Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

Rationale-Based Visual Planning
Monitors for Cognitive Systems

Zohreh A. Dannenhauer, Michael T. Cox
Wright State University
Dayton, OH
E-mail: alavi.3; michael.cox @wright.edu

Abstract

In this paper, we introduce a new technique for planning in a
world under continuous change. We focus on the relationship
between vision, interpretation and planning. Our approach is
to make vision sensitive to relevant changes in the environ-
ment that can affect plans and goals. For this purpose, we
applied a rationale-based monitor technique to a hierarchi-
cal planner. The planner generates plan monitors that interact
with a vision system and react only to those environmental
changes that bear on current planning decisions. Thus when
the monitors detect these changes, they execute specific plan
transformations as needed. We present results with a cogni-
tive architecture using the monitors to focus vision and adapt
plans. An experiment in a blocks world demonstrates the ef-
fectiveness of our approach.

Introduction

The ability to act and respond to exogenous events in dy-
namic environments is crucial for robust autonomy. In dy-
namic environments, external changes may occur that pre-
vent an agent from reaching its goal(s). But the default strat-
egy in most agent systems is to wait until a plan step fails,
then repair the plan or start planning anew (Cushing and
Kambhampati 2005). Instead, we claim that an intelligent
agent should actively watch for what can go wrong and an-
ticipate mistakes before they occur.

Vision has traditionally been a distinct area of research
and vision systems act independently of planning and agent
behavior. The “goal” of vision is to accept a visual scene
as input and to label the objects and perhaps identify the
relations between objects as output (see for example (Marr
1982)). Agent goals are irrelevant. Once an agent architec-
ture receives the output of vision, the system can search for
objects or relationships that bear on goals and plans. This
division of labor is quite inefficient since many of the ob-
jects in a visual scene will likely never affect the agent. In
contrast, an active approach to vision asserts that the vision
system should operate with the goals and plans as guide
(c.f., (Findlay and Gilchrist 2003; Fermuller and Aloimonos
1994)). In the research reported here, we propose a novel in-
tegration of planning and interpretation that uses goals and
plans to bias an active vision component.

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

182

We introduce a new system for planning in a world un-
der continuous change in an agent with visual perception.
Our main contribution is making vision sensitive to relevant
changes in the environment during the planning process that
affect an agent’s plans. We apply a rationale-based monitor
technique (Veloso, Pollack, and Cox 1998) to the SHOP Hi-
erarchical Task Network (HTN) planner (Nau et al. 1999).
Rationale-based monitors provide a means of focusing vi-
sual attention on features of the world likely to affect the
plan. We modified SHOP to generate plan monitors to inter-
act with a vision system and react only to those environmen-
tal changes that bear on current planning decisions. Thus
when the monitors detect any relevant changes, correspond-
ing plan transformations are executed as needed. We discuss
when to create the monitors, and when/how to backtrack the
planner to modify the plan. We have added our extended
SHOP planner to the planning phase of a cognitive archi-
tecture named MIDCA, refined the integration with a Bax-
ter robot, and tested it on a simulated blocksworld domain.
MIDCA communicates with Baxter to accomplish goals in
a dynamic environment using the monitors to focus vision
and adapt plans.

We begin the paper by describing the MIDCA cognitive
architecture and the SHOP planner embedded within it. The
next section describes the vision monitors concept and how
it is implemented in the SHOP planner. An empirical eval-
uation of this technique follows with related research and a
conclusion finishing the paper.

The MIDCA Architecture and SHOP

The meta-cognitive, integrated dual-cycle architecture
(MIDCA) (Cox et al. 2016) consists of “action-perception”
cycles at both the cognitive level and the meta-cognitive
level. In general, a cycle performs problem-solving to
achieve its goals and tries to comprehend the resulting ac-
tions and those of other agents. The output side of each
cycle consists of intention, planning, and action execution,
whereas the input side consists of perception, interpretation,
and goal evaluation. MIDCA 1.3 is the latest implementa-
tion of the MIDCA architecture. In MIDCA 1.3, we have
added an API interface to communicate with the Robot Op-
erating System (ROS) and a humanoid Baxter robot. In prob-
lem solving, the Intend component commits to a current goal
from those available. The Plan component then generates a



sequence of actions. Comprehension starts with perception
of the world in the attentional field via the Perceive phase.
In this paper, we study the relationship between Plan and
Perceive.

The Plan phase in MIDCA uses the SHOP planner. Goals
in MIDCA are mapped into initial tasks for SHOP planner.
SHOP is an HTN planning algorithm that creates plans by
recursively decomposing tasks into smaller subtasks until
only the primitive tasks are left which can be accomplished
directly (Nau et al. 1999). SHOP uses methods and opera-
tors. An operator specifies a way to perform a primitive task,
and a method specifies a way to decompose a non-primitive
task into a set of subtasks. A planning operator is a triple o =
(head(o), pre(o), eff(o)), where pre(o) and eff(o) are precon-
ditions and effects.

An HTN planning problem is a 3-tuple P = (s,7, D).
It takes the initial state s and a set of tasks T' = (t1, ..., )
to be accomplished. Also, it takes a knowledge base D in-
cluding operators and methods. A plan 7 = («y, ..., v, ) is a
solution for a planning problem to accomplish 7.

The Perceive phase in MIDCA generates discrete world
states which are represented symbolically as logical predi-
cates on objects in an image. As the Baxters camera reads in
images, a visual detection node performs an object detection
procedure to locate the objects and sends object data (e.g.,
color, location) about any known objects to the buffer. The
visual detection node is a ROS node that is running con-
currently with MIDCA and sends spatial representation of
the world to MIDCA. The object detection algorithm detects
objects. Then the Perceive phase in MIDCA reads the spa-
tial representation from the buffers and generates a symbolic
representation of the world. Perceive stores both spatial and
symbolic forms in memory. In the following sections, we
explain how these two phases in MIDCA interact.

Rationale-based Vision Monitors

A rationale-based vision monitor (Alavi and Cox 2016;
Veloso, Pollack, and Cox 1998) provides a means of focus-
ing visual attention on features of the world relevant to what
the agent is trying to do. That is, vision should be informed
by planning activity, because a plan represents the intended
actions to achieve the agent’s goals and therefore contains
the objects and states of interest to the agent. Vision should
thus monitor states that form the basis (i.e., rationale) of
planning choices. When a feature being monitored changes,
and the change is detected, we say that the monitor fires. If
the planner decides to account for the new change, it will
update the plan and alter the planning search. In particular,
parts of the plan may be deleted because they have become
unnecessary; or new tasks may be added and current ones
refined; and prior decisions about how to achieve particular
goals may be revisited.

Vision Monitors in SHOP

In this section, we explain how we modify the SHOP planner
to adapt search in response to changes during planning. To
integrate with rationale-based monitors, two procedures are
added to the SHOP planner. First, the monitors are generated

183

when an operator o is added to the current plan 7 . Second,
at each planning cycle, the SHOP planner checks for fired
monitors. If a monitor fires, the planner refines the plan.

Algorithm 1 Generate monitors

1: procedure generate_monitors(o,l, s, mnts)
2: for p in precond(o) do

3 if satisfied(p, s) then

4 mnts < (p,1) Umnts
5 else if — satisfied(p, s) then
6: mnits < (—p, 1) Umnts
7 end if

8 end for

9: end procedure

Algorithm 1 shows the details of monitor generation for
the preconditions of an operator. It takes the operator o, the
current recursion tree depth [, state s, and a list of moni-
tors mnts as input. Monitors observe features that directly
influence 7. This includes preconditions of all operators
in 7. Some of these preconditions will be true when they
are added to 7; they therefore must be monitored, because,
should they become false, 7 will fail unless additional steps
are added. Other preconditions will be initially false; should
they become true, then the portions of 7 that established
them may become unnecessary.

Algorithm 2 Check for fired monitors.

1: procedure fired(mnts)
2: fired_list < () i + perceive the world > 4 is the
spatial representation of the world

3 for (p,!) in mnts do

4 if i [~ p then

5: firedlist «+ (p,1) U fired_list
6: end if

7 end for

8: end procedure

Algorithm 2 checks to see if the preconditions of all oper-
ators in the plan so far are still satisfied in the new perceived
state. It gets the spatial representation ¢ of the world and
check to see if the precondition can be extracted form 3.

Plan refinement is done by backtracking to the recursion
tree depth that an action fails. When monitors are gener-
ated, the current recursion depth is recorded and backtrack-
ing uses this information.

Plan Refinement The core of our approach is how to re-
fine the plan under construction with backtracking and al-
tering the task-decomposition. When an operator fails (the
preconditions of the operator are not met in the new state),
the modified SHOP planner backtracks to the depth that the
failed operator is added to the plan. The refining procedure
starts with traversing the parent links until it finds the clos-
est valid parent of the failed task. A valid parent is a non-
primitive task which has been decomposed by a method for
which all preconditions of that method are true in the new
state.



]
> Cm2 >

Figure 1: An example of task decomposing

Figure 1 shows an example of decomposing task ¢;. Con-
sider in the middle of planning task ¢ is failed (the precon-
ditions of operator p; are not met). The SHOP planner will
backtrack to 3 to refine the plan. To check if to is a valid
task, the planner checks if the preconditions of the method
my are true, because 1 is decomposed to to using method
my. If there is a precondition of method m that is not sat-
isfied in the currently observed state of the world, then this
means o is also a failed task. It continues the process until
it finds a task that is valid in the current state or it reaches
the goal task. When the algorithm finds a valid task it tries
to decompose it in another way and continues building the
rest of the plan.

A Vision Application

We have added our extended SHOP planner to the planning
phase of MIDCA_1.3 and tested our system with a Baxter
humanoid robot in a blocksworld domain to examine our
claim on focusing vision and relationship between planner
and perception.

Monitors are created during plan generation as actions
are added to the plan. Monitors store the preconditions of
the actions. These monitors are mapped to a correspond-
ing component in Perceive that is only concerned with state
changes related to that specific precondition. We used expert
authored perceptual functions for perceiving each predicate
(on, clear, etc.) and mapped these to monitors in the planner.
The planner checks to see if the observed state is the same
as the expected state. If any change happens, the planner re-
fines the plan based on the new state.

Empirical Evaluation

In this section, we describe our experiment with MIDCA on
a modified blocksworld domain. We use a standard simula-
tor to simulate the world state and actions.

Our work focuses on the relationship between the Per-
ceive and Planning phases. The Perceive phase assists the
Plan phase by monitoring the relevant features of the world
during planning time. Relevant features are those that relate
to the current plan. In the evaluation below, we show how
vision assists planning. We leave the evaluation of planning
assisting vision to future work.

Blocksworld Domain

To evaluate the performance of our approach to the relation-
ship between vision and planning, we ran the system in a

184

modified blocksworld domain. The goal of this experiment
is to examine the benefit from using vision monitors to im-
prove planning in a dynamic environment. This version of
blocksworld domain (Winograd 1971) includes rectangular
blocks. The initial tasks for problems in this domain are to
build houses consisting of towers of blocks. We added the
possibility that blocks could catch fire and before any block
was picked up, the fire should first be extinguished. In order
for an extinguisher to be used, it must first be taken out of
the box. The box itself is represented as a block. If the box
is not clear, the planner generates a plan to make the box
clear. Furthermore, there were additional actions available
to MIDCA allowing it to deal with these refinements. The
three new types of actions are as follows:

put-out-fire(A, ext) If A is on fire, extinguish A

get-extinguisher(ext, B) if B is clear, take out the extin-
guisher ext from B

make-box-clear(B) if B is not clear, unstack all blocks on
top of B

Experimental Results

In this experiment, we changed the world state in the middle
of planning to make the current plan not valid. Our hypoth-
esis is that the planner will refine the plan to successfully
accomplish the given tasks.

In each planning problem we set the initial state to be one
with a block A on fire, a separate tower with C' as its bottom-
most block, and a fire extinguisher, ext, inside C'. The goal
is on(A, B). In order to pickup A, the fire needs to be ex-
tinguished first. For example, if the height of tower is 3, the
planner has to unstack and putdown 2 blocks in order to ob-
tain the fire extinguisher from block C' and use it on block A.
If the fire goes out during the planning process, the monitor
watching the precondition onfire(A) fires. Then the planner
cuts parts of the plan related to putout fire and simply gen-
erate the plan pickup(A),stack(A, B).

Here, the purpose of monitoring is to observe such a
change as the fire going out, and suggest a cut in the plan.
By varying the height of the tower, we can vary the com-
plexity and length of the solution. In this experiment, we
varied the height of tower, n, from 10 to 100 in increments
of 20. During planning the monitor which observes the state
of onfire(A) fires and suggests a plan refinement. We vary
the time at which this monitor fires during the planning pro-
cess, namely after 10, 70, 100, 200 planning steps.

Figure 2 shows the results of the experiment and plots the
planning steps as a function of n. As can be seen, when the
environment does not change, the number of planning steps
increases with n. However, with the rationale-based moni-
tors, the planner can react to the state changes and find a so-
lution faster. As would be expected, when the changes occur
later, the savings benefit of the planner is reduced, because it
has already performed significant planning. When the delay
is infinite, it has to unstack all the blocks to get the extin-
guisher. When the delay equals 10, the fire goes out in the
very beginning and the number of planning steps is 20 for
all the tower height.



350

delay = infinite
delay = 200
delay = 100
delay = 70
delay = 10

300 -

250

planning steps

i i i i i i i i
10 20 30 40 50 60 70 80 90
tower height

Figure 2: Planning performance using rationale-based moni-
tors in the SHOP planner. The curves refer to different delays
of the state change during the planning process.

Related Work

Similar work has been previously performed by (Veloso,
Pollack, and Cox 1998). They implemented rationale-based
monitors in the state space planner Prodigy, whereas our ap-
proach differs in using these monitors in the SHOP HTN
planner. Our next step is to examine the benefit of using
these monitors during the act (execution) phase. Our method
allows the agent to respond to unexpected changes during
execution (c.f., (Pettersson 2005)). For example in (Ayan et
al. 2007), the authors introduce an HTN-based planning sys-
tem which revises the plan if any action fails due to a state
change. Our approach lets the agent know about action fail-
ure earlier, so it has a chance to revise the plan sooner be-
fore reaching the failed action. In real world examples (e.g.,
military logistics scheduling), planning duration can be ex-
tensive, so significant changes often occur in the interval.

Conclusion

The integration of planning and interpretation in a cogni-
tive architecture is not a simple one way interaction. Here
we have argued that vision should serve the needs of the
planner. The planner generates visual monitors for the vi-
sion system based on the rationale for plan decisions (e.g.,
preconditions), and the vision system detects when these
conditions are violated. However, it can equally be argued
that the planning component should serve the needs of vi-
sion and interpretation. Given a particular scene or situ-
ation, MIDCA’s interpretation component recognizes new
problems in terms of expectation failures or discrepancies.
The interpretation system will then attempt to explain the
discrepancy and use the explanation to generate a goal to
remove the problem. The goal is passed to the problem-
solving module of MIDCA, and the planner will generate a
plan to achieve it. This technique typifies the goal-driven au-
tonomy approach to goal reasoning (e.g., (Aha et al. 2010;
Klenk, Molineaux, and Aha 2013) Our results support the
idea that vision has an important role in supporting the inten-
tions and actions of the agent. However, much future work

185

remains to be performed.

Acknowledgments

This research is funded by ONR under grants N0O0014-15-C-
0077 and N00014-15-1-2080. We also thank the anonymous
reviewers for their comments and suggestions.

References
Aha, D.; Klenk, M.; Munoz-Avila, H.; Ram, A.; and
Shapiro, D. 2010. Goal-driven autonomy: Notes from the
aaai workshop.

Alavi, Z., and Cox, M. T. 2016. Rationale-based visual
planning monitors. In Working Notes of the 4th Workshop
on Goal Reasoning. New York, IJCAI-16.

Ayan, N. F,; Kuter, U.; Yaman, F.; and Goldman, R. P. 2007.
Hotride: Hierarchical ordered task replanning in dynamic
environments. In Planning and Plan Execution for Real-
World Systems—Principles and Practices for Planning in Ex-
ecution: Papers from the ICAPS Workshop. Providence, RI,
volume 38.

Cox, M. T.; Alavi, Z.; Dannenhauer, D.; Eyorokon, V.; and
Munoz-Avila, H. 2016. Midca: A metacognitive, inte-
grated dual-cycle architecture for self-regulated autonomy.
In AAAL

Cushing, W., and Kambhampati, S. 2005. Replanning: A
new perspective. Proceedings of the International Confer-
ence on Automated Planning and Scheduling. Monterey,
USA 13-16.

Fermuller, C., and Aloimonos, Y. 1994. Vision and action.
IVC.

Findlay, J. M., and Gilchrist, I. D. 2003. Active vision: The
psychology of looking and seeing.

Klenk, M.; Molineaux, M.; and Aha, D. W. 2013.
Goal-driven autonomy for responding to unexpected events
in strategy simulations. Computational Intelligence
29(2):187-206.

Marr, D. 1982. A computational investigation into the hu-

man representation and processing of visual information. Vi-
sion 125-126.

Nau, D.; Cao, Y.; Lotem, A.; and Muifioz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proceedings
of the 16th IJCAI-Vol. 2, 968-973. Morgan Kaufmann.
Pettersson, O. 2005. Execution monitoring in robotics: A
survey. Robotics and Autonomous Systems 53(2):73-88.
Veloso, M. M.; Pollack, M. E.; and Cox, M. T. 1998.
Rationale-based monitoring for planning in dynamic envi-
ronments. In AIPS, 171-180.

Winograd, T. 1971. Procedures as a representation for data
in a computer program for understanding natural language.





