
agents using this algorithm outperform agents that assume
a stationary environment.

Future work will examine alternative methods of perform-
ing drift detection and recognition, notably by saving more
than just a scalarized error signal, since that loses the infor-
mation advantage provided by multiple objectives. Other
work will examine proper ways to react to drift, notably
when to store and retrieve concepts and whether it is better
to increase or decrease the learning rate under drift.

Acknowledgment
The views expressed in this paper are those of the authors,
and do not reflect the official policy or position of the United
States Air Force, Department of Defense, or the U.S. Gov-
ernment.

References
Berro, A., and Duthen, Y. 2001. Search for optimum in
dynamic environment: a efficient agent-based method. In
Genetic and Evolutionary Computation Conference. Work-
shop Program, 51–54.

Bowling, M., and Veloso, M. 2002. Multiagent learn-
ing using a variable learning rate. Artificial Intelligence
136(2):215–250.
Choi, S. P.; Yeung, D.-Y.; and Zhang, N. L. 2001. Hidden-
mode markov decision processes for nonstationary sequen-
tial decision making. In Sequence Learning. Springer. 264–
287.
Coello, C. C.; Lamont, G. B.; and Van Veldhuizen, D. A.
2007. Evolutionary Algorithms for Solving Multi-Objective
Problems. Springer.
Cruz, C.; González, J. R.; and Pelta, D. A. 2011. Opti-
mization in dynamic environments: a survey on problems,
methods and measures. Soft Computing 15(7):1427–1448.
da Silva, B. C.; Basso, E. W.; Bazzan, A. L.; and Engel,
P. M. 2006. Dealing with non-stationary environments using
context detection. In Proceedings of the 23rd International
Conference on Machine learning. ACM.
Deon, G. 2015. Random problem generator for multi-task
reinforcement learning problems.
Doya, K.; Samejima, K.; Katagiri, K.-i.; and Kawato, M.
2002. Multiple model-based reinforcement learning. Neural
computation 14(6):1347–1369.
Gama, J.; Žliobaitė, I.; Bifet, A.; Pechenizkiy, M.; and
Bouchachia, A. 2014. A survey on concept drift adapta-
tion. ACM Computing Surveys (CSUR) 46(4):44.
Goldberg, D., and Matarić, M. J. 2003. Maximizing reward
in a non-stationary mobile robot environment. Autonomous
Agents and Multi-Agent Systems 6(3):287–316.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. Journal of Artificial In-
telligence Research.
Kearns, M., and Singh, S. 1999. Finite-sample convergence
rates for q-learning and indirect algorithms. Advances in
Neural Information Processing Systems.
Nguyen, T. T.; Yang, S.; and Branke, J. 2012. Evolution-
ary dynamic optimization: A survey of the state of the art.
Swarm and Evolutionary Computation 6:1–24.
Schlimmer, J. C., and Granger Jr, R. H. 1986. Incremental
learning from noisy data. Machine Learning 1(3):317–354.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction, volume 1. Cambridge Univ Press.
Vamplew, P.; Dazeley, R.; Berry, A.; Issabekov, R.; and
Dekker, E. 2011. Empirical evaluation methods for multiob-
jective reinforcement learning algorithms. Machine Learn-
ing 84(1-2):51–80.
Van Moffaert, K.; Drugan, M. M.; and Nowé, A. 2013.
Hypervolume-based multi-objective reinforcement learning.
In Evolutionary Multi-Criterion Optimization, 352–366.
Springer.
Widmer, G., and Kubat, M. 1996. Learning in the pres-
ence of concept drift and hidden contexts. Machine Learn-
ing 23(1):69–101.
Zliobaite, I. 2009. Learning under concept drift: an
overview. Technical report, Vilnius University.

465




